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ABSTRACT

This paper analyzes the number of nodes expanded by A* as a funcrion of the accuracy of its heuristic
estimates by treating the errors h* — h as random variables whose distributions may vary over the nudes in
the graph. Our model consists of an m-ary tree with wnit branch cosis and a unique goal siae situated ar a
distance N from the root. .

Two results are established:

(1) for any error distriburion. if AY is stochastically more informed than A%, then At is stochasncally
more efficient than A%, and
" (2) if the probability that the relutive error be bounded away from zero Is greater than 1/m. then the
average complexity of A* is exponential with N, whereas if the probability of zero error is greater than
1= 1/m, the average complexity is O(N).

1. Introduction

Most Al programs employ some sort of ‘heuristics’. i.e.. assertions inferred
from simplified models. By its very nature, the utility of the heuristic used
depends on the proximity between its underlying model and the reality of the
problem at hand. However, very little is known about the relationship between
the proximity of the model and the performance of the algorithms it serves to
guide.

The A* search algorithm is a model for studying this relationship quan-
titatively. Aside from providing a universal schema for casting search problems,
A?* is perhaps the-only heuristic search technique about which a theoretical body
of knowledge has begun to crystalize [1]-[8]. One of the attractive features of
A* is the fact that both its mission (i.e., distance minimization) and its
heuristics can be expressed quantitatively and so, instead. of dealing with a
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vague proximity relation between a model and reality, one can invoke formal
measures of accuracy for distance-estimation procedures.

The first analysis on the effect of errors (i.e., inaccuracies) on the per-
formance of A* was conducted by Pohl [9] and has been pursued since by
Munyer {10], Vanderbrug {11}, Pohi {7}, and Gaschnig {8]. The basic motiva-
tion for these studies has been the following enigma. When A* employs a
perfectly informed heuristic (h = h*) it is propelled directly toward the goal
without ever getting sidetracked, spending only N computational steps where
N is the distance of the goal state. At the other extreme, when no heuristic at
all is available (h = 0), the search becomes exhaustive, yielding an exponen-
tially growing complexity. Between these two extremes there lies an unknown
relationship between the accuracy of the heuristic estimates and the complexity
of the search which they help control. Only sketchy information is known today
about the character of this relationship, and it is entirely confined to worst-
case-analyses.

It often happens that the designer of a problem-solving system has the option
of controlling the quality of the heuristics employed, usually by resorting to
more sophisticated models or by permitting lengthier computations. The ques-
tion then arises, “Is it worth it?”". Having a predictive model for the accuracy-
complexity dependency would help the designer decide whether the added
computation invested in imiproving accuracy would pay itself in reduced search
complexity. Some results along this vein were obtained by Pohl [7] and
Gaschnig [8].. For instance, if the relative error remains constant, then the
search complexity is exponential. When the absolute error is constant the
search complexity is linear.

These results, however, were derived for a worst case model, assuming that a
clever adversary would distribute the errors in such a way that A * would exhibit its
poorest performance. A probabilistic extension of these analyses is warranted for
tWO Maln reasons. Firsi, woist case iesuits are often suspected of being 100
conservative and so, one wonders whether the average performance of A* would
be significantly higher. Second, it is often hard to guarantee precise bounds on the
magnitude of errors produced by a given heuristic, whereas probabilistic
characterization of these magnitudes may be more natural.

This paper presents a probabilistic analysis of A*'s performance, treating the
heuristic estimates as random variables whose distributions may vary over the
nodes of the graph. Section 2 defines the models for the search space and the
heuristic distributions. Section 3 establishes a general formula for the mean
complexity of A* for a given characterization of error distributions. In Section
4, we formalize and prove the notion that if one heuristic is ‘generally’ more
accurate than another, then the first would ‘generally’ give rise to a more
efficient search. Section 5 is devoted to the analysis of the mean complexity of
A™ when the relative errors have a positive probability of being bounded away
from zero.
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2. Model Definition

Following Pohl [7] and Gaschnig [8], our search space is modeled by a
uniform m-ary tree T, with a unique start state S and a unique goal state G, '
situated at a distance N from S. The search tree is depicted in Fig. 1 where
(without loss of generality) the solution path (S, ny-y,..., nf,..., ni, G)is
represented on the extreme right. The trees Ty,..., T;,..., Ty are subtrees of
T. one level removed from the solution path. Thus each ‘off-course’ subtree T;
is rooted at a direct successor of n{ which is off the solution path.

