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70.1 Introduction

This chapter surveys the development of graphical models known as Bayesian networks, summarizes their
semantical basis, and assesses their properties and applications to reasoning and planning.

Bayesian networks are directed acyclic graphs (DAGs) in which the nodes represent variables of interest
(e.g., the temperature of a device, the gender of a patient, a feature of an object, the occurrence of an event)
and the links represent causal influences among the variables. The strength of an influence is represented
by conditional probabilities that are attached to each cluster of parents–child nodes in the network.

Figure 70.1 illustrates a simple yet typical Bayesian network. It describes the causal relationships among
the season of the year (X1), whether rain falls (X2) during the season, whether the sprinkler is on (X3)
during that season, whether the pavement would get wet (X4), and whether the pavement would be slippery
(X5). All variables in this figure are binary, taking a value of either true or false, except the root variable
X1, which can take one of four values: spring, summer, fall, or winter. Here, the absence of a direct link
between X1 and X5, for example, captures our understanding that the influence of seasonal variations on
the slipperiness of the pavement is mediated by other conditions (e.g., the wetness of the pavement).

As this example illustrates, a Bayesian network constitutes a model of the environment rather than, as
in many other knowledge representation schemes (e.g., logic, rule-based systems, and neural networks), a
model of the reasoning process. It simulates, in fact, the causal mechanisms that operate in the environment
and thus allows the investigator to answer a variety of queries, including associational queries, such as
“Having observed A, what can we expect of B?”; abductive queries, such as “What is the most plausible
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FIGURE 70.1 A Bayesian network representing causal influences among five variables.

explanation for a given set of observations?”; and control queries, such as “What will happen if we intervene
and act on the environment?” Answers to the first type of query depend only on probabilistic knowledge
of the domain, whereas answers to the second and third types rely on the causal knowledge embedded in
the network. Both types of knowledge, associative and causal, can effectively be represented and processed
in Bayesian networks.

The associative facility of Bayesian networks may be used to model cognitive tasks such as object
recognition, reading comprehension, and temporal projections. For such tasks, the probabilistic basis
of Bayesian networks offers a coherent semantics for coordinating top-down and bottom-up inferences,
thus bridging information from high-level concepts and low-level percepts. This capability is important
for achieving selective attention, that is, selecting the most informative next observation before actually
making the observation. In certain structures, the coordination of these two modes of inference can be
accomplished by parallel and distributed processes that communicate through the links in the network.

However, the most distinctive feature of Bayesian networks, stemming largely from their causal organi-
zation, is their ability to represent and respond to changing configurations. Any local reconfiguration of
the mechanisms in the environment can be translated, with only minor modification, into an isomorphic
reconfiguration of the network topology. For example, to represent a disabled sprinkler, we simply delete
from the network all links incident to the node sprinkler. To represent a pavement covered by a tent, we
simply delete the link between rain and wet. This flexibility is often cited as the ingredient that marks the
division between deliberative and reactive agents and that enables the former to manage novel situations
instantaneously, without requiring retraining or adaptation.

70.2 Historical Background

Networks employing DAGs have a long and rich tradition, starting with the geneticist Sewall Wright
[1921]. He developed a method called path analysis [Wright 1934], which later became an established
representation of causal models in economics [Wold 1964], sociology [Blalock 1971, Kenny 1979], and
psychology [Duncan 1975]. Good [1961] used DAGs to represent causal hierarchies of binary variables
with disjunctive causes. Influence diagrams represent another application of DAG representation [Howard
and Matheson 1981]. Developed for decision analysis, they contain both event nodes and decision nodes.
Recursive models is the name given to such networks by statisticians seeking meaningful and effective
decompositions of contingency tables [Lauritzen 1982, Wermuth and Lauritzen 1983, Kiiveri et al. 1984].

The role of the network in the applications cited was primarily to provide an efficient description for
probability functions; once the network was configured, all subsequent computations were pursued by sym-
bolic manipulation of probability expressions. The potential for the network to work as a computational
architecture, and hence as a model of cognitive activities, was noted in Pearl [1982], where a distributed
scheme was demonstrated for probabilistic updating on tree-structured networks. The motivation be-
hind this particular development was the modeling of distributed processing in reading comprehension
[Rumelhart 1976], where both top-down and bottom-up inferences are combined to form a coherent
interpretation. This dual mode of reasoning is at the heart of Bayesian updating and in fact motivated
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Reverend Bayes’s original 1763 calculations of posterior probabilities (representing explanations), given
prior probabilities (representing causes), and likelihood functions (representing evidence).

Bayesian networks have not attracted much attention in the logic and cognitive modeling circles, but
they did in expert systems. The ability to coordinate bidirectional inferences filled a void in expert systems
technology of the late 1970s, and it is in this area that Bayesian networks truly flourished. Over the past
10 years, Bayesian networks have become a tool of great versatility and power, and they are now the
most common representation scheme for probabilistic knowledge [Shafer and Pearl 1990, Shachter 1990,
Oliver and Smith 1990, Neapolitan 1990]. They have been used to aid in the diagnosis of medical patients
[Heckerman 1991, Andersen et al. 1989, Heckerman et al. 1990, Peng and Reggia 1990] and malfunctioning
systems [Agogino et al. 1988]; to understand stories [Charniak and Goldman 1991]; to filter documents
[Turtle and Croft 1991]; to interpret pictures [Levitt et al. 1990]; to perform filtering, smoothing, and
prediction [Abramson 1991]; to facilitate planning in uncertain environments [Dean and Wellman 1991];
and to study causation, nonmonotonicity, action, change, and attention. Some of these applications are
described in a tutorial article by Charniak [1991]; others can be found in Pearl [1988], Shafer and Pearl
[1990], and Goldszmidt and Pearl [1996].

