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1 INTRODUCTION

This chapter surveys the development of graphical models known as Bayesian networks,
summarizes their semantical basis and assesses their properties and applications to reasoning
and planning.

Bayesian networks are directed acyclic graphs (DAGs) in which the nodes represent
variables of interest (e.g., the temperature of a device, the gender of a patient, a feature of
an object, the occurrence of an event) and the links represent causal influences among the
variables. The strength of an influence is represented by conditional probabilities that are
attached to each cluster of parents-child nodes in the network.

Figure 1 illustrates a simple yet typical Bayesian network. It describes the causal re-
lationships among the season of the year (X1), whether rain falls (X2) during the season,
whether the sprinkler is on (X3) during that season, whether the pavement would get wet
(X4), and whether the pavement would be slippery (X5). All variables in this figure are
binary, taking a value of either true or false, except the root variable X1 which can take one
of four values: Spring, Summer, Fall, or Winter. Here, the absence of a direct link between
X1 and X5, for example, captures our understanding that the influence of seasonal variations
on the slipperiness of the pavement is mediated by other conditions (e.g., the wetness of the
pavement).

As this example illustrates, a Bayesian network constitutes a model of the environment
rather than, as in many other knowledge representation schemes (e.g., logic, rule-based sys-
tems and neural networks), a model of the reasoning process. It simulates, in fact, the causal
mechanisms that operate in the environment, and thus allows the investigator to answer a
variety of queries, including: associational queries, such as “Having observed A, what can
we expect of B?”; abductive queries, such as “What is the most plausible explanation for a
given set of observations?”; and control queries; such as “What will happen if we intervene
and act on the environment?” Answers to the first type of query depend only on probabilistic
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Figure 1: A Bayesian network representing causal influences among five variables.

knowledge of the domain, while answers to the second and third types rely on the causal
knowledge embedded in the network. Both types of knowledge, associative and causal, can
effectively be represented and processed in Bayesian networks.

The associative facility of Bayesian networks may be used to model cognitive tasks such
as object recognition, reading comprehension, and temporal projections. For such tasks,
the probabilistic basis of Bayesian networks offers a coherent semantics for coordinating
top-down and bottom-up inferences, thus bridging information from high-level concepts and
low-level percepts. This capability is important for achieving selective attention, that is,
selecting the most informative next observation before actually making the observation. In
certain structures, the coordination of these two modes of inference can be accomplished by
parallel and distributed processes that communicate through the links in the network.

However, the most distinctive feature of Bayesian networks, stemming largely from their
causal organization, is their ability to represent and respond to changing configurations.
Any local reconfiguration of the mechanisms in the environment can be translated, with
only minor modification, into an isomorphic reconfiguration of the network topology. For
example, to represent a disabled sprinkler, we simply delete from the network all links
incident to the node “Sprinkler”. To represent a pavement covered by a tent, we simply
delete the link between “Rain” and “Wet”. This flexibility is often cited as the ingredient
that marks the division between deliberative and reactive agents, and that enables the former
to manage novel situations instantaneously, without requiring retraining or adaptation.

2 HISTORICAL BACKGROUND

Networks employing directed acyclic graphs (DAGs) have a long and rich tradition, start-
ing with the geneticist Sewall Wright (1921). Wright (1921) He developed a method called
Path Analysis (Wright, 1934), which later became an established representation of causal
models in economics (Wold, 1964), sociology (Blalock, Jr., 1971; Kenny, 1979), and psy-
chology (Duncan, 1975). Good (1961) used DAGs to represent causal hierarchies of binary
variables with disjunctive causes. Influence diagrams represent another application of DAG
representation (Howard and Matheson, 1981). Developed for decision analysis, they contain
both event nodes and decision nodes. Recursive models is the name given to such networks
by statisticians seeking meaningful and effective decompositions of contingency tables (Lau-

2



ritzen, 1982; Wermuth and Lauritzen, 1983; Kiiveri et al., 1984).
The role of the network in the applications above was primarily to provide an efficient

description for probability functions; once the network was configured, all subsequent com-
putations were pursued by symbolic manipulation of probability expressions. The potential
for the network to work as a computational architecture, and hence as a model of cogni-
tive activities, was noted in Pearl (1982), where a distributed scheme was demonstrated for
probabilistic updating on tree-structured networks. The motivation behind this particular
development was the modeling of distributed processing in reading comprehension (Rumel-
hart, 1976), where both top-down and bottom-up inferences are combined to form a coherent
interpretation. This dual mode of reasoning is at the heart of Bayesian updating, and in fact
motivated Reverend Bayes’s original 1763 calculations of posterior probabilities (represent-
ing explanations), given prior probabilities (representing causes), and likelihood functions
(representing evidence).

Bayesian networks have not attracted much attention in the logic and cognitive modeling
circles, but they did in expert systems. The ability to coordinate bi-directional inferences
filled a void in expert systems technology of the late 1970s, and it is in this area that
Bayesian networks truly flourished. Over the past ten years, Bayesian networks have become
a tool of great versatility and power, and they are now the most common representation
scheme for probabilistic knowledge (Neapolitan, 1990; Spiegelhalter et al., 1993; Darwiche,
2009; Koller and Friedman, 2009). They have been used to aid in the diagnosis of medical
patients (Heckerman, 1991; Andersen et al., 1989; Geiger et al., 1990; Jiang and Cooper,
2010) and malfunctioning systems (Fenton and Neil, 2012); to understand stories (Charniak
and Goldman, 1991), to retrieve documents (de Campos et al., 2004), to interpret pictures
(Levitt et al., 1990), to perform filtering, smoothing, and prediction (Weiss and Pearl, 2010),
to analyze gene expressions (Friedman et al., 2000), genetic counseling (Uebersax, 2004),
semantic search (Koumenides and Shadbolt, 2012), error-correcting codes (McEliece et al.,
1998), speech recognition (Zweig, 1998), to facilitate planning in uncertain environments
(Guestrin, 2003; Beaudry et al., 2010), and to study causation, nonmonotonicity, action,
change, and attention. Some of these applications are described in Pearl (1988); Russell and
Norvig (2003); Buede (2009).

