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The task of computing an estimate for the quantile ({,) for an unknown
distribution F (i.e, F({,) = g) is usually performed by the “sample quantile”
method, which computes the | Ng| + | smallest element from the set of N observa-
tions, and thus requires that all N samples be retained in memory. This paper
introduces a recursive method of estimating {, based on the fact that if the terminal
nodes of a uniform d-ary tree are assigned random values, independently drawn
from a distribution F, then the minimax alue of the root node converges to a
specified quantile of F for very tall trees. The new estimate is shown to be almost as
precise as that produced by the sample quantile method and, like it, is guaranteed to
converge to {, when the sample is large for any arbitrary distribution £. However, in
contrast to the sample quantile: computation the proposed method requires the
retention in storage of at most log, N representative data points, where N is the
number of samples observed in the past. Moreover, the estimate can be updated
quickly using an average of 4, and a maximum of 2 log, N, comparisons with each
new observation.

1. INTRODUCTION

We address the problem of estimating the g-quantile of an unknown
distribution Fy(x) on the basis of N independent samples X, X,,..., Xy
drawn from this distribution. In other words, we seek an estimate of the
quantity §, that satisfies Fy({,) = g, where 0 < g << 1. We will assume that
in the neighborhood of x = {, the density f(x) = Fi(x) is continuous and
has a continuous derivative f'(x).

The most obvious way of estimating §, is to calculate the quantile of the
sample. If Ng is not an integer, and if we arrange the sample values in an
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N is the number of samples observed in the past. Moreover, each new
update. would require no more than 2log, N comparisons.

2. THE MINIMAX QUANTILE ESTIMATOR

The method examined in this paper is based on the observation [3] that if
the terminal nodes of a uniform d-ary tree are assigned random values,
independently drawn form a distribution F, then the minimax value of the
root node converges to a specified quantile of F for very tall trees.

Consider a uniform tree with branching factor d and height 4 in which the
minimax value of each node is computed by the following procedure: the
values of the terminal nodes are assigned externally, the value of each
nonterminal node at any odd level of the tree (so-called MIN nodes) is given
by the minimum value of its d successors, and the value of each nonterminal
node at any even level of the tree (so-called MAX nodes) is given by the
maximal value of its d successors. Let us examine the distribution of the
minimax value of the root node when the terminal values, Vy(S,),
Vo(S$y), ..., Vy(S,4), are random variables independently drawn from a com-
mon distribution function F, v(v) = P (¥, = v). Without loss of generality
we assume that 4 is an even integer, i.e., & = 2n, and that the root is a MAX
node.

Denoting the minimax value of the root node by V,(5), it is easy to show
that its distribution function is governed by the recursive relation

Fy(v0)=[1-[1=F, (0)]]" (1)
The function
g(x)=[1-(1-x" ()

is monotonic increasing over [0, 1] with an unstable fixed point at x = 1 —¢,
where £ is the unique positive root of the equation x? + x — 1 =0.
Consequently, Fy(v) converges to the limits

lim F, (v) =0, Fy(v)<1-¢,
= ] ——g, FV()(U): 1 ‘5, (3)
=1,  F(o)>1-¢

Equation (3) implies that when the tree is sufficiently tall, the density of
V.(S), Fy(v), becomes highly concentrated around those values v* satisfy-
ing

F,(v¥)=1-¢ (4)
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nodes until the root value is established. Clearly, there is no need to store
the data in a tree structure; it is sufficient to maintain an updated record of
the path connecting the root with the currently examined terminal node. For
example, if A is the terminal node examined:

then all the terminal nodes to the left of 4 have been inspected and the
minimax values of all subtrees emerging from the path E-D-C-B-4 toward
the left are known. These values are sufficient for incorporating the new
datum A4, and propagating its impact upward. Each node along the path
should be assigned a counter and a storage register. When a new input
arrives from below, the counter is incremented by one and the register
changes to the MAX (or MIN) value of the new input and its previous
content. When any of the counters exceeds 4 it is set to 1 and the content of
the corresponding register is delivered upward as an input to the node
above. Thus, when the data are generated sequentially, one need not keep in
storage a complete record of past observations; a condensed summary of
only 4 numbers (together with A counters) would suffice. Moreover, the
number of comparisons performed with the arrival of each datum is at
worst i, and on the average 2.