70.3 Bayesian Networks as Carriers
of Probabilistic Information

70.3.1 Formal Semantics

Given a DAG G and a joint distribution P over a set X = {X1, . . . , Xn} of discrete variables, we say that G
represents P if there is a one-to-one correspondence between the variables in X and the nodes of G , such
that P admits the recursive product decomposition

P (x1, . . . , xn) =
∏

i

P (xi | pai ) (70.1)

where pai are the direct predecessors (called parents) of Xi in G . For example, the DAG in Figure 70.1
induces the decomposition

P (x1, x2, x3, x4, x5) = P (x1)P (x2 | x1)P (x3 | x1)P (x4 | x2, x3)P (x5 | x4) (70.2)

The recursive decomposition in Equation 70.1 implies that, given its parent set pai , each variable Xi is
conditionally independent of all its other predecessors {X1, X2, . . . , Xi−1}\pai . Using Dawid’s notation
[Dawid 1979], we can state this set of independencies as

Xi ‖ {X1, X2, . . . , Xi−1}\pai | pai i = 2, . . . , n (70.3)

Such a set of independencies is called Markovian, since it reflects the Markovian condition for state
transitions: each state is rendered independent of the past, given its immediately preceding state. For
example, the DAG of Figure 70.1 implies the following Markovian independencies:

X2 ‖ {0} | X1, X3 ‖ X2 | X1, X4 ‖ X1 | {X2, X3}, X5 ‖ {X1, X2, X3} | X4 (70.4)

In addition to these, the decomposition of Equation 70.1 implies many more independencies, the sum
total of which can be identified from the DAG using the graphical criterion of d-separation [Pearl 1988]:

Definition 70.1 (d-separation.) Let a path in a DAG be a sequence of consecutive edges, of any
directionality. A path p is said to be d-separated (or blocked) by a set of nodes Z iff:

1. p contains a chain i −→ j −→ k or a fork i ←− j −→ k such that the middle node j is in Z.
2. Or p contains an inverted fork i −→ j ←− k such that neither the middle node j nor any of its

descendants (in G) are in Z.
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If X, Y , and Z are three disjoint subsets of nodes in a DAG G , then Z is said to d-separate X from Y ,
denoted (X ‖ Y | Z)G , iff Z d-separates every path from a node in X to a node in Y .

In Figure 70.1, for example, X = {X2} and Y = {X3} are d-separated by Z = {X1}; the path X2 ←
X1 → X3 is blocked by X1 ∈ Z, while the path X2 → X4 ← X3 is blocked because X4 and all its
descendants are outside Z. Thus, (X2 ‖ X3 | X1)G holds in Figure 70.1. However, X and Y are not
d-separated by Z ′ = {X1, X5}, because the path X2 → X4 ← X3 is rendered active by virtue of X5, a
descendant of X4, being in Z ′. Consequently (X2 ‖ X3 | {X1, X5})G does not hold; in words, learning the
value of the consequence X5 renders its causes X2 and X3 dependent, as if a pathway were opened along
the arrows converging at X4.

The d-separation criterion has been shown to be both necessary and sufficient relative to the set of
distributions that are represented by a DAG G [Verma and Pearl 1990, Geiger et al. 1990]. In other
words, there is a one-to-one correspondence between the set of independencies implied by the recursive
decomposition of Equation 70.1 and the set of triples (X, Z, Y ) that satisfies the d-separation criterion in
G . Furthermore, the d-separation criterion can be tested in time linear in the number of edges in G . Thus,
a DAG can be viewed as an efficient scheme for representing Markovian independence assumptions and
for deducing and displaying all of the logical consequences of such assumptions.

An important property that follows from the d-separation characterization is a criterion for determining
when two DAGs are observationally equivalent, that is, every probability distribution that is represented
by one of the DAGs is also represented by the other:

Theorem 70.1 (Verma and Pearl 1990.) Two DAGs are observationally equivalent if and only if they
have the same sets of edges and the same sets of v-structures, that is, head-to-head arrows with nonadjacent
tails.

The soundness of the d-separation criterion holds not only for probabilistic independencies but for any
abstract notion of conditional independence that obeys the semigraphoid axioms [Verma and Pearl 1990,
Geiger et al. 1990]. Additional properties of DAGs and their applications to evidential reasoning in expert
systems are discussed in Pearl [1988, 1993a], Pearl et al. [1990], Geiger [1990] Lauritzen and Spiegelhalter
[1988], and Spiegelhalter et al. [1993].

70.3.2 Inference Algorithms

The first algorithms proposed for probability updating in Bayesian networks used message-passing
architecture and were limited to trees [Pearl 1982] and singly connected networks [Kim and Pearl 1983].
The idea was to assign each variable a simple processor, forced to communicate only with its neighbors,
and to permit asynchronous back-and-forth message passing until equilibrium was achieved. Coherent
equilibrium can indeed be achieved this way, but only in singly connected networks, where an equilibrium
state occurs in time proportional to the diameter of the network.

Many techniques have been developed and refined to extend the tree-propagation method to general,
multiply connected networks. Among the most popular are Shachter’s [1988] method of node elimination,
Lauritzen and Spiegelhalter’s [1988] method of clique-tree propagation, and the method of loop-cut
conditioning [Pearl 1988, Ch. 4.3].