3 BAYESIAN NETWORKS AS CARRIERS OF PROB-

ABILISTIC INFORMATION

3.1 Formal Semantics

Given a DAG G and a joint distribution P over a set X = {X1, ..., Xn} of discrete variables,
we say that G represents P if there is a one-to-one correspondence between the variables in
X and the nodes of G, such that P admits the recursive product decomposition

P (x1, ..., xn) =
∏
i

P (xi | pai) (1)
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where pai are the direct predecessors (called parents) of Xi in G. For example, the DAG in
Figure 1 induces the decomposition

P (x1, x2, x3, x4, x5) = P (x1) P (x2|x1) P (x3|x1) P (x4|x2, x3) P (x5|x4) (2)

The recursive decomposition in Eq. (1) implies that, given its parent set pai, each variable
Xi is conditionally independent of all its other predecessors {X1, X2, ..., Xi−1}\pai. Using
Dawid’s notation (Dawid, 1979), we can state this set of independencies as

Xi⊥⊥{X1, X2, ..., Xi−1}\pai | pai i = 2, ..., n (3)

Such a set of independencies is called Markovian, since it reflects the Markovian condition
for state transitions: each state is rendered independent of the past, given its immediately
preceding state. For example, the DAG of Figure 1 implies the following Markovian inde-
pendencies:

X2⊥⊥{0} | X1, X3⊥⊥X2 | X1, X4⊥⊥X1 | {X2, X3}, X5⊥⊥{X1, X2, X3} | X4 (4)

In addition to these, the decomposition of Eq. (1) implies many more independencies,
the sum total of which can be identified from the DAG using the graphical criterion of
d-separation (Pearl, 1988):

Definition 1 (d-separation) Let a path in a DAG be a sequence of consecutive edges, of any
directionality. A path p is said to be d-separated (or blocked) by a set of nodes Z iff:

(i) p contains a chain i −→ j −→ k or a fork i←− j −→ k such that the middle node j
is in Z, or,

(ii) p contains an inverted fork i −→ j ←− k such that neither the middle node j nor any
of its descendants (in G) are in Z.

If X, Y, and Z are three disjoint subsets of nodes in a DAG G, then Z is said to d-separate
X from Y , denoted (X⊥⊥Y |Z)G, iff Z d-separates every path from a node in X to a node in
Y .

In Figure 1, for example, X = {X2} and Y = {X3} are d-separated by Z = {X1}; the
pathX2 ← X1 → X3 is blocked byX1 ∈ Z, while the pathX2 → X4 ← X3 is blocked because
X4 and all its descendants are outside Z. Thus, (X2⊥⊥X3|X1)G holds in Figure 1. However,
X and Y are not d-separated by Z ′ = {X1, X5}, because the path X2 → X4 ← X3 is rendered
active by virtue of X5, a descendant of X4, being in Z ′. Consequently, (X2⊥⊥X3|{X1, X5})G
does not hold; in words, learning the value of the consequence X5 renders its causes X2 and
X3 dependent, as if a pathway were opened along the arrows converging at X4.

The d-separation criterion has been shown to be both necessary and sufficient relative to
the set of distributions that are represented by a DAG G (Verma and Pearl, 1990; Geiger
et al., 1990). In other words, there is a one-to-one correspondence between the set of inde-
pendencies implied by the recursive decomposition of Eq. (1) and the set of triples (X,Z, Y )
that satisfy the d-separation criterion in G. Furthermore, the d-separation criterion can be
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tested in time linear in the number of edges in G. Thus, a DAG can be viewed as an ef-
ficient scheme for representing Markovian independence assumptions and for deducing and
displaying all the logical consequences of such assumptions.

An important property that follows from the d-separation characterization is a criterion
for determining when two dags are observationally equivalent, that is, every probability
distribution that is represented by one of the dags is also represented by the other:

Theorem 1 (Verma and Pearl, 1990) Two dags are observationally equivalent if and only
if they have the same sets of edges and the same sets of v-structures, that is, head-to-head
arrows with non-adjacent tails.

The soundness of the d-separation criterion holds not only for probabilistic independencies
but for any abstract notion of conditional independence that obeys the semi-graphoid axioms
(Verma and Pearl, 1990; Geiger et al., 1990). Additional properties of DAGs and their
applications to evidential reasoning in expert systems are discussed in Pearl (1988, 1993a);
Pearl et al. (1990); Geiger (1990); Lauritzen and Spiegelhalter (1988); Spiegelhalter et al.
(1993); Darwiche (2009); Lauritzen (1996).

3.2 Inference Algorithms

The first algorithms proposed for probability updating in Bayesian networks used message-
passing architecture and were limited to trees (Pearl, 1982) and singly connected networks
(Kim and Pearl, 1983). The idea was to assign each variable a simple processor, forced to
communicate only with its neighbors, and to permit asynchronous back-and-forth message-
passing until equilibrium was achieved. Coherent equilibrium can indeed be achieved this
way, but only in singly connected networks, where an equilibrium state occurs in time pro-
portional to the diameter of the network.

Many techniques have been developed and refined to extend the tree-propagation method
to general, multiply connected networks. Among the most popular are Shachter’s (1988)
method of node elimination, Lauritzen and Spiegelhalter’s (1988) method of clique-tree prop-
agation, loop-cut conditioning (Pearl, 1988, Chapter 4.3), interative conditioning (Darwiche,
2009; Dechter, 1999).

Clique-tree propagation, works as follows. Starting with a directed network represen-
tation, the network is transformed into an undirected graph that retains all of its original
dependencies. This graph, sometimes called a Markov network (Pearl, 1988, Chapter 3.1), is
then triangulated to form local clusters of nodes (cliques) that are tree-structured. Evidence
propagates from clique to clique by ensuring that the probability of their intersection set is
the same, regardless of which of the two cliques is considered in the computation. Finally,
when the propagation process subsides, the posterior probability of an individual variable
is computed by projecting (marginalizing) the distribution of the hosting clique onto this
variable.

Whereas the task of updating probabilities in general networks is NP-hard (Rosenthal,
1975; Cooper, 1990), the complexity for each of the three methods cited above is exponential
in the size of the largest clique found in some triangulation of the network. It is fortunate
that these complexities can be estimated prior to actual processing; when the estimates
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exceed reasonable bounds, an approximation method such as stochastic simulation (Pearl,
1987; Henrion, 1988) and belief propagation (Weiss and Pearl, 2010) can be used instead.
Learning techniques have also been developed for systematic updating of the conditional
probabilities P (xi|pai) so as to match empirical data (Spiegelhalter and Lauritzen, 1990;
Darwiche, 2009).

3.3 System’s properties

By providing graphical means for representing and manipulating probabilistic knowledge,
Bayesian networks overcome many of the conceptual and computational difficulties of ear-
lier knowledge-based systems (Pearl, 1988). Their basic properties and capabilities can be
summarized as follows:

1. Graphical methods make it easy to maintain consistency and completeness in proba-
bilistic knowledge bases. They also define modular procedures of knowledge acquisition
that reduce significantly the number of assessments required (Pearl, 1988; Heckerman,
1991).

2. Independencies can be dealt with explicitly. They can be articulated by an expert,
encoded graphically, read off the network, and reasoned about; yet they forever remain
robust to numerical imprecision (Geiger, 1990; Geiger et al., 1990; Pearl et al., 1990).