A* searches for the goal state G using the following procedure. An evalua-
tion function f(:) assigns a real value to each node n in T representing a
heuristic estimate of the length of the optimal solution path constrained to
contain n. All branches are assumed to be of unit distance, and f is of the form:

f(n)=g(n)+h(n)

where:

g(n) is the length of the shortest path from S to n found by A*.

h(n) is a heuristic estimate of the minimal distance from n to G.
h{n) is assumed to be admissible, i.e., 0= h(n)}= h*(n) for all nodes in T,
where h*(n) is the actual minimal distance from n to G.

ALcorraM A* (for trees)

" Step 1: Mark S as ‘OPEN’ and compute f(S). |
Step 2: Choose an OPEN node n whose f value is minimal (resolving ties
arbitrarily). ‘

F1G. 1. Uniform tree model (m = 2).
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Step 3: If n is the goal node G, then terminate.
Step 4: Mark n as ‘CLLOSED’ and compute f(n{) for each son n{ of n. Mark
each such node as OPEN. Go to Step 2.

The execution of Step 4 is called an ‘expansion’ of node n, and the standard
measure of complexity of A* is the number of nodes, Z, expanded before
termination.

Our probabilistic analysis of A* assumes that each k(n) can be treated as a
random variable ranging over [0, A*(n)] and characterized by a distribution
function Fjy(x) = P{h(n)=<x]. We further assume that for any two nodes n,
and na, h(ny) and h(n,) are conditionally independent, given their correspond-
ing distances to the goal.

3. A General Formula for the Mean Complexity of A*

Given a characterization of the distribution function Fj)(x), our task is to
compute E(Z), the expected number of nodes expanded by A*, as a function
of h*(§)= N, the length of the solution path.

Since h(n) is admissible, a necessary condition for the expansion of a node n
is n € OPEN and f(n)=< f*(S), and a sufficient condition for its expansion is
n € OPEN and f(n) < f*(S) (see [12]). Consequently we can write:

P{n expanded) < P(n’s parent expanded and f(n)< N), (D

P(n expanded) = P(n’s parent expanded and f(n) < N). (2)

The gap between the bounds in (1) and (2) is created by the eventuality that
some node n{ on the solution path together with a node n off the solution path
could both be OPEN and f(n{) = f(n) = N. In such a case the expansion of n
would be determined by the tie-breaking rule and not by the character of n.
However, if A(n) is a continuous random variable the likelihood of such
eventuality is essentially zero, and the bounds in (1) and (2) become equalities.
Moreover, since we are primarily interested in establishing bounds to E(Z) we
may, in case h(n) is a discrete random variable, use (1) for deriving upper
bounds and (2) for deriving lower bounds. In the remaining portion of this
paper we will treat (2) as an equality with the understanding that, under special
circumstances, (1) should be consulted.

The process by which algorithm A* expands nodes in a search tree is
- analogous to a death-birth process (or more precisely a branching process)
. where, for any node n off the solution path, the condition for reproduction is
f(n)<f*(S) and the death condition (pricr to reproduction) is f(n)=f*(S).

The branching process model was originally used to study the problem of
families’ survival [13]. The process can be described as follows. At the top
level, we have the Oth generation consisting of one member. This member gives
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birth to a random number of sons of the first generation (or equivalently, the
father gives birth to a fixed number of infants, a random number of which will
survive to reproduce). Then, each surviving member of the first generation
gives birth to a random number of sons of the second generation, etc. The
number of sons of any member may also be 0 (i.e., all the sons may die), thus
raising the possibility that the Whoie family be extinct after a certain number o
generations.
The generation process is tree-structured (cf. Diagram 1).