Clique-tree propagation, the most popular of the three methods, works as follows. Starting with a
directed network representation, the network is transformed into an undirected graph that retains all of
its original dependencies. This graph, sometimes called a Markov network [Pearl 1988, Ch. 3.1], is then
triangulated to form local clusters of nodes (cliques) that are tree structured. Evidence propagates from
clique to clique by ensuring that the probability of their intersection set is the same, regardless of which
of the two cliques is considered in the computation. Finally, when the propagation process subsides, the
posterior probability of an individual variable is computed by projecting (marginalizing) the distribution
of the hosting clique onto this variable.
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Whereas the task of updating probabilities in general networks is NP-hard [Rosenthal 1977, Cooper
1990], the complexity for each of the three methods cited is exponential in the size of the largest clique
found in some triangulation of the network. It is fortunate that these complexities can be estimated prior
to actual processing; when the estimates exceed reasonable bounds, an approximation method such as
stochastic simulation [Pearl 1987, Henrion 1988] can be used instead. Learning techniques have also been
developed for systematic updating of the conditional probabilities P (xi | pai ) so as to match empirical
data [Spiegelhalter and Lauritzen 1990].

70.3.3 System’s Properties

By providing graphical means for representing and manipulating probabilistic knowledge, Bayesian net-
works overcome many of the conceptual and computational difficulties of earlier knowledge-based systems
[Pearl 1988]. Their basic properties and capabilities can be summarized as follows:

1. Graphical methods make it easy to maintain consistency and completeness in probabilistic knowl-
edge bases. They also define modular procedures of knowledge acquisition that reduce significantly
the number of assessments required [Pearl 1988, Heckerman 1991].

2. Independencies can be dealt with explicitly. They can be articulated by an expert, encoded graph-
ically, read off the network, and reasoned about; yet they forever remain robust to numerical
imprecision [Geiger 1990, Geiger et al. 1990, Pearl et al. 1990].

3. Graphical representations uncover opportunities for efficient computation. Distributed updating
is feasible in knowledge structures which are rich enough to exhibit intercausal interactions (e.g.,
explaining away) [Pearl 1982, Kim and Pearl 1983]. And, when extended by clustering or condition-
ing, tree-propagation algorithms are capable of updating networks of arbitrary topology [Lauritzen
and Spiegelhalter 1988, Shachter 1986, Pearl 1988].

4. The combination of predictive and abductive inferences resolves many problems encountered by
first-generation expert systems and renders belief networks a viable model for cognitive functions
requiring both top-down and bottom-up inferences [Pearl 1988, Shafer and Pearl 1990].

5. The causal information encoded in Bayesian networks facilitates the analysis of action sequences,
their consequences, their interaction with observations, their expected utilities, and, hence, the
synthesis of plans and strategies under uncertainty [Dean and Wellman 1991, Pearl 1993b, 1994b].

6. The isomorphism between the topology of Bayesian networks and the stable mechanisms, which
operate in the environment, facilitates modular reconfiguration of the network in response to
changing conditions and permits deliberative reasoning about novel situations.

70.3.4 Recent Developments

70.3.4.1 Causal Discovery

One of the most exciting prospects in recent years has been the possibility of using the theory of Bayesian
networks to discover causal structures in raw statistical data. Several systems have been developed for
this purpose [Pearl and Verma 1991, Spirtes et al. 1993], which systematically search and identify causal
structures with hidden variables from empirical data. Technically, because these algorithms rely merely on
conditional independence relationships, the structures found are valid only if one is willing to accept weaker
forms of guarantees than those obtained through controlled randomized experiments: minimality and
stability [Pearl and Verma 1991]. Minimality guarantees that any other structure compatible with the data
is necessarily less specific, and hence less falsifiable and less trustworthy, than the one(s) inferred. Stability
ensures that any alternative structure compatible with the data must be less stable than the one(s) inferred;
namely, slight fluctuations in experimental conditions will render that structure no longer compatible
with the data. With these forms of guarantees, the theory provides criteria for identifying genuine and
spurious causes, with or without temporal information.
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Alternative methods of identifying structure in data assign prior probabilities to the parameters of the
network and use Bayesian updating to score the degree to which a given network fits the data [Cooper
and Herskovits 1990, Heckerman et al. 1994]. These methods have the advantage of operating well under
small sample conditions but encounter difficulties coping with hidden variables.

70.3.4.2 Plain Beliefs

In mundane decision making, beliefs are revised not by adjusting numerical probabilities but by tentatively
accepting some sentences as true for all practical purposes. Such sentences, often named plain beliefs, exhibit
both logical and probabilistic character. As in classical logic, they are propositional and deductively closed;
as in probability, they are subject to retraction and to varying degrees of entrenchment [Spohn 1988,
Goldszmidt and Pearl 1992].

Bayesian networks can be adopted to model the dynamic of plain beliefs by replacing ordinary probabil-
ities with nonstandard probabilities, that is, probabilities that are infinitesimally close to either zero or one.
This amounts to taking an order of magnitude approximation of empirical frequencies and adopting new
combination rules tailored to reflect this approximation. The result is an integer-addition calculus, very
similar to probability calculus, with summation replacing multiplication and minimization replacing ad-
dition. A plain belief is then identified as a proposition whose negation obtains an infinitesimal probability
(i.e., an integer greater than zero). The connection between infinitesimal probabilities and nonmonotonic
logic is described in Pearl [1994a] and Goldszmidt and Pearl [1996].

This combination of infinitesimal probabilities with the causal information encoded by the structure
of Bayesian networks facilitates linguistic communication of belief commitments, explanations, actions,
goals, and preferences and serves as the basis for current research on qualitative planning under uncertainty
[Darwiche and Pearl 1994, Goldszmidt and Pearl 1992, Pearl 1993b, Darwiche and Goldszmidt 1994]. Some
of these aspects will be presented in the next section.