3. Graphical representations uncover opportunities for efficient computation. Distributed
updating is feasible in knowledge structures which are rich enough to exhibit intercausal
interactions (e.g., “explaining away”) (Pearl, 1982; Kim and Pearl, 1983). And, when
extended by clustering or conditioning, tree-propagation algorithms are capable of
updating networks of arbitrary topology (Lauritzen and Spiegelhalter, 1988; Shachter,
1986; Pearl, 1988).

4. The combination of predictive and abductive inferences resolves many problems en-
countered by first-generation expert systems and renders belief networks a viable model
for cognitive functions requiring both top-down and bottom-up inferences (Pearl, 1988;
Shafer and Pearl, 1990).

5. The causal information encoded in Bayesian networks facilitates the analysis of action
sequences, their consequences, their interaction with observations, their expected util-
ities and, hence, the synthesis of plans and strategies under uncertainty (Dean and
Wellman, 1991; Pearl, 1993b, 1994b).

6. The isomorphism between the topology of Bayesian networks and the stable mecha-
nisms that operate in the environment facilitates modular reconfiguration of the net-
work in response to changing conditions, and permits deliberative reasoning about
novel situations.
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3.4 Later Developments

3.4.1 Causal discovery

One of the most exciting prospects in recent years has been the possibility of using the
theory of Bayesian networks to discover causal structures in raw statistical data. Several
systems have been developed for this purpose (Rebane and Pearl, 1987; Pearl and Verma,
1991; Spirtes et al., 1993, 2000), which systematically search and identify causal structures
with hidden variables from empirical data. Technically, because these algorithms rely merely
on conditional independence relationships, the structures found are valid only if one is will-
ing to accept weaker forms of guarantees than those obtained through controlled randomized
experiments: minimality and stability (Pearl and Verma, 1991; Pearl, 2000, Ch. 2). Minimal-
ity guarantees that any other structure compatible with the data is necessarily less specific,
and hence less falsifiable and less trustworthy, than the one(s) inferred. Stability ensures
that any alternative structure compatible with the data must be less stable than the one(s)
inferred; namely, slight fluctuations in experimental conditions will render that structure no
longer compatible with the data. With these forms of guarantees, the theory provides cri-
teria and algorithms for identifying genuine and spurious causes, with or without temporal
information.

Alternative methods of identifying structure in data assign prior probabilities to the
parameters of the network and use Bayesian updating to score the degree to which a given
network fits the data (Cooper and Herskovits, 1991; Heckerman et al., 1994). These methods
have the advantage of operating well under small sample conditions, but encounter difficulties
coping with hidden variables.

Tian and Pearl (2001a,b) developed yet another method of causal discovery based on
the detection of “shocks,” or spontaneous local changes in the environment which act like
“Nature’s interventions,” and unveil causal directionality toward the consequences of those
shocks.

3.4.2 Plain beliefs

In mundane decision making, beliefs are revised not by adjusting numerical probabilities but
by tentatively accepting some sentences as “true for all practical purposes”. Such sentences,
often named plain beliefs, exhibit both logical and probabilistic character. As in classical
logic, they are propositional and deductively closed; as in probability, they are subject to
retraction and to varying degrees of entrenchment (Spohn, 1988; Goldszmidt and Pearl,
1992).

Bayesian networks can be adopted to model the dynamics of plain beliefs by replac-
ing ordinary probabilities with non-standard probabilities, that is, probabilities that are
infinitesimally close to either zero or one. This amounts to taking an “order of magnitude”
approximation of empirical frequencies, and adopting new combination rules tailored to re-
flect this approximation. The result is an integer-addition calculus, very similar to probability
calculus, with summation replacing multiplication and minimization replacing addition. A
plain belief is then identified as a proposition whose negation obtains an infinitesimal proba-
bility (i.e., an integer greater than zero). The connection between infinitesimal probabilities,
nonmonotonic logic, and interative belief revision is described in Pearl (1994a); Goldszmidt
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and Pearl (1996); Darwiche and Pearl (1997); Spohn (2012).
This combination of infinitesimal probabilities with the causal information encoded by the

structure of Bayesian networks facilitates linguistic communication of belief commitments,
explanations, actions, goals, and preferences, and serves as the basis for qualitative planning
under uncertainty (Darwiche and Pearl, 1994; Goldszmidt and Pearl, 1992; Pearl, 1993b;
Darwiche and Goldszmidt, 1994). Some of these aspects will be presented in the next section.

4 BAYESIAN NETWORKS AS CARRIERS OF CAUSAL

INFORMATION

The interpretation of DAGs as carriers of independence assumptions does not necessarily
imply causation and will in fact be valid for any set of Markovian independencies along any
ordering (not necessarily causal or chronological) of the variables. However, the patterns of
independencies portrayed in a DAG are typical of causal organizations and some of these
patterns can only be given meaningful interpretation in terms of causation. Consider, for
example, two independent events, E1 and E2, that have a common effect E3. This triple
represents an intransitive pattern of dependencies: E1 and E3 are dependent, E3 and E2

are dependent, yet E1 and E2 are independent. Such a pattern cannot be represented
in undirected graphs because connectivity in undirected graphs is transitive. Likewise, it
is not easily represented in neural networks, because E1 and E2 should turn dependent
once E3 is known. The DAG representation provides a convenient language for intransitive
dependencies via the converging pattern E1 → E3 ← E2, which implies the independence
of E1 and E2 as well as the dependence of E1 and E3 and of E2 and E3. The distinction
between transitive and intransitive dependencies is the basis for the causal discovery systems
of Pearl and Verma (1991) and Spirtes et al. (1993) (see Section 3.4.1).

However, the Markovian account still leaves open the question of how such intricate
patterns of independencies relate to the more basic notions associated with causation, such
as influence, manipulation, and control, which reside outside the province of probability
theory. The connection is made in the mechanism-based account of causation.

The basic idea behind this account goes back to structural equations models (Wright,
1921; Haavelmo, 1943; Simon, 1953) and it was adapted in Pearl and Verma (1991) for
defining probabilistic causal theories, as follows. Each child-parents family in a DAG G
represents a deterministic function

Xi = fi(pai, εi) (5)

where pai are the parents of variable Xi in G, and εi, 0 < i < n, are mutually independent,
arbitrarily distributed random disturbances. Characterizing each child-parent relationship
as a deterministic function, instead of the usual conditional probability P (xi | pai), imposes
equivalent independence constraints on the resulting distributions and leads to the same re-
cursive decomposition that characterizes DAG models (see Eq. (1)). However, the functional
characterization Xi = fi(pai, εi) also specifies how the resulting distributions would change
in response to external interventions, since each function is presumed to represent a stable
mechanism in the domain and therefore remains constant unless specifically altered. Thus,
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once we know the identity of the mechanisms altered by the intervention and the nature
of the alteration, the overall effect of an intervention can be predicted by modifying the
appropriate equations in the model of Eq. (5) and using the modified model to compute a
new probability function of the observables.