Generation Size

0 wg

1 Wy

e / 2 Wy

v N\ { ~ 3 W

l /x‘ . - \\ /A ' ] d Wy
|

{ R VTN i ] d+1 Wyt

DiaGraM 1.

Analytically, the kth member of generation d (1 <k < w,) gives birth to a
random number x,, of fertile sons which are members of generation d + 1.
Therefore, the size wy., of the (d'+ 1)th generation is the sum of a random number
(wy) of random variables: ’

{wd-1=x1‘d+--~+xk.d—r-»~+wa I wy = L,
Wi = 0 if Wy = 0.

In accordance with our previous assumption that Fi,(x) depends only on
h*(n), we may assume that w, and x,, are mutually independent and that the
variables {x. 4}, k = 1,2,..., w,, are identically distributed, i.e., the fertility of
each member of generation d may depend on d but is independent of both the
size of the generation and its serial number. These condmons imply [14] that
the expectation of wy.; is given by the product:

E(wgi) = E(wa)* E(xq).

Denoting by g, the probability of infant survival for any member of generation d
and assuming that exactly m infants are born to each parent, x4 is a binomial
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random variable with mean E(x.4) = mgs.:. Consequently, E(w,.;) becomes:

E(wgs1) = E(wg)maqy

‘and, by induction over d =0, 1, 2, ... (with ' E(wq) = go) we finally obtain:'
E(wq) = m®quqs-1 - - * qo. 3)

The expected number of nodes expanded by A* could be calculated by
applying this analysis to each of the off-course subtrees in Fig. 1. The expected
number of nodes expanded at depth d of T; is given by the product
m®Gia * Gia-1° * * Gio, Where gy, represents the probability that a node n; at depth
k of T; is expanded once it enters OPEN (infant survival), i.e.:

gix = P(f(ng) <N). ‘ , 4)

Summing this product over all levels d and over all off-course subtrees and
adding the N nodes expanded along the solution path, we obtain a formula for
the expected number of nodes expanded:

N = da

E(Z)=N+(m—1)‘22m“ﬁq,“k %)
‘ i=1d=0 =0 . .

where g is given in (4). In Section 5 we will utilize eq% (5) to show that a fixed

distribution of relative errors gives rise to an exponential complexity. However,

prior to this analysis we wish to examine in what sense one heuristic can be said

to be ‘superior’ to another.

4. Comparative Merits of Random Heuristics

The problem of deciding whether one heuristic is better than another arises
often. Clearly, if one heuristic consistently provides a more accurate estimate
of h*, it ought to be preferred. This is indeed the essence of a theorem by
Gelperin [6] who showed that if for each node of the search graph h,(n) < h-(n)
and both are admissible, then every node expanded by A3 is also expanded by
AT, i.e., hy(n) is to be preferred. However, we seldom possess sufficient a priori
knowledge to guarantee that the inequality h,(n) < ho(n) holds for every node
in the graph. Even when the improved accuracy of h, is a product of invoking
more sophisticated computation procedures than h;, the improvement is sel-
dom guaranteed to take place at every node of the problem space. Generally,
when h(n) is made more accurate for some nodes, it may become less accurate
for others. It is natural to then ask whether a statement of preference can be
made. in the case where the inequality h, < k, is only known to be a reasonably
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probable but occasionally violated event. The formalization and affirmation of
such a statement will be carried out in the rest of this section.

Dermvrmion. Given two random variables X and Xo, we say that X, is stochastic-
ally greater than X, (denoted by X,QX,) iff:

PX:>x)=2P(X,>x) VxER

or equivalently,
Fx(x) = Fx,(x) VxER.

Derivmmion. Let At and A 3 employ the heuristic functions hy and h;, respectively.