Note that when the data size N is not known in advance, the height 4 of
the tree (or stack) could increase dynamically. The highest even-level node
evaluated can, at any time, be taken as an estimate of the quantile { e Note
also that in order to adjust the value of g, the desired quantile, one need
only adjust 4, which determines the conditions for resetting the various
counters along the traversing path.

The method described above amounts to an exhaustive evaluation of all
nodes in the tree. Although it consumes only minimal storage space, this
method is quite wasteful in terms of the number of observations (d”)
required before the root node is fully evaluated. A more efficient method
based on the alpha-beta (¢—f) pruning technique [4] can cut this number
substantially.

The basic idea behind the a—f pruning technique is that in normal
circumstances one can ignore the majority of the sampled data without
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The updating procedure employed by the a—8 method is similar to the one
described previously. Again, 4 nodes along a single path are sufficient to
summarize the past N observations. However, before a counter is incre-
mented it is now necessary to test whether the cutoff condition is met. If it
is, the counter is reset to 1 and the register’s content is sent upward. The
shallow cutoff test requires only that the newly updated value of each
register be compared to the value stored in the node above it, which only
doubles the number of comparisons performed per sample. Deep cutoff
tests can also be performed at the expense of a slightly more complex
updating sequence or, alternatively, by using two registers at each node.
However, the additional savings provided by deep cutoffs is only marginal
{4}

In summary, both updating methods employ only O(log N) samples from
the past N observations, plus an equal number of counters, and perform at
most O(log N) comparisons per update. But the a—f method makes better
use of the observations obtained. It can reach a given level of estimation
precision (governed by the height #) by observing, on the average, only a
fraction N 73/ of the samples necessary for the exhaustive minimax
method.

In the next section we examine the precision of the minimax estimation
method as a function of the height 4.

3. ESTIMATION ACCURACY

Assume that a minimax evaluation procedure was set up to estimate the
quantile ¢ = 1 — £ and that a sufficient number of samples was examined to
fully evaluate the minimax value at the height # = 2n. We analyze the
accuracy of the estimation by assuming d, = d, = d, suggesting that simi-
lar results also hold for the case d, 5~ d,.

The accuracy of the minimax estimator is governed by the distribution
function of V,,

F,(0)={1-[1 = F, (0]} =gl Fi(o)]. (5)

=i
where

did
g(x) =[1-(1-x)]
and
FVO(O) = Fy(v).
Since F,(v) tends to a step function as n — oo (Theorem 1), the variance of

vV, will be determined by the slope of F, v(v) in the neighborhood of v = ¢

q°
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(iii) In order to determine ¢'(0) we use (6) and obtain
¢n(y) = g'[#;-1(ay)]as;_ (ay),
which at y = 0 becomes
$,(0) = ag'(§)9,-1(0) = ¢;,_(0) = ¢,_5(0) = - - - = ¢;(0) = f(%).
Thus
¢'(0) = f(£). (10)

(iv) The asymptotic behavior of ¢(y) for large y can be found from the
fact that ¢(y), being a distribution function, obeys ¢( y) =, ol There-
fore, g[¢(y)] can be approximated by the local behavior of g(x) near
x=1; g(x) =~ 1—d(1 — x)% Using this expression in (7) yields

s(»)=1-d[1 — ¢(a)]*

or, !{y) = 1 — ¢(y) is a solution of the functional equation

W(y) = d[y(az)]”.

Fortunately this equation has a solution in close form:
¥(») = (@) Dexp(—y /e,

Writing a = [(1 — ¢)/qd] %, we have —Ind/Ina = 1/2(1 — y) and, taking
vy =~ 0.7, we obtain

~1/(d—1

o(y) = 1= ()" Pexp(—y*2). (11)

Thus, in contrast to the celebrated exp(—y?/2) law of the normal distribu-

tion, the rate of convergence of ¢(y) is somewhat slower. Yet it is suffi-

ciently fast to render the variance fairly independently on the exact shape of
the tails of ¢(y).