The simplest type of external intervention is one in which a single variable, say Xi, is
forced to take on some fixed value x′i. Such atomic intervention amounts to replacing the
old functional mechanism Xi = fi(pai, εi) with a new mechanism Xi = x′i governed by some
external force that sets the value x′i. If we imagine that each variable Xi could potentially be
subject to the influence of such an external force, then we can view each Bayesian network as
an efficient code for predicting the effects of atomic interventions and of various combinations
of such interventions, without representing these interventions explicitly.

4.1 Causal theories, actions, causal effect, and identifiability

Definition 2 A causal theory is a 4-tuple

T =< V,U, P (u), {fi} >

where

(i) V = {X1, . . . , Xn} is a set of observed variables

(ii) U = {U1, . . . , Um} is a set of unobserved variables which represent disturbances, abnor-
malities or assumptions,

(iii) P (u) is a distribution function over U1, . . . , Un, and

(iv) {fi} is a set of n deterministic functions, each of the form

Xi = fi(PAi, u) i = 1, . . . , n (6)

where PAi is a subset of V not containing Xi.

The variables PAi (connoting parents) are considered the direct causes of Xi and they
define a directed graph G which may, in general, be cyclic. Unlike the probabilistic definition
of “parents” in Bayesian networks (Eq. (1)), PAi is selected from V by considering functional
mechanisms in the domain, not by conditional independence considerations. We will assume
that the set of equations in (6) has a unique solution for Xi, . . . , Xn, given any value of the
disturbances U1, . . . , Un. Therefore the distribution P (u) induces a unique distribution on
the observables, which we denote by PT (v).

We will consider concurrent actions of the form do(X = x), where X ⊆ V is a set of
variables and x is a set of values from the domain of X. In other words, do(X = x) represents
a combination of actions that forces the variables in X to attain the values x.

Definition 3 (effect of actions) The effect of the action do(X = x) on a causal theory T is
given by a subtheory Tx of T , where Tx obtains by deleting from T all equations corresponding
to variables in X and substituting the equations X = x instead.
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The framework provided by Definitions 2 and 3 permits the coherent formalization of
many subtle concepts in causal discourse, such as causal influence, causal effect, causal rele-
vance, average causal effect, identifiability, counterfactuals, exogeneity, and so on. Examples
are:

∗ ∗ ∗ X influences Y in context u if there are two values of X, x and x′, such that the
solution for Y under U = u and do(X = x) is different from the solution under U = u
and do(X = x′).

∗ ∗ ∗ X can potentially influence Y if there exist both a subtheory Tz of T and a context
U = u in which X influences Y .

∗ ∗ ∗ Event X = x is the (singular) cause of event Y = y if (i) X = x and Y = y are
true, and (ii) in every context u compatible with X = x and Y = y, and for all x′ 6= x,
the solution of Y under do(X = x′) is not equal to y.

The definitions above are deterministic. Probabilistic causality emerges when we define
a probability distribution P (u) for the U variables, which, under the assumption that the
equations have a unique solution, induces a unique distribution on the endogenous variables
for each combination of atomic interventions.

Definition 4 (causal effect) Given two disjoint subsets of variables, X ⊆ V and Y ⊆ V ,
the causal effect of X on Y , denoted PT (y|x̂), is a function from the domain of X to the
space of probability distributions on Y , such that

PT (y|x̂) = PTx(y) (7)

for each realization x of X. In other words, for each x ∈ dom(X), the causal effect PT (y|x̂)
gives the distribution of Y induced by the action do(X = x).

Note that causal effects are defined relative to a given causal theory T , though the
subscript T is often suppressed for brevity.

Definition 5 (identifiability) Let Q(T ) be any computable quantity of a theory T ; Q is
identifiable in a class M of theories if for any pair of theories T1 and T2 from M , Q(T1) =
Q(T2) whenever PT1(v) = PT2(v).

Identifiability is essential for estimating quantities Q from P alone, without specifying
the details of T , so that the general characteristics of the class M suffice. The question of
interest in planning applications is the identifiability of the causal effect Q = PT (y|x̂) in the
class MG of theories that share the same causal graph G. Relative to such classes we now
define:

Definition 6 (causal-effect identifiability) The causal effect of X on Y is said to be iden-
tifiable in MG if the quantity P (y|x̂) can be computed uniquely from the probabilities of
the observed variables, that is, if for every pair of theories T1 and T2 in MG such that
PT1(v) = PT2(v), we have PT1(y|x̂) = PT2(y|x̂).
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The identifiability of P (y|x̂) ensures that it is possible to infer the effect of action
do(X = x) on Y from two sources of information:

(i) passive observations, as summarized by the probability function P (v),

(ii) the causal graph, G, which specifies, qualitatively, which variables make up the stable
mechanisms in the domain or, alternatively, which variables participate in the deter-
mination of each variable in the domain.

Simple examples of identifiable causal effects will be discussed in the next subsection.

4.2 Acting vs. Observing

Consider the example depicted in Figure 1. The corresponding theory consists of five func-
tions, each representing an autonomous mechanism:

X1 = U1

X2 = f2(X1, U2)

X3 = f3(X1, U3)

X4 = f4(X3, X2, U4)

X5 = f5(X4, U5) (8)

To represent the action “turning the sprinkler ON”, do(X3 = ON), we delete the equation
X3 = f3(x1, u3) from the theory of Eq. (8), and replace it with X3 = ON. The resulting
subtheory, TX3=ON, contains all the information needed for computing the effect of the actions
on other variables. It is easy to see from this subtheory that the only variables affected by
the action are X4 and X5, that is, the descendant, of the manipulated variable X3.

The probabilistic analysis of causal theories becomes particularly simple when two con-
ditions are satisfied:

1. The theory is recursive, i.e., there exists an ordering of the variables V = {X1, . . . , Xn}
such that each Xi is a function of a subset PAi of its predecessors

Xi = fi(PAi, Ui), PAi ⊆ {X1, . . . , Xi−1} (9)

2. The disturbances U1, . . . , Un are mutually independent, that is,

P (u) =
∏
i

P (ui) (10)

These two conditions, also called Markovian, are the basis of the independencies embodied
in Bayesian networks (Eq. 1) and they enable us to compute causal effects directly from the
conditional probabilities P (xi|pai), without specifying the functional form of the functions
fi, or the distributions P (ui) of the disturbances. This is seen immediately from the following
observations: The distribution induced by any Markovian theory T is given by the product
in Eq. (1)

PT (x1, . . . , xn) =
∏
i

P (xi|pai) (11)
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where pai are (values of) the parents of Xi in the diagram representing T . At the same
time, the subtheory Tx′

j
, representing the action do(Xj = x′j) is also Markovian, hence it also

induces a product-like distribution

PTx′
j

(x1, . . . , xn) =

{ ∏
i6=j P (xi|pai) = P (x1,...,xn)