7 is said to be stochastically more informed than A? iff hi(n)Dho(n), Yne T,
Similarly, A3 is said to be stochastically more efficient than A% if Z2,QZ,
where Z, and Z, are the number of nodes expanded by AT and A%,
respectively. o

An inspection of egs. (5) and (4) reveals that if for every node n ho(n) is
stochastically greater than k,(n), then k. would induce a lower E (2). This is so
because every g;, in the case of h, will be smaller than the corresponding factor
for h,. However, a much  stronger statement' can be made: h](n)@hg(n)
implies not merely preference in the mean, but also stochastic preference as is
demonstrated in the following paragraphs.

THeOREM 1. For any error distribution, if A% is stochastically more informed than.
A7, then A% is stochastically more efficient than A*.

Proor. Given a set of mutually independent random variables, the order S is
nreserved under addition within the set. In other words if X, V. X Y. are
mutually independent. then X,©X; and Y,\@Y: imply X, + Y\ DX, + Ys.

Denote by Zi(n) and Zy(n) the number of nodes expanded by A%, and A3,
respectively, within the subtree rooted at n. We want to prove that Z,(5)QZ (S ).
Equivalently, since the number of nodes expanded in the off-course trees T, (see
Fig. 1) is independent, using the order preserving property of addition for
independent random variables. we only need to show that Zz(nf)@Z,(n;) for one
arbitrary T.. Let n be any node at level 4 of that tree; it is sufficient to prove that

(n)YDZ,(n) for all such n. We plan to prove this by a bottom-up induction on the
level d in the tree. .

(1) For d sufficiently large the statement is trivially truesince Zy(n) = Z;(n) = 0
for all n at level 4. ‘

(2) Assume Zg(n)@Z,(n) for all n at level d; we wish to show that
Zy(n)SZ\(n) for all nodes n at level d ~ 1. Let nodes n, - - - R -, be the
direct descendents of a node n atlevel d — 1 (cf. Diagram 2). For all integers x = 0
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————— level d—1

- - -leveid

DIAGRAM 2.

we have:

1
P(Z(n)<x)= ip (2 Zm)<x- 1) if A* expands n

if A* does not expand n,

or:

Fzpy(x) = P(Z(n)=<x)
=[1—~ P(A* expands n)]

+ P(A* expands n)P(Z Zm)<sx-1

n expanded). ©)
Since #1(n)@hy(n) ¥, and the path from X 1o n is unique, it s clear that (see (4)):
P(AT expands n)=P(A3 cxpands nj. )
By induction hypothesis:
Z(n)SZy(n) forall k

out. since Z(ny) -+ Z(n) - - - L{n,) are conditionally independent:

}k_: ZZ(nk)@ Z Zi(n)

or:

| p(}; z,(nk)s:c—l)sp@ Zz(nk)sx—-l)., - ®

Thus. using (7) and (8) in (6), we wish to show that Fz,n)(x) < Fz,(x) or that:

Uy == Uy

-+ uoy<1= -+ U0, : 9
e P ©

where:
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u; = P(A* expands n) i={1,2},
Ui:P(ZZ;(:u)Sx—-l) i={1,2}.
> ‘

The implication in (9) can be reduced to:

“ i uz}:> (uy = u)(1 = v)) + (v2— v)uy =0
V1= U

which is easily validated using the fact that v, stands for a probability and so,
Dt =<1,

We conclude, therefore, that Fz ,(x) < Fz,(x) for all nodes and all levels of
a given off-course subtree of T. Consequently, Z(SYDZAS } which proves
Theorem 1.

‘5. Exponential Bounds to the Average Complexity

Assuming that the relative errors Y(n)=[h*(n)- h(n)}/h*(n) are in-
dependent random variables (1= Y(n)=0) with arbitrary distribution func-
tions Fyw(y)= P(Y(n)=<y), we wish to examine the conditions under which
the set of distributions {Fy,(y)} lead to an exponential growth of E(Z) (eq.
(5)). Our plan is to-begin with the ¢ase where Y, (y) are identically distributed
over all nodes with a well-behaved distribution function Fy(y), determine under
what conditions Fy(y) would give rise to an exponential E(Z), and then
identify those sets {Fy)(y)} which could be uniformly bounded from above by
~ Fy(y). Our choice for Fy(y) is the piecewise linear functions:

5 (1=B)
0

Fy(y)=L(B, g; y)= y Osy=se.