(v) Using a similar argument, the asymptotic behavior of ¢(y) for
y — —oo can be shown to obey

~d/(d—1
o(y) = (d)" 7 Pexp(=y*2). (12)

(vi) Numerical computation of $(y). Although (6) may be used for an
iterative computation of ¢(y), it is more convenient to compute y as a
function -of ¢ wusing the following transformation. From ¢,(y) =
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Numerical computations show that (14) provides an extremely close ap-
proximation. Thus, the variance of ¥, can be adequately approximated by

2n . 4n
i = = (] (15)

We summarize these results by stating:

THEOREM 2.  The limiting distribution of the variable y, = (V,, — {,)/a" is
given by &(y), the solution to the functional equation ¢(y) =g [qb(ay)],

where a ——[ (1 - q)/qd] and q is the positive solution of (1 — g —g=0.
The limiting variance of y, is roughly given by [27rf 2(§ )} !

4. COMPARISONS BETWEEN THE SAMPLE-QUANTILE AND THE
MINIMAX METHODS

The accuracies of the sample-quantile and the minimax methods are
reflected in the variances of the variables z, and V,, respectively:

q(1 —q)
0,2..
, Nf() (16)
and
11 [1=g\*
0,2/”—--2—;’-%(—(}2—) . (17)

Note that in (17), 4 depends implicitly on g while the expected number of
samples N depends on n and d. In order to compare the two estimation
methods under equal conditions, let us assume that both are required to
operate with the same accuracy, 1, where

(q)a2 =f*(q)o},- (18)

The choice of 1 dictates both the required number of samples N for the
sample-quantile method and the height / for the minimax method,
q(1 ~ 9)

N, =—, 19
= (19)



176 JUDEA PEARL

O(N ~9%428) behavior established for the minimax method (see Eq. (21)).
This selection method, with d = 3, is conceptually very appealing but,
lacking an efficient pruning scheme, may require a larger sample for
achieving a given precision standard. To obtain a standard deviation
comparable to that of the minimax method, d must exceed 21, which
introduces an additional complication: All 21 samples must be stored at
each node before their median can be selected. In general, a total of
d X log ;N memory registers would be required by this method instead of
the 10/7log N registers required by the minimax method.

In a more general “tree-selection” scheme each node may select one of its
d successors in accordance with a fixed, but arbitrary, selection rule. The
identity of the selected member may be an arbitrary function of the rank
positions of all the 4 values (e.g., if X; > X, select max( X}, X,, X;), else
choose min(X,,X,,X;)). It can be shown that for all rank-dependent
selection rules, the distribution of the selected member is a polynomial P in
F, satisfying P(0) = 0 and P(1) = 1. If P has only one interior unstable
fixed point at F, = g (ie, 0 < g << 1,P(q) = ¢,P’'(g) > 1), then the value
selected by the root node would converge to the g-quantile of F,. The task
of estimating the g-quantile of F, could then be performed by the given
selection rule using O(logN) storage registers. The figure of merit of the
selection rule (assuming no pruning) is given by the ratio a« =
[log P’(g)}/logd which governs the behavior of the estimation variance via
o= O(N™°).

If P has a stable interior fixed point (i.e., P(¢) = ¢, P'(g) < 1) then the
root’s value would not converge to a unique quantity but rather would
continue to fluctuate from level to level as a multivalued random variable.
In such a case the computation task performed by the tree-schema can no
longer be regarded as providing a consistent estimate of a computable
property of F_. In the third possibility, where the only fixed points are the
boundaries F, = 0 and F, = 1, the root node would tend toward the lowest
or highest support of F,.

These considerations highlight the basic limitation of recursive “tree-
selection” schema; the only property of F, computable by such schema is the
quantile. It would still be interesting to explore the computational capabili-
general computational function involving both selection and arithmetic
operations (such as 1/2 [min(x,,x,,x;) + max(x,x,,x,)].
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