P (xj |paj)
if xj = x′j

0 if xj 6= x′j
(12)

where the partial product reflects the surgical removal of the

Xj = fj(paj, Uj)

from the theory of equation (9) (see (Pearl, 1993a)).
In the example of Figure 1, the pre-action distribution is given by the product

PT (x1, x2, x3, x4, x5) = P (x1)P (x2|x1)P (x3|x1)P (x4|x2, x3)P (x5|x4) (13)

while the surgery corresponding to the action do(X3 = ON) amounts to deleting the link
X1 → X3 from the graph and fixing the value of X3 to ON, yielding the post-action distri-
bution:

PT (x1, x2, x4, x5|do(X3 = ON)) = P (x1) P (x2|x1) P (x4|x2, X3 = ON) P (x5|x4) (14)

Note the difference between the action do(X3 = ON) and the observation X3 = ON.
The latter is encoded by ordinary Bayesian conditioning, while the former by conditioning
a mutilated graph, with the link X1 → X3 removed. This mirrors indeed the difference
between seeing and doing: after observing that the sprinkler is ON, we wish to infer that the
season is dry, that it probably did not rain, and so on; no such inferences should be drawn in
evaluating the effects of the deliberate action “turning the sprinkler ON”. The amputation
of X3 = f3(X1, U3) from (8) ensures the suppression of any abductive inferences from X3,
the action’s recipient.

Note also that Equations (11) through (14) are independent of T , in other words, the
pre-actions and post-action distributions depend only on observed conditional probabilities
but are independent of the particular functional form of {fi} or the distribution P (u) which
generate those probabilities. This is the essence of identifiability as given in Definition 6,
which stems from the Markovian assumptions (9) and (10). Section 4.3 will demonstrate
that certain causal effects, though not all, are identifiable even when the Markovian property
is destroyed by introducing dependencies among the disturbance terms.

Generalization to multiple actions and conditional actions are reported in
Pearl and Robins (1995). Multiple actions do(X = x), where X is a compound variable
result in a distribution similar to (12), except that all factors corresponding to the variables
in X are removed from the product in (11). Stochastic conditional strategies (Pearl, 1994b)
of the form

do(Xj = xj) with probability P ∗(xj|pa∗j) (15)

where pa∗j is the support of the decision strategy, also result in a product decomposition
similar to (11), except that each factor P (xj|paj) is replaced with P ∗(xj|pa∗j).
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The surgical procedure described above is not limited to probabilistic analysis. The
causal knowledge represented in Figure 1 can be captured by logical theories as well, for
example,

x2 ⇐⇒ [(X1 = Winter) ∨ (X1 = Fall) ∨ ab2] ∧ ¬ab′2
x3 ⇐⇒ [(X1 = Summer) ∨ (X1 = Spring) ∨ ab3] ∧ ¬ab′3
x4 ⇐⇒ (x2 ∨ x3 ∨ ab4) ∧ ¬ab′4
x5 ⇐⇒ (x4 ∨ ab5) ∧ ¬ab′5 (16)

where xi stands for Xi = true, and abi and ab′i stand, respectively, for trigerring and inhibit-
ing abnormalities. The double arrows represent the assumption that the events on the r.h.s.
of each equation are the only direct causes for the l.h.s, thus identifying the surgery implied
by any action.

It should be emphasized though that the models of a causal theory are not made up
merely of truth value assignments which satisfy the equations in the theory. Since each
equation represents an autonomous process, the content of each individual equation must
be specified in any model of the theory, and this can be encoded using either the graph (as
in Figure 1) or the generic description of the theory, as in (8). Alternatively, we can view
a model of a causal theory to consist of a mutually consistent set of submodels, with each
submodel being a standard model of a single equation in the theory.

4.3 Action Calculus

The identifiability of causal effects demonstrated in Section 4.1 relies critically on the Marko-
vian assumptions (9) and (10). If a variable that has two descendants in the graph is un-
observed, the disturbances in the two equations are no longer independent, the Markovian
property (9) is violated and identifiability may be destroyed. This can be seen easily from
Eq. (12); if any parent of the manipulated variable Xj is unobserved, one cannot estimate
the conditional probability P (xj|paj), and the effect of the action do(Xj = xj) may not be
predictable from the observed distribution P (x1, . . . , xn). Fortunately, certain causal effects
are identifiable even in situations where members of paj are unobservable (Pearl, 1993a)
and, moreover, polynomial tests are now available for deciding when P (xi|x̂j) is identifiable,
and for deriving closed-form expressions for P (xi|x̂j) in terms of observed quantities (Galles
and Pearl, 1995).

These tests and derivations are based on a symbolic calculus (Pearl, 1994a, 1995) to be
described in the sequel, in which interventions, side by side with observations, are given ex-
plicit notation, and are permitted to transform probability expressions. The transformation
rules of this calculus reflect the understanding that interventions perform “local surgeries”
as described in Definition 3, i.e., they overrule equations that tie the manipulated variables
to their pre-intervention causes.

Let X, Y, and Z be arbitrary disjoint sets of nodes in a DAG G. We denote by GX

the graph obtained by deleting from G all arrows pointing to nodes in X. Likewise, we
denote by GX the graph obtained by deleting from G all arrows emerging from nodes in X.
To represent the deletion of both incoming and outgoing arrows, we use the notation GXZ .

13



Finally, the expression P (y|x̂, z) ∆
= P (y, z|x̂)/P (z|x̂) stands for the probability of Y = y

given that Z = z is observed and X is held constant at x.

Theorem 2 Let G be the directed acyclic graph associated with a Markovian causal theory,
and let P (·) stand for the probability distribution induced by that theory. For any disjoint
subsets of variables X, Y, Z, and W we have:

Rule 1 (Insertion/deletion of observations):

P (y|x̂, z, w) = P (y|x̂, w) if (Y⊥⊥Z|X,W )GX
(17)

Rule 2 (Action/observation exchange):

P (y|x̂, ẑ, w) = P (y|x̂, z, w) if (Y⊥⊥Z|X,W )GXZ
(18)

Rule 3 (Insertion/deletion of actions):

P (y|x̂, ẑ, w) = P (y|x̂, w) if (Y⊥⊥Z|X, W )G
X, Z(W )

(19)

where Z(W ) is the set of Z-nodes that are not ancestors of any W -node in GX .

Each of the inference rules above follows from the basic interpretation of the “x̂” operator
as a replacement of the causal mechanism that connects X to its pre-action parents by a
new mechanism X = x introduced by the intervening force. The result is a submodel
characterized by the subgraph GX (named “manipulated graph” in Spirtes et al. (1993))
which supports all three rules.