( ; y > e
|
I £
]

L

y <0

where (<8 <1 and 0<g=<1. This distribution, with its associated density
function fy(y), is shown in-Fig. 2. It characterizes a mixed random variable

Fyly)pemmmnae £y ly)
i
i .
B ot : =g 1
€

FiG. 2.



a0 N. HUYN ET AL.

whose continuous part is uniformly distributed between 0 and e, having a
probability B8 of being identically equal to zero. Aside from permitting a
simplification of (5), such functions can be used to bound from above any
reasonable distribution function.

For a node n;, at depth k of T; we have:

h*(nu)=i+1+k, (11)
gn)=N—-i+k+1 '

and so (4) becomes:

_ . _ 2k +1)
g = P(h(r)<i=k = 1) = 1= Fy (7). (12)
Using the linear distribution of (10), g simplifies to:
2(k +1) el
« o(t-5isren) kTl
qix = 0 el (13)
k> -1
-£
and (5) becomes: -
’ N lei{l—g)~1]
E(Z)y=N+(m-1)> ;‘ﬁ (1=-8)Y*""'m?
=1 &=
4 2k + 1) ‘
-] (1)
The right-hand side of (14) would decrease by taking only one term from the
“runle summation. eg.. i = N and d = 4. where the choice of 4. will he made
it later stage. Thus. (14) becomes:

E(Z)2 N+ (m = Dm#(1 - gy~ exp S log [1 - miﬁ:il_mj (15)
’ ) / * / =0 (N +k + 1)8 )

Using the inequality log(1 - g)= —g/(1 — g) we get:

(ﬁ ‘Og[ (Nzikk:? )e]”’ ﬁ Ne .nfé’if; )1()11« sy

L& 20k + 1)
- 20 Ne —(2=¢eXd, + 1)

___{dy+2)dy+ 1) ‘
N Ne -Q2-¢e)dy+ 1) (16)
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Substituting in (15) and choosing:

3
—g

dy = laN], a <2 (17)

we obtain:

2
E(2)= (m ~ 1) exp {N[a loglm (1= B)] - ===+ omm]}.
(18)

For m(1 - g)> 1, the expression in the bracket is maximized by the choice:

« =Zfe (1‘\/1+(2;s)lgg[m(1~8)]\) (19)

vielding:

E(Z)= (m - 1)exp {5%? NWITC= o mmaA =B - 1] + 0(1)}

= (m = D[B(e, g, m)]ret=oomt (20)
where
+{(0=¢) 71— —-172
Ble, B, m)=exp [V =)ot U BT, @D

For example, B(1, 0, 2) = 1.095 and B(1, 0, 10) = 1.95.
I m({l-B)=1, (14) gives:

sN+(m~— S (1-BY 41 ! 22

EZ)sN+(m~-1)N. 2: (1-8)¥m L Ll 5(’\’ - l)J (22)

But, since the product term is lower than unity, E(N) can be upper bounded
by:

E(Z)< N[1+O(1/N)]. (23)

Eqgs. (20) and (23) support the following theorem.

Tueorem 2. If the relative errors in a uniform m-ary tree are independent and

identically distributed with a uniform distribution over [0, €], then the average
complexity of A* is given by:

o {Olexp (eN)] if P(h=h*)<1-1m

EZz ={ - , , 2

@)= 10w it P(h=h*)=1-1/m (24)

where c is a positive constant depending on m(1 - B) and e.
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Theorem 2 'generalizes the results of Gaschnig [8] from the worst case to the
average case analysis. Gaschnig has shown that if at all nodes off the solution
path the relative errors stay at their maximal value above some fixed constant
e. then the complexity of A* is exponential. Theorem 2 implies that the
average complexity follows a similar behavior when the relative errors are
uniformly distributed over the interval [0, £]. Evidently, not much is gained by
diffusing the errors smoothly over the interval. The only time the complexity of
A™ reduces to a polynomial is when the likelihood that A literally coincides
with h* is sufficiently high at all nodes.