70.4 Bayesian Networks as Carriers of Causal Information

The interpretation of DAGs as carriers of independence assumptions does not necessarily imply causation
and will in fact be valid for any set of Markovian independencies along any ordering (not necessarily
causal or chronological) of the variables. However, the patterns of independencies portrayed in a DAG
are typical of causal organizations and some of these patterns can be given meaningful interpretation
only in terms of causation. Consider, for example, two independent events, E 1 and E 2, that have a com-
mon effect E 3. This triple represents an intransitive pattern of dependencies: E 1 and E 3 are dependent,
E 3 and E 2 are dependent, yet E 1 and E 2 are independent. Such a pattern cannot be represented in
undirected graphs because connectivity in undirected graphs is transitive. Likewise, it is not easily rep-
resented in neural networks, because E 1 and E 2 should turn dependent once E 3 is known. The DAG
representation provides a convenient language for intransitive dependencies via the converging pattern
E 1 → E 3 ← E 2, which implies the independence of E 1 and E 2 as well as the dependence of E 1 and E 3

and of E 2 and E 3. The distinction between transitive and intransitive dependencies is the basis for the
causal discovery systems of Pearl and Verma [1991] and Spirtes et al. [1993]. (See subsection on causal
discovery.)

However, the Markovian account still leaves open the question of how such intricate patterns of inde-
pendencies relate to the more basic notions associated with causation, such as influence, manipulation,
and control, which reside outside the province of probability theory. The connection is made in the
mechanism-based account of causation.

The basic idea behind this account goes back to structural equations models [Wright 1921, Haavelmo
1943, Simon 1953] and it was adapted in Pearl and Verma [1991] for defining probabilistic causal theories,
as follows. Each child–parents family in a DAG G represents a deterministic function

Xi = fi ( pai , �i ) (70.5)
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where pai are the parents of variable Xi in G , and �i , 0 < i < n, are mutually independent, arbitrarily dis-
tributed random disturbances. Characterizing each child–parent relationship as a deterministic function,
instead of the usual conditional probability P (xi | pai ), imposes equivalent independence constraints on
the resulting distributions and leads to the same recursive decomposition that characterizes DAG models
(see Equation 70.1). However, the functional characterization Xi = fi (pai , �i ) also specifies how the re-
sulting distributions would change in response to external interventions, since each function is presumed
to represent a stable mechanism in the domain and therefore remains constant unless specifically altered.
Thus, once we know the identity of the mechanisms altered by the intervention and the nature of the
alteration, the overall effect of an intervention can be predicted by modifying the appropriate equations
in the model of Equation 70.5 and using the modified model to compute a new probability function of
the observables.

The simplest type of external intervention is one in which a single variable, say Xi , is forced to take
on some fixed value x ′

i . Such atomic intervention amounts to replacing the old functional mechanism
Xi = fi (pai , �i ) with a new mechanism Xi = x ′

i governed by some external force that sets the value x ′
i . If

we imagine that each variable Xi could potentially be subject to the influence of such an external force, then
we can view each Bayesian network as an efficient code for predicting the effects of atomic interventions
and of various combinations of such interventions, without representing these interventions explicitly.

70.4.1 Causal Theories, Actions, Causal Effect, and Identifiability

Definition 70.2 A causal theory is a 4-tuple

T = 〈V, U, P (u), { fi }〉
where:

1. V = {X1, . . . , Xn} is a set of observed variables.
2. U = {U1, . . . , Un} is a set of unobserved variables which represent disturbances, abnormalities, or

assumptions.
3. P (u) is a distribution function over U1, . . . , Un.
4. { fi } is a set of n deterministic functions, each of the form

Xi = fi (PAi , u) i = 1, . . . , n (70.6)

where PAi is a subset of V not containing Xi .

The variables PAi (connoting parents) are considered the direct of Xi and they define a directed graph
G , which may, in general, be cyclic. Unlike the probabilistic definition of parents in Bayesian networks
(Equation 70.1) PAi is selected from V by considering functional mechanisms in the domain, not by
conditional independence considerations. We will assume that the set of equations in 70.6 has a unique
solution for Xi , . . . , Xn, given any value of the disturbances Ui , . . . , Un. Therefore, the distribution P (u)
induces a unique distribution on the observables, which we denote by PT (v).

We will consider concurrent actions of the form do(X = x), where X ⊆ V is a set of variables and x is
a set of values from the domain of X . In other words, do(X = x) represents a combination of actions that
forces the variables in X to attain the values x .

Definition 70.3 (effect of actions.) The effect of the action do(X = x) on a causal theory T is given
by a subtheory Tx of T , where Tx obtains by deleting from T all equations corresponding to variables in
X and substituting the equations X = x instead.

The framework provided by Definitions 70.2 and 70.3 permits the coherent formalization of many subtle
concepts in causal discourse, such as causal influence, causal effect, causal relevance, average causal effect,
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identifiability, counterfactuals, exogeneity, and so on. Examples are as follows:

� X influences Y in context u if there are two values of X , x , and x ′, such that the solution for Y under
U = u and do(X = x) is different from the solution under U = u and do(X = x ′).

� X can potentially influence Y if there exist both a subtheory Tz of T and a context U = u in which
X influences Y .

� Event X = x is the (singular) cause of event Y = y if (1) X = x and Y = y are true, and (2) in
every context u compatible with X = x and Y = y, and for all x ′ �= x , the solution of Y under
do(X = x ′) is not equal to y.

The definitions are deterministic. Probabilistic causality emerges when we define a probability dis-
tribution P (u) for the U variables, which, under the assumption that the equations have a unique
solution, induces a unique distribution on the endogenous variables for each combination of atomic
interventions.