Corollary 1 A causal effect q: P (y1, ..., yk|x̂1, ..., x̂m) is identifiable in a model characterized
by a graph G if there exists a finite sequence of transformations, each conforming to one of
the inference rules in Theorem 2, which reduces q into a standard (i.e., hat-free) probability
expression involving observed quantities. �

Although Theorem 2 and Corollary 1 require the Markovian property, they can also be
applied to non Markovian, recursive theories because such theories become Markovian if we
consider the unobserved variables as part of the analysis, and represent them as nodes in
the graph. To illustrates, assume that variable X1 in Figure 1 is unobserved, rendering the
disturbances U3 and U2 dependent since these terms now include the common influence of
X1. Theorem 2 tells us that the causal effect P (x4|x̂3) is identifiable, because:

P (x4|x̂3) =
∑
x2

P (x4|x̂3, x2)P (x2|x̂3)

Rule 3 permits the deletion

P (x2|x̂3) = P (x2), because (X2⊥⊥X3)GX3
,
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while Rule 2 permits the exchange

P (x4|x̂3, x2) = P (x4|x3, x2), because (X4⊥⊥X3|X2)GX3
.

This gives

P (x4|x̂3) =
∑
x2

P (x4|x3, x2)P (x2)

which is a “hat-free” expression, involving only observed quantities.
In general, it can be shown (Pearl, 1995) that:

1. The effect of interventions can often be identified (from nonexperimental data) without
resorting to parametric models,

2. The conditions under which such nonparametric identification is possible can be de-
termined by simple graphical tests1, and,

3. When the effect of interventions is not identifiable, the causal graph may suggest non-
trivial experiments which, if performed, would render the effect identifiable.

The ability to assess the effect of interventions from nonexperimental data has immediate
applications in the medical and social sciences, since subjects who undergo certain treat-
ments often are not representative of the population as a whole. Such assessments are also
important in AI applications where an agent needs to predict the effect of the next action
on the basis of past performance records, and where that action has never been enacted un-
der controlled experimental conditions, but in response to environmental needs or to other
agent’s requests.

4.4 Recent Developments

4.4.1 Complete identification results

A key identification condition, which operationalizes Theorem 2 has been derived by Jin
Tian. It reads:

Theorem 3 (Tian and Pearl, 2002) A sufficient condition for identifying the causal effect
P (y|do(x)) is that there exists no bi-directed path (i.e., a path composed entirely of bi-directed
arcs) between X and any of its children.2

1These graphical tests offer, in fact, a complete formal solution to the “covariate-selection” problem in
statistics: finding an appropriate set of variables that need be adjusted for in any study which aims to
determine the effect of one factor upon another. This problem has been lingering in the statistical literature
since Karl Pearson, the founder of modern statistics, discovered (1899) what in modern terms is called
the “Simpson’s paradox”; any statistical association between two variables may be reversed or negated by
including additional factors in the analysis (Aldrich, 1995).

2Before applying this criterion, one may delete from the causal graphs all nodes that are not ancestors
of Y .
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Remarkably, the theorem asserts that, as long as every child of X (on the pathways to
Y ) is not reachable from X via a bi-directed path, then, regardless of how complicated the
graph, the causal effect P (y|do(x)) is identifiable. In Figure 1, for example, adding unob-
served confounders for the pairs (X1, X3), (X2, X4), (X3, X5), and (X2, X5) will still permit
the identification of P (X5|x̂3), but adding (X2, X4) to this list will prohibit identification.

Tian and Pearl (2002) further showed that the condition is both sufficient and necessary
for the identification of P (v|do(x)), where V includes all variables except X. A necessary
and sufficient condition for identifying P (w|do(z)), with W and Z two arbitrary sets, was
established by Shpitser and Pearl (2006b). Subsequently, a complete graphical criterion
was established for determining the identifiability of conditional interventional distributions,
namely, expressions of the type P (y|do(x), z) whereX, Y , and Z are arbitrary sets of variables
(Shpitser and Pearl, 2006a).

These results constitute a complete characterization of causal effects in graphical models.
They provide us with polynomial time algorithms for determining whether an arbitrary
quantity invoking the do(x) operator is identified in a given semi-Markovian model and, if
so, what the estimand of that quantity is. Remarkably, one corollary of these results also
states that the do-calculus is complete, namely, a quantity Q = P (y|do(x), z) is identified if
and only if it can be reduced to a do-free expression using the three rules of Theorem 2.3

This turns corollary 1 into an “if-and-only-if” assertion. Tian and Shpitser (2010) provide a
comprehensive summary of these results.

4.5 Transportability and Transfer Learning

In applications involving identification, the role of the do-calculus is to remove the do-
operator from the query expression. We now discuss a totally different application, to decide
if experimental findings can be transported to a new, potentially different environment,
where only passive observations can be performed. This problem, labeled “transportability”
in (Pearl and Bareinboim, 2011) is at the heart of every scientific investigation. For example,
experiments performed in the laboratory are invariably intended to be used elsewhere, where
conditions differ substantially from the laboratory. A robot trained by a simulator should
be able to use the knowledge acquired through training to a new environment, in which
experiments are costly or infeasible.

To formalize problems of this sort, Pearl and Bareinboim devised a graphical represen-
tation called “selection diagrams” which encodes knowledge about differences and common-
alities between populations. A selection diagram is a causal diagram annotated with new
variables, called S-nodes, which point to the mechanisms where discrepancies between the
two populations are suspected to take place. The task of deciding if transportability is
feasible now reduces to a syntactic problem (using the do-calculus) aiming to separate the
do-operator from a the S-variables.

Theorem 4 (Pearl and Bareinboim, 2011) Let D be the selection diagram characterizing
two populations, π and π∗, and S a set of selection variables in D. The relation R =
P ∗(y|do(x), z) is transportable from π and π∗ if and only if the expression P (y|do(x), z, s)

3This was independently established by Huang and Valtorta (2006).
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is reducible, using the rules of do-calculus, to an expression in which S appears only as a
conditioning variable in do-free terms.

Theorem 4 does not specify the sequence of rules leading to the needed reduction when
such a sequence exists. Bareinboim and Pearl (2012) established a complete and effec-
tive graphical procedure of confirming transportability which also synthesizes the transport
formula whenever possible. Each transport formula determines for the investigator what
information need to be taken from the experimental and observational studies and how they
ought to be combined to yield an unbiased estimate of R.

A generalization of transportability theory to multi-environment has let to a principled
solution to “Meta Analysis.” “Meta Analysis” is a data fusion problem aimed at combining
results from many experimental and observational studies, each conducted on a different
population and under a different set of conditions, so as to synthesize an aggregate measure
of effect size that is “better,” in some sense, than any one study in isolation. This fusion
problem has received enormous attention in the health and social sciences, where data are
scarce and experiments are costly (Pearl, 2012a,c).

Using multiple “selection diagrams” to encode commonalities among studies, Bareinboim
and Pearl (2013) were able to “synthesize” an estimator that is guaranteed to provide unbi-
ased estimate of the desired quantity based on information that each study share with the
target environment.