This result is not unique to the uniform distribution, but generalizes to
distributions of arbitrary shape as long as a single distribution governs all the
nodes in the graph.

CorotLary 1. If the relative errors in a uniform m-ary tree are independent and
identically distributed random variables with an arbitrary distribution Fy (y), then
the average complexity of A* is identical to that given by (24).

Proor. If P(h=h"}<1-1/m, then Fy(0)=1/m ~ & where § is some positive
quantity. Sucl a function can always be bounded from above by a linear
-function L(1~1/m — §/2, &; y) and, therefore, the complexity of A* would be
not lower than that of (24), i.e., exponential..
If P(h = h*)=1= 1/m, then the product term in (5) would be strictly smaller
than (m)™ for any d >0 leading to a geometrical series with:

E (Z)‘= O(N).

These results can be further generalized to characterize the conditions under
which errors with varving distributions would give rise to exponential com-
plexity.

THEOREM 3. If, for every node in the tree, the probability that the relative error
exceeds some fixed positive quantity € is greater than 1/m, then the average
complexity of A* is exponential in N.

Proor. Consider the set of random variables {Y,} where Y, stands for the
relative error at node n, and n ranges over all nodes of the tree. The condition
P(Y,>¢e)<1/m translates to Fy,(e)<1-1/m. But every distribution function
Fy,(v) satisfying the latter inequality can be bounded from above by a linear
function L(B, £; y) with 8 <1~ 1/m which renders the mean complexity of A*
exponential. Thus, the entire set {Y,} would also give rise to an exponentially
growing average complexity.

Theorem 3 implies that in order to avoid an exponential growth of E(Z),
the magnitude of the typical errors in the tree should increase slower than
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linearly with the distance from the goal. For example, if the absolute errors
h*(n)— h(n) are bounded by a fixed quantity §, the condition of Theorem 3
would not be satisfied. For every £ >0, we can find n sufficiently remote from
the goal for which the error h(n)—h*(n) is below eh*(n). Indeed, for this type
of error both Pohl [7] and Gaschnig [8] have established a linear worst-case
complexity, thus guaranteeing linear mean complexity.

6. Conclusions and Pending Problems

In light of the results reported in this paper, a natural question to ask is how
accurate the estimates must be in order to guarantee a polynomial complexity.
By a more elaborate manipulation of eq. (5) we have recently discovered [15] that
the required accuracy is logarithmic, i.e., if the typical error increases faster than
logarithmically in the distance to the goal then, regardless of the shape of the
distribution functions, the mean complexity of A* grows faster than N* for any
finite k. Moreover, if the typical error grows like [¢(h*)], then E(Z) would
increase at the rate exp (c@ (N)]. Thus, highly precise heuristics must be devised if
the search complexity is to be contained within reasonable growth rates. Most
physical measurements are subject to a constant relative error, statistical
inferences are usually characterized by O(N*?) error law (N is the number of
random elements), and logarithmic precision is 2 rare commodity.

So far the average-case results obtained: by a probabilistic ‘analysis stand in
striking similarity to those obtained by worst-case analysis. It is interesting to.
explore how widespread this similarity is in unstructured combinatorial search
problems. One area where probabilistic analysis seems necessary is the treat-
ment of non-admissible heuristics. Since most of the useful and the more
accurate heuristics occasionally overestimate the distance to the goal. and since
the magnitude of the overestimation error can be bounded only probabilistically.
the relationship between accuracy and complexity in this case is of greater
oractical significance. This relationshin is further comnlicated in the case of
graphs where overestimation implies a finite likelihood of obtaining a subop-
timal solution path. Probabilistic analysis may establish then the tradeoff
between the mean search complexity and the mean increase in path length.
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