Definition 70.4 (causal effect.) Given two disjoint subsets of variables, X ⊆ V and Y ⊆ V , the
causal effect of X on Y , denoted PT (y | x̂), is a function from the domain of X to the space of probability
distributions on Y , such that

PT (y | x̂) = PTx (y) (70.7)

for each realization x of X . In other words, for each x ∈ dom(X), the causal effect PT (y | x̂) gives the
distribution of Y induced by the action do(X = x).

Note that causal effects are defined relative to a given causal theory T , though the subscript T is often
suppressed for brevity.

Definition 70.5 (identifiability.) Let Q(T) be any computable quantity of a theory T ; Q is identifiable
in a class M of theories if for any pair of theories T1 and T2 from M, Q(T1) = Q(T2) whenever PT1 (v) =
PT2 (v).

Identifiability is essential for estimating quantities Q from P alone, without specifying the details of T ,
so that the general characteristics of the class M suffice. The question of interest in planning applications
is the identifiability of the causal effect Q = PT (y | x̂) in the class MG of theories that share the same
causal graph G . Relative to such classes we now define the following:

Definition 70.6 (causal-effect identifiability.) The causal effect of X on Y is said to be identifiable
in MG if the quantity P (y | x̂) can be computed uniquely from the probabilities of the observed variables,
that is, if for every pair of theories T1 and T2 in MG such that PT1 (v) = PT2 (v), we have PT1 (y | x̂) =
PT2 (y | x̂).

The identifiability of P (y | x̂) ensures that it is possible to infer the effect of action do(X = x) on Y
from two sources of information:

1. Passive observations, as summarized by the probability function P (v).
2. The causal graph, G , which specifies, qualitatively, which variables make up the stable mechanisms

in the domain or, alternatively, which variables participate in the determination of each variable in
the domain.

Simple examples of identifiable causal effects will be discussed in the next subsection.
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70.4.2 Acting vs Observing

Consider the example depicted in Figure 70.1. The corresponding theory consists of five functions, each
representing an autonomous mechanism:

X1 = U1

X2 = f2(X1, U2)

X3 = f3(X1, U3)

X4 = f4(X3, X2, U4)

X5 = f5(X4, U5)

(70.8)

To represent the action “turning the sprinkler ON,” do(X3 = ON), we delete the equation X3 = f3(x1, u3)
from the theory of Equation 70.8 and replace it with X3 = ON. The resulting subtheory, TX3 = ON, contains
all of the information needed for computing the effect of the actions on other variables. It is easy to see
from this subtheory that the only variables affected by the action are X4 and X5, that is, the descendant,
of the manipulated variable X3.

The probabilistic analysis of causal theories becomes particularly simple when two conditions are
satisfied:

1. The theory is recursive, i.e., there exists an ordering of the variables V = {X1, . . . , Xn} such that
each Xi is a function of a subset PAi of its predecessors

Xi = fi (PAi , Ui ), PAi ⊆ {X1, . . . , Xi−1} (70.9)

2. The disturbances U1, . . . , Un are mutually independent, that is,

P (u) =
∏

i

P (ui ) (70.10)

These two conditions, also called Markovian, are the basis of the independencies embodied in Bayesian
networks (Equation 70.1) and they enable us to compute causal effects directly from the conditional
probabilities P (xi | pai ), without specifying the functional form of the functions fi , or the distributions
P (ui ) of the disturbances. This is seen immediately from the following observations: The distribution
induced by any Markovian theory T is given by the product in Equation 70.1

PT (x1, . . . , xn) =
∏

i

P (xi | pai ) (70.11)

where pai are (values of) the parents of Xi in the diagram representing T . At the same time, the sub-
theory Tx ′

j
, representing the action do(X j = x ′

j ) is also Markovian; hence, it also induces a product-like
distribution

PTx′
j
(x1, . . . , xn) =

{∏
i �= j P (xi | pai ) = P (x1,...,xn)

P (x j |pa j ) if x j = x ′
j

0 if x j �= x ′
j

(70.12)

where the partial product reflects the surgical removal of the

X j = f j (pa j , U j )

from the theory of Equation 70.9 (see Pearl [1993a]).
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In the example of Figure 70.1, the pre-action distribution is given by the product

PT (x1, x2, x3, x4, x5) = P (x1)P (x2 | x1)P (x3 | x1)P (x4 | x2, x3)P (x5 | x4) (70.13)

whereas the surgery corresponding to the action do(X3 = ON) amounts to deleting the link X1 → X3

from the graph and fixing the value of X3 to ON, yielding the postaction distribution

PT (x1, x2, x3, x4, x5 | do(X3 = ON)) = P (x1)P (x2 | x1)P (x4 | x2, X3 = ON)P (x5 | x4) (70.14)

Note the difference between the action do(X3 = ON) and the observation X3 = ON. The latter is
encoded by ordinary Bayesian conditioning, whereas the former by conditioning a mutilated graph, with
the link X1 → X3 removed. Indeed, this mirrors the difference between seeing and doing: after observing
that the sprinkler is ON, we wish to infer that the season is dry, that it probably did not rain, and so on; no
such inferences should be drawn in evaluating the effects of the deliberate action “turning the sprinkler
ON.” The amputation of X3 = f3(X1, U3) from Equation 70.8 ensures the suppression of any abductive
inferences from X3, the action’s recipient.

Note also that Equations 70.1 through Equation 70.14 are independent of T ; in other words, the pre-
action and postaction distributions depend only on observed conditional probabilities but are independent
of the particular functional form of { fi } or the distribution P (u), which generate those probabilities. This is
the essence of identifiability as given in Definition 70.6, which stems from the Markovian assumptions 70.9
and 70.10. The next subsection will demonstrate that certain causal effects, though not all, are identifiable
even when the Markovian property is destroyed by introducing dependencies among the disturbance
terms.