4.6 Inference with Missing Data

It is commonly assumed that causal knowledge is necessary only when interventions are
contemplated and that in purely predictive tasks, probabilistic knowledge suffices. Not so.
One predictive task in which causal information is essential and which have thus far been
treated in purely statistical terms is the problem of drawing valid inferences from statistical
data in which some items are “missing” or failed to be recorded.

The “missing data” problem is pervasive in machine learning and every experimental
science; users fail to answer certain items on a questionnaire, sensors may miss certain signal
due to bad weather, and so on. The problem is causal in nature, because the mechanism
that determines the reasons for missingness makes a difference in whether/how we can re-
cover from the data, and that mechanism requires causal language to be properly described,
statistics is insufficient.

Mohan and Pearl (2013) have shown that current practices of handling missing data, by
relying exclusively on statistical considerations (Rubin, 1976; Little and Rubin, 2002) are
deficient in several key areas, and could be remedied using causal diagrams. In particularly,
they showed that

1. It is possible to define precisely what relations can be recovered from missing data and
what causal and statistical knowledge need to be assumed to ensure bias-free recovery.

2. Different causal assumptions lead to different routines for recovering a relation from
the data.

17



3. Adding auxiliary variables to the data, a popular technique in current practice (Schafer
and Graham, 2002) may or may not help the recovery process, depending on conditions
that can be read from the causal diagram.

4. It is possible to determine when the conditions necessary for bias-free recovery have
testable implications.

4.7 Historical Remarks

An explicit translation of interventions to “wiping out” equations from linear econometric
models was first proposed by Strotz and Wold (1960) and later used in Fisher (1970) and
Sobel (1990). Extensions to action representation in nonmonotonic systems were reported
in Goldszmidt and Pearl (1992); Pearl (1993a). Graphical ramifications of this translation
were explicated first in Spirtes et al. (1993) and later in Pearl (1993b). A related formulation
of causal effects, based on event trees and counterfactual analysis was developed by Robins
(1986, pp. 1422–25). Calculi for actions and counterfactuals based on this interpretation are
developed in Pearl (1994b) and Balke and Pearl (1994), respectively.

5 Counterfactuals

A counterfactual sentence has the form

If A were true, then C would have been true?

where A, the counterfactual antecedent, specifies an event that is contrary to one’s real-world
observations, and C, the counterfactual consequent, specifies a result that is expected to hold
in the alternative world where the antecedent is true. A typical example is “If Oswald were
not to have shot Kennedy, then Kennedy would still be alive” which presumes the factual
knowledge of Oswald’s shooting Kennedy, contrary to the antecedent of the sentence.

The majority of the philosophers who have examined the semantics of counterfactual
sentences have resorted to some version of Lewis’ “closest world” approach; “C if it were
A” is true, if C is true in worlds that are “closest” to the real world yet consistent with
the counterfactuals antecedent A Lewis (1973). Ginsberg (1986), followed a similar strategy.
While the “closest world” approach leaves the precise specification of the closeness measure
almost unconstrained, causal knowledge imposes very specific preferences as to which worlds
should be considered closest to any given world. For example, considering an array of
domino tiles standing close to each other. The manifestly closest world consistent with the
antecedent “tile i is tipped to the right” would be a world in which just tile i is tipped,
while all the others remain erect. Yet, we all accept the counterfactual sentence “Had tile
i been tipped over to the right, tile i + 1 would be tipped as well” as plausible and valid.
Thus, distances among worlds are not determined merely by surface similarities but require
a distinction between disturbed mechanisms and naturally occurring transitions. The local
surgery paradigm expounded in Section 4.1 offers a concrete explication of the closest world
approach which respects causal considerations. A world w1 is “closer” to w than a world w2

is, if the the set of atomic surgeries needed for transforming w into w1 is a subset of those
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needed for transforming w into w2. In the domino example, finding tile i tipped and i + 1
erect requires the breakdown of two mechanism (e.g., by two external actions) compared with
one mechanism for the world in which all j-tiles, j > i are tipped. This paradigm conforms
to our perception of causal influences and lends itself to economical machine representation.

5.1 Formal underpinning

The structural equation framework offers an ideal setting for counterfactual analysis.

Definition 7 (context-based potential response): Given a causal theory T and two disjoint
sets of variables, X and Y , the potential response of Y to X in a context u, denoted Y (x, u)
or Yx(u), is the solution for Y under U = u in the subutheory Tx. Y (x, u) can be taken as
the formal definition of the counterfactual English phrase: “the value that Y would take in
context u, had X been x,”4

Note that this definition allows for the context U = u and the proposition X = x to be
incompatible in T . For example, if T describes a logic circuit with input U it may well be
reasonable to assert the counterfactual: “Given U = u, Y would be high if X were low”,
even though the input U = u may preclude X from being low. It is for this reason that
one must invoke some notion of intervention (alternatively, a theory change or a “miracle”
(Lewis, 1973)) in the definition of counterfactuals.

If U is treated as a random variable, then the value of the counterfactual Y (x, u) becomes
a random variable as well, denoted as Y (x) of Yx. Moreover, the distribution of this random
variable is easily seen to coincide with the causal effect P (y|x̂), as defined in Eq. (7), i.e.,

P ((Y (x) = y) = P (y|x̂)

The probability of a counterfactual conditional x→ y | o may then be evaluated by the
following procedure:

• Use the observations o to update P (u) thus forming a causal theory T o =< V,U, {fi}, P (u|o) >

• Form the mutilated theory T o
x (by deleting the equation corresponding to variables in

X) and compute the probability PT o(y|x̂) which T o
x induces on Y .

Unlike causal effect queries, counterfactual queries are not identifiable even in Markovian
theories, but require that the functional-form of {fi} be specified. In Balke and Pearl (1994)
a method is devised for computing sharp bounds on counterfactual probabilities which, under
certain circumstances may collapse to point estimates. This method has been applied to the
evaluation of causal effects in studies involving noncompliance, and to the determination of
legal liability.

4The term unit instead of context is often used in the statistical literature Rubin (1974), where it normally
stands for the identity of a specific individual in a population, namely, the set of attributes u that characterize
that individual. In general, u may include the time of day, the experimental conditions under study, and
so on. Practitioners of the counterfactual notation do not explicitly mention the notions of “solution” or
“intervention” in the definition of Y (x, u). Instead, the phrase “the value that Y would take in unit u, had
X been x,” viewed as basic, is posited as the definition of Y (x, u).
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5.2 Applications to Policy Analysis

Counterfactual reasoning is at the heart of every planning activity, especially real-time plan-
ning. When a planner discovers that the current state of affairs deviates from the one
expected, a “plan repair” activity need be invoked to determine what went wrong and how
it could be rectified. This activity amounts to an exercise of counterfactual thinking, as
it calls for rolling back the natural course of events and determining, based on the factual
observations at hand, whether the culprit lies in previous decisions or in some unexpected,
external eventualities. Moreover, in reasoning forward to determine if things would have
been different a new model of the world must be consulted, one that embodies hypothetical
changes in decisions or eventualities, hence, a breakdown of the old model or theory.

The logic-based planning tools used in AI, such as STRIPS and its variants or those based
on the situation calculus, do not readily lend themselves to counterfactual analysis; as they
are not geared for coherent integration of abduction with prediction, and they do not readily
handle theory changes. Remarkably, the formal system developed in economics and social
sciences under the rubric “structural equations models” does offer such capabilities but, as
will be discussed below, these capabilities are not well recognized by current practitioners of
structural models. The analysis presented in this chapter could serve both to illustrate to AI
researchers the basic formal features needed for counterfactual and policy analysis, and to
call the attention of economists and social scientists to capabilities that are dormant within
structural equations models.

Counterfactual thinking dominates reasoning in political science and economics. We say,
for example, “If Germany were not punished so severely at the end of World War I, Hitler
would not have come to power,” or “If Reagan did not lower taxes, our deficit would be
lower today.” Such thought experiments emphasize an understanding of generic laws in the
domain and are aimed toward shaping future policy making, for example, “defeated countries
should not be humiliated,” or “lowering taxes (contrary to Reaganomics) tends to increase
national debt.”

Strangely, there is very little formal work on counterfactual reasoning or policy analysis
in the behavioral science literature. An examination of a number of econometric journals
and textbooks, for example, reveals a glaring imbalance: while an enormous mathematical
machinery is brought to bear on problems of estimation and prediction, policy analysis (which
is the ultimate goal of economic theories) receives almost no formal treatment. Currently, the
most popular methods driving economic policy making are based on so-called reduced-form
analysis: to find the impact of a policy involving decision variables X on outcome variables
Y , one examines past data and estimates the conditional expectation E(Y |X = x), where x
is the particular instantiation of X under the policy studied.

The assumption underlying this method is that the data were generated under circum-
stances in which the decision variables X act as exogenous variables, that is, variables whose
values are determined outside the system under analysis. However, while new decisions
should indeed be considered exogenous for the purpose of evaluation, past decisions are
rarely enacted in an exogenous manner. Almost every realistic policy (e.g., taxation) im-
poses control over some endogenous variables, that is, variables whose values are determined
by other variables in the analysis. Let us take taxation policies as an example. Economic
data are generated in a world in which the government is reacting to various indicators and
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various pressures; hence, taxation is endogenous in the data-analysis phase of the study.
Taxation becomes exogenous when we wish to predict the impact of a specific decision to
raise or lower taxes. The reduced-form method is valid only when past decisions are non-
responsive to other variables in the system, and this, unfortunately, eliminates most of the
interesting control variables (e.g., tax rates, interest rates, quotas) from the analysis.

This difficulty is not unique to economic or social policy making; it appears whenever one
wishes to evaluate the merit of a plan on the basis of the past performance of other agents.
Even when the signals triggering the past actions of those agents are known with certainty,
a systematic method must be devised for selectively ignoring the influence of those signals
from the evaluation process. In fact, the very essence of evaluation is having the freedom
to imagine and compare trajectories in various counterfactual worlds, where each world or
trajectory is created by a hypothetical implementation of a policy that is free of the very
pressures that compelled the implementation of such policies in the past.

Balke and Pearl (1995) demonstrate how linear, nonrecursive structural models with
Gaussian noise can be used to compute counterfactual queries of the type: “Given an obser-
vation set O, find the probability that Y would have attained a value greater than y, had X
been set to x”. The task of inferring “causes of effects”, that is, of finding the probability
that X = x is the cause for effect E, amounts to answering the counterfactual query: “Given
effect E and observations O, find the probability that E would not have been realized, had
X not been x”. The technique developed in Balke and Pearl (1995) is based on probability
propagation in dual networks, one representing the actual world, the other the counterfactual
world. The method is not limited to linear functions but applies whenever we are willing to
assume the functional form of the structural equations. The noisy OR-gate model (Pearl,
1988) is a canonical example where such functional form is normally specified. Likewise,
causal theories based on Boolean functions (with exceptions), such as the one described in
Eq. (16) lend themselves to counterfactual analysis in the framework of Definition 7.

5.3 The Algorithmization of Counterfactuals

Prospective counterfactual expressions of the type P (Yx = y) are concerned with predicting
the average effect of hypothetical actions and policies and can, in principle, be assessed from
experimental studies in which X is randomized. Retrospective counterfactuals, on the other
hand, consist of variables at different hypothetical worlds (different subscripts) and these
may or may not be testable experimentally. In epidemiology, for example, the expression
P (Yx′ = y′|x, y) may stand for the fraction of patients who recovered (y) under treatment (x)
that would not have recovered (y′) had they not been treated (x′). This fraction cannot be
assessed in experimental study, for the simple reason that we cannot re-test patients twice,
with and without treatment. A different question is therefore posed: which counterfactuals
can be tested, be it in experimental or observational studies. This question has been given
a mathematical solution in (Shpitser and Pearl, 2007). It has been shown, for example, that
in linear systems, E(Yx|e) is estimable from experimental studies whenever the prospective
effect E(Yx) is estimable in such studies. Likewise, the counterfactual probability P (Yx′|x),
also known as the effect of treatment on the treated (ETT) is estimable from observational
studies whenever an admissible S exists for P (Yx = y) (Shpitser and Pearl, 2009).

Retrospective counterfactuals have also been indispensable in conceptualizing direct and
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indirect effects (Robins and Greenland, 1992; Pearl, 2001), which require nested counterfac-
tuals in their definitions. For example, to evaluate the direct effect of treatment X = x′

on individual u, un-mediated by a set Z of intermediate variables, we need to construct the
nested counterfactual Yx′,Zx(u) where Y is the effect of interest, and Zx(u) stands for whatever
values the intermediate variables Z would take had treatment not been given.5 Likewise,
the average indirect effect, of a transition from x to x′ is defined as the expected change in
Y affected by holding X constant, at X = x, and changing Z, hypothetically, to whatever
value it would have attained had X been set to X = x′.

This counterfactual formulation has enabled researchers to derive conditions under which
direct and indirect effects are estimable from empirical data (Pearl, 2001; Petersen et al.,
2006) and to answer such questions as: “Can data prove an employer guilty of hiring dis-
crimination?” or, phrased counterfactually, “what fraction of employees owes its hiring to
sex discrimination?”

These tasks are performed using a general estimator, called the Mediation Formula (Pearl,
2001, 2009, 2012b), which is applicable to nonlinear models with discrete or continuous vari-
ables, and permits the evaluation of path-specific effects with minimal assumptions regarding
the data-generating process.
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