Generalization to multiple actions and conditional actions are reported in Pearl and Robins [1995].
Multiple actions do(X = x), where X is a compound variable result in a distribution similar to Equa-
tion 70.12, except that all factors corresponding to the variables in X are removed from the product in
Equation 70.11. Stochastic conditional strategies [Pearl 1994b] of the form

do(X j = x j ) with probability P ∗(x j | pa∗
j ) (70.15)

where pa∗
j is the support of the decision strategy, also result in a product decomposition similar to

Equation 70.11, except that each factor P (x j | pa j ) is replaced with P ∗(x j | pa∗
j ).

The surgical procedure just described is not limited to probabilistic analysis. The causal knowledge
represented in Figure 70.1 can be captured by logical theories as well, for example,

x2 ⇐⇒ [(X1 = Winter) ∨ (X1 = Fall) ∨ ab2] ∧ ¬ab′
2

x3 ⇐⇒ [(X1 = Summer) ∨ (X1 = Spring) ∨ ab3] ∧ ¬ab′
3

x4 ⇐⇒ (x2 ∨ x3 ∨ ab4) ∧ ¬ab′
4

x5 ⇐⇒ (x4 ∨ ab5) ∧ ¬ab′
5

(70.16)

where xi stands for Xi = true, and abi and ab′
i stand, respectively, for triggering and inhibiting abnormal-

ities. The double arrows represent the assumption that the events on the right-hand side of each equation
are the only direct causes for the left-hand side, thus identifying the surgery implied by any action.

It should be emphasized though that the models of a causal theory are not made up merely of truth
value assignments which satisfy the equations in the theory. Since each equation represents an autonomous
process, the content of each individual equation must be specified in any model of the theory, and this
can be encoded using either the graph (as in Figure 70.1) or the generic description of the theory, as in
Equation 70.8. Alternatively, we can view a model of a causal theory to consist of a mutually consistent set
of submodels, with each submodel being a standard model of a single equation in the theory.
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70.4.3 Action Calculus

The identifiability of causal effects demonstrated in the last subsection relies critically on the Marko-
vian assumptions 70.9 and 70.10. If a variable that has two descendants in the graph is unobserved, the
disturbances in the two equations are no longer independent, the Markovian property 70.9 is violated,
and identifiability may be destroyed. This can be seen easily from Equation 70.12; if any parent of the
manipulated variable X j is unobserved, one cannot estimate the conditional probability P (x j | pa j ), and
the effect of the action do(X j = x j ) may not be predictable from the observed distribution P (x1, . . . , xn).
Fortunately, certain causal effects are identifiable even in situations where members of pa j are unob-
servable [Pearl 1993a] and, moreover, polynomial tests are now available for deciding when P (xi | x̂ j ) is
identifiable and for deriving closed-form expressions for P (xi | x̂ j ) in terms of observed quantities [Galles
and Pearl 1995].

These tests and derivations are based on a symbolic calculus [Pearl 1994b, 1995] to be described in the
sequel, in which interventions, side by side with observations, are given explicit notation and are permitted
to transform probability expressions. The transformation rules of this calculus reflect the understanding
that interventions perform local surgeries as described in Definition 70.3, i.e., they overrule equations that
tie the manipulated variables to their preintervention causes.

Let X, Y , and Z be arbitrary disjoint sets of nodes in a DAG G . We denote by G X the graph obtained
by deleting from G all arrows pointing to nodes in X . Likewise, we denote by G X the graph obtained by
deleting from G all arrows emerging from nodes in X . To represent the deletion of both incoming and
outgoing arrows, we use the notation G X Z . Finally, the expression P (y | x̂ , z)

�= P (y, z) | x̂/P (z | x̂)
stands for the probability of Y = y given that Z = z is observed and X is held constant at x .

Theorem 70.2 Let G be the directed acyclic graph associated with a Markovian causal theory, and let P (·)
stand for the probability distribution induced by that theory. For any disjoint subsets of variables X, Y, Z, and
W we have the following rules:

� Rule 1 (Insertion/deletion of observations):

P (y | x̂ , z, w) = P (y | x̂ , w) if (Y ‖ Z | X, W)G
X

(70.17)

� Rule 2 (Action/observation exchange):

P (y | x̂ , ẑ, w) = P (y | x̂ , z, w) if (Y ‖ Z | X, W)G
X Z

(70.18)

� Rule 3 (Insertion/deletion of actions):

P (y | x̂ , ẑ, w) = P (y | x̂ , w) if (Y ‖ Z | X, W)G
X ,Z(W)

(70.19)

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G X .

Each of the inference rules follows from the basic interpretation of the x̂ operator as a replacement of the
causal mechanism that connects X to its pre-action parents by a new mechanism X = x introduced by
the intervening force. The result is a submodel characterized by the subgraph G X (named manipulated
graph in Spirtes et al. [1993]), which supports all three rules.

Corollary 70.1 A causal effect q : P (y1, . . . , yk | x̂1, . . . , x̂m) is identifiable in a model characterized
by a graph G if there exists a finite sequence of transformations, each conforming to one of the inference
rules in Theorem 70.2, which reduces q into a standard (i.e., hat-free) probability expression involving
observed quantities.

Although Theorem 70.2 and Corollary 70.1 require the Markovian property, they also can be applied to
non-Markovian, recursive theories because such theories become Markovian if we consider the unobserved
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variables as part of the analysis, and represent them as nodes in the graph. To illustrate, assume that variable
X1 in Figure 70.1 is unobserved, rendering the disturbances U3 and U2 dependent since these terms now
include the common influence of X1. Theorem 70.2 tells us that the causal effect P (x4 | x̂3) is identifiable,
because

P (x4 | x̂3) =
∑

x2

P (x4 | x̂3, x2)P (x2 | x̂3)

Rule 3 permits the deletion

P (x2 | x̂3) = P (x2), because (X2 ‖ X3)G
X3

whereas rule 2 permits the exchange

P (x4 | x̂3, x2) = P (x4 | x3, x2), because (X4 ‖ X3 | X2)G X3

This gives

P (x4 | x̂3) =
∑

x2

P (x4 | x3, x2)P (x2)

which is a hat-free expression, involving only observed quantities.
In general, it can be shown [Pearl 1995]:

1. The effect of interventions can often be identified (from nonexperimental data) without resorting
to parametric models.

2. The conditions under which such nonparametric identification is possible can be determined by
simple graphical tests.∗

3. When the effect of interventions is not identifiable, the causal graph may suggest nontrivial exper-
iments which, if performed, would render the effect identifiable.

The ability to assess the effect of interventions from nonexperimental data has immediate applications in
the medical and social sciences, since subjects who undergo certain treatments often are not representative
of the population as a whole. Such assessments are also important in artificial intelligence (AI) applications
where an agent needs to predict the effect of the next action on the basis of past performance records, and
where that action has never been enacted out of free will, but in response to environmental needs or to
other agents’ requests.

70.4.4 Historical Remarks

An explicit translation of interventions to wiping out equations from linear econometric models was first
proposed by Strotz and Wold [1960] and later used in Fisher [1970] and Sobel [1990]. Extensions to
action representation in nonmonotonic systems were reported in Goldszmidt and Pearl [1992] and Pearl
[1993a]. Graphical ramifications of this translation were explicated first in Spirtes et al. [1993] and later
in Pearl [1993b]. A related formulation of causal effects, based on event trees and counterfactual analysis,
was developed by Robins [1986, pp. 1422–1425]. Calculi for actions and counterfactuals based on this
interpretation are developed in Pearl [1994b] and Balke and Pearl [1994], respectively.

∗These graphical tests offer, in fact, a complete formal solution to the covariate-selection problem in statistics: finding
an appropriate set of variables that need be adjusted for in any study which aims to determine the effect of one factor
upon another. This problem has been lingering in the statistical literature since Karl Pearson, the founder of modern
statistics, discovered (1899) what in modern terms is called the Simpson’s paradox; any statistical association between
two variables may be reversed or negated by including additional factors in the analysis [Aldrich 1995].
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70.5 Counterfactuals

A counterfactual sentence has the form:

If A were true, then C would have been true?

where A, the counterfactual antecedent, specifies an event that is contrary to one’s real-world observations,
and C , the counterfactual consequent, specifies a result that is expected to hold in the alternative world
where the antecedent is true. A typical example is “If Oswald were not to have shot Kennedy, then Kennedy
would still be alive,” which presumes the factual knowledge of Oswald’s shooting Kennedy, contrary to the
antecedent of the sentence.

The majority of the philosophers who have examined the semantics of counterfactual sentences have
resorted to some version of Lewis’ closest world approach: “C if it were A” is true, if C is true in worlds that
are closest to the real world yet consistent with the counterfactual’s antecedent A [Lewis 1973]. Ginsberg
[1986] followed a similar strategy. Whereas the closest world approach leaves the precise specification of the
closeness measure almost unconstrained, causal knowledge imposes very specific preferences as to which
worlds should be considered closest to any given world. For example, considering an array of domino tiles
standing close to each other, the manifestly closest world consistent with the antecedent “tile i is tipped to
the right” would be a world in which just tile i is tipped, and all of the others remain erect. Yet, we all accept
the counterfactual sentence “Had tile i been tipped over to the right, tile i + 1 would be tipped as well” as
plausible and valid. Thus, distances among worlds are not determined merely by surface similarities but
require a distinction between disturbed mechanisms and naturally occurring transitions. The local surgery
paradigm expounded in the beginning of Section 70.4 offers a concrete explication of the closest world
approach which respects causal considerations. A world w1 is closer to w than a world w2 is, if the set of
atomic surgeries needed for transforming w into w1 is a subset of those needed for transforming w into
w2. In the domino example, finding tile i tipped and i +1 erect requires the breakdown of two mechanism
(e.g., by two external actions) compared with one mechanism for the world in which all j -tiles, j > i ,
are tipped. This paradigm conforms to our perception of causal influences and lends itself to economical
machine representation.

70.5.1 Formal Underpinning

The structural equation framework offers an ideal setting for counterfactual analysis.

Definition 70.7 (context-based potential response.) Given a causal theory T and two disjoint sets
of variables, X and Y , the potential response of Y to X in a context u, denoted Y (x , u) or Yx (u), is the
solution for Y under U = u in the subtheory Tx . Y (x , u) can be taken as the formal definition of the
counterfactual English phrase: “the value that Y would take in context u, had X been x .”∗

Note that this definition allows for the context U = u and the proposition X = x to be incompatible
in T . For example, if T describes a logic circuit with input U it may well be reasonable to assert the
counterfactual: “Given U = u, Y would be high if X were low,” even though the input U = u may preclude
X from being low. It is for this reason that one must invoke some motion of intervention (alternatively, a
theory change or a miracle [Lewis 1973]) in the definition of counterfactuals.

∗The term unit instead of context is often used in the statistical literature [Rubin 1974], where it normally stands for
the identity of a specific individual in a population, namely, the set of attributes u that characterizes that individual.
In general, u may include the time of day, the experimental conditions under study, and so on. Practitioners of the
counterfactual notation do not explicitly mention the notions of solution or intervention in the definition of Y (x , u).
Instead, the phrase “the value that Y would take in unit u, had X been x ,” viewed as basic, is posited as the definition
of Y (x , u).
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If U is treated as a random variable, then the value of the counterfactual Y (x , u) becomes a random
variable as well, denoted as Y (x) of Yx . Moreover, the distribution of this random variable is easily seen to
coincide with the causal effect P (y | x̂), as defined in Equation 70.7, i.e.,

P ((Y (x) = y) = P (y | x̂)

The probability of a counterfactual conditional x → y | o may then be evaluated by the following
procedure:

� Use the observations o to update P (u) thus forming a causal theory T o = 〈V, U, { fi }, P (u | o)〉
� Form the mutilated theory T o

x (by deleting the equation corresponding to variables in X) and
compute the probability PT o (y | x̂) which T o

x induces on Y

Unlike causal effect queries, counterfactual queries are not identifiable even in Markovian theories, but
require that the functional-form of { fi } be specified. In Balke and Pearl [1994] a method is devised for
computing sharp bounds on counterfactual probabilities which, under certain circumstances may collapse
to point estimates. This method has been applied to the evaluation of causal effects in studies involving
noncompliance and to the determination of legal liability.

70.5.2 Applications to Policy Analysis

Counterfactual reasoning is at the heart of every planning activity, especially real-time planning. When
a planner discovers that the current state of affairs deviates from the one expected, a plan repair activity
needs to be invoked to determine what went wrong and how it could be rectified. This activity amounts
to an exercise in counterfactual thinking, as it calls for rolling back the natural course of events and
determining, based on the factual observations at hand, whether the culprit lies in previous decisions or
in some unexpected, external eventualities. Moreover, in reasoning forward to determine if things would
have been different, a new model of the world must be consulted, one that embodies hypothetical changes
in decisions or eventualities — hence, a breakdown of the old model or theory.

The logic-based planning tools used in AI, such as STRIPS and its variants or those based on situation
calculus, do not readily lend themselves to counterfactual analysis, as they are not geared for coherent
integration of abduction with prediction, and they do not readily handle theory changes. Remarkably, the
formal system developed in economics and social sciences under the rubric structural equations models
does offer such capabilities but, as will be discussed, these capabilities are not well recognized by current
practitioners of structural models. The analysis presented in this chapter could serve both to illustrate
to AI researchers the basic formal features needed for counterfactual and policy analysis and to call the
attention of economists and social scientists to capabilities that are dormant within structural equation
models.

Counterfactual thinking dominates reasoning in political science and economics. We say, for example,
“If Germany were not punished so severely at the end of World War I, Hitler would not have come to power,”
or “If Reagan did not lower taxes, our deficit would be lower today.” Such thought experiments emphasize
an understanding of generic laws in the domain and are aimed toward shaping future policy making, for
example, “defeated countries should not be humiliated,” or “lowering taxes (contrary to Reaganomics)
tends to increase national debt.”

Strangely, there is very little formal work on counterfactual reasoning or policy analysis in the behavioral
science literature. An examination of a number of econometric journals and textbooks, for example, reveals
a glaring imbalance: although an enormous mathematical machinery is brought to bear on problems of
estimation and prediction, policy analysis (which is the ultimate goal of economic theories) receives almost
no formal treatment. Currently, the most popular methods driving economic policy making are based on
so-called reduced-form analysis: to find the impact of a policy involving decision variables X on outcome
variables Y , one examines past data and estimates the conditional expectation E (Y | X = x), where x is
the particular instantiation of X under the policy studied.
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The assumption underlying this method is that the data were generated under circumstances in which
the decision variables X act as exogenous variables, that is, variables whose values are determined outside
the system under analysis. However, although new decisions should indeed be considered exogenous for the
purpose of evaluation, past decisions are rarely enacted in an exogenous manner. Almost every realistic
policy (e.g., taxation) imposes control over some endogenous variables, that is, variables whose values are
determined by other variables in the analysis. Let us take taxation policies as an example. Economic data
are generated in a world in which the government is reacting to various indicators and various pressures;
hence, taxation is endogenous in the data-analysis phase of the study. Taxation becomes exogenous when
we wish to predict the impact of a specific decision to raise or lower taxes. The reduced-form method
is valid only when past decisions are nonresponsive to other variables in the system, and this, unfortu-
nately, eliminates most of the interesting control variables (e.g., tax rates, interest rates, quotas) from the
analysis.

This difficulty is not unique to economic or social policy making; it appears whenever one wishes to
evaluate the merit of a plan on the basis of the past performance of other agents. Even when the signals
triggering the past actions of those agents are known with certainty, a systematic method must be devised
for selectively ignoring the influence of those signals from the evaluation process. In fact, the very essence
of evaluation is having the freedom to imagine and compare trajectories in various counterfactual worlds,
where each world or trajectory is created by a hypothetical implementation of a policy that is free of the
very pressures that compelled the implementation of such policies in the past.

Balke and Pearl [1995] demonstrate how linear, nonrecursive structural models with Gaussian noise can
be used to compute counterfactual queries of the type: “Given an observation set O , find the probability
that Y would have attained a value greater than y, had X been set to x .” The task of inferring causes
of effects, that is, of finding the probability that X = x is the cause for effect E , amounts to answering
the counterfactual query: “Given effect E and observations O , find the probability that E would not
have been realized, had X not been x .” The technique developed in Balke and Pearl [1995] is based on
probability propagation in dual networks, one representing the actual world and the other representing
the counterfactual world. The method is not limited to linear functions but applies whenever we are
willing to assume the functional form of the structural equations. The noisy OR-gate model [Pearl 1988]
is a canonical example where such functional form is normally specified. Likewise, causal theories based
on Boolean functions (with exceptions), such as the one described in Equation 70.16 lend themselves to
counterfactual analysis in the framework of Definition 70.7.
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