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Storage Space Versus Validity of Answers in
Probabilistic Question-Answering Systems

JUDEA PEARL, SENIOR MEMBER, IEEE, aND ALAIN CROLOTTE, MEMBER, IEEE

Abstract—The trade-offs between the required storage space and the
validity of smswers produced by probabilistic question-answering (PQA)
sysiems are studies. If the correct answer to a given query is “yes” and the
system, instead, issues the estimate that the query has & probability « of
being true, then the economic loss to the user can be measured by a
distortion function that decreases monotonically with =. A system will be
called elastic if & drastic memory saving may be achieved by tolerating s
small level of aversge distortion. The main result reported is that for &
farge class of distortion mesasures (i.e., messures exceeding (1—7)* with
a>0), if a binary QA system (true—false answers) is inelastic then the
corresponding probabilistic QA system must also be inelastic, This result
fmplies, for example, that & PQA system that is designed to answer sli
binery questions on an arbitrary dataset is inelastic. Simflarly 2 PQA
system admitting singly conjunctive questions such as “Are both x and y in
the dataset?” is also inelastic.

I. INTRODUCTION

BINARY question—answering (QA) system, after

consulting a summary of the input data stored in its
memory, produces true—false answers to a given set of
binary queries. Probabilistic question-answering (PQA)
systems permit the answers o be cast in probabilistic
phrasing (e.g., “Yes, but I am only 80 percent sure”). The
use of PQA systems is justified when the size of the data
exceeds the system’s storage capacity, in which case stor-
age space is economized at the expense of the answers’
quality.

Whereas the user of a binary QA system with insuffi-
cient storage must be resigned to the fact that a certain
fraction of the answers will be utterly erroneous, the user
of a PQA system obtains estimates of each answer's
reliability. An answer such as, “Yes, Mr. Smith is still
employed by the X Corporation” is far more damaging
than, “Yes, Mr. Smith is probably still with X, but [ am
only 85 percent sure,” when in fact he is no longer with X.
In the first case the user may make critical decisions to his
detriment. In the second case the user is alerted to pro-
ceed with caution and is able to judge, given the probabil-
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ity estimates, what level of precautionary effort is war-

If the correct answer to a given query is “yes” (i=1)
and the system, instead, issues the estimate that the query
has a probability 7 of being true (0<7w<1), then the
economic loss to the user is assumed to be expressed by a
distortion function 8(1, w)=8(0,1—x). Similarly, we as-
sume that the overall degradation in the validity of the
system’s answers is measured by a distortion criterion
given by the mean value of §, averaged over all queries
and all possible datasets.

We study the trade-offs between the required storage
space and the quality of answers produced by PQA sys-
tems with the primary objective of devising simple tests
for determining whether tolerating a low level of the
answers’ indefiniteness may result in drastic savings of
memory space.

We treat a PQA system as a communication channel
whereby the content of the system’s memory is viewed as
a channel code connecting the input messages (datasets)
and the output messages (answers (o queries) reproduced
at the receiving end. This permits us to lower bound the
memory requirement by Shannon’s rate distortion func-
tion R(D) if an average distortion less than D has to be
insured.

The ability of a PQA system to convert an amount D of
validity degradation into a large memory saving is mea-
sured by the ratio R(D)/R(0). If this ratio goes to zero as
M, the size of the input ensemble, tends to infinity, then
the system will be called elastic, since a drastic saving in
memory might be feasible by tolerating a small level of
indefiniteness. On the other hand, if R(D)}/R(0) does not
tend to zero, the system will be called inelastic. No coding
scheme exists which drastically reduces memory require-
ments with only small degradation in answers validity for
the latter system.

Criteria for testing the elasticity of binary QA systems
were established in {1] and [2] using the proportion of
erroncous answers as a distortion measure. A previous
analysis of storage-fidelity exchange in probabilistic QA
systems demonstraied a very weak (inelastic) exchange for
systems admitting only logically independent queries un-
der both logarithmic and gquadratic distortion functions
[3]. This paper extends the analysis to PQA systems in-
volving arbitrary (e.g., logically dependent) query sets by
studying the asymptotic behavior of a lower bound R D)
to R(D).
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The main result in this paper is the following: for
distortion measures of the type 8(1, 7)> (1—7)% where
a>0, if the inelasticity of a binary QA system (true—false
answers) can be established on the basis of such a lower
bound, then the corresponding probabilistic QA system
must also be inelastic. The class of distortion measures to
which this theorem applies encompasses all reproducing
scoring rules 4] used in practice, such as truncated loga-
rithmic, quadratic, and spherical scoring rules.

The theorem stated above implies, for example, that a
PQA system that admits all binary questions on an arbi-
trary dataset is inelastic. Similarly a PQA system which
admits singly conjunctive questions (e.g., “Are both x, and
x; in the dataset?”) is also inelastic. The results in [3] are
special cases of this theorem since the inelasticity of a
binary QA system with logically independent queries and
probability of error distortion criterion can be established
by R, (D), using.the fact that the query set is nonredun-
dant [1].

Section II introduces models and nomenclature used in
the analysis of QA systems and defines the lower bound
R,(D) to R(D) which will be used in determining the
elasticity of PQA systems. Section III summarizes previ-
ous results concerning the asymptotic behavior of R, (D)
for binary QA systems. Section IV shows a connection
between the results reported in Section III and the elastic-
ity of PQA systems under distortion measures of the form
6(1, m)=(1—m)*, where a>0. Section V explores some
implications of the above results.

II. MODELS AND NOMENCLATURE

Following Minsky and Papert [S] and Pearl [6], a QA
system can be described by the model of Fig. 1. It is
characterized by a dataset ensemble M and a query en-
semble @: ) .

M={N1”",NM}’
Q={ql" "’QQ}'

During a filing phase, a storage procedure By, examines a
dataset uwEM, summarizes it, and then transfers the
summary into the memory S. Later, during a finding
phase, a retrieval procedure By, 4 uses the information in
the memory to answer queries from Q.

In order to define an overall performance for the sys-
tem described above, we first define a degree of incon-
venience for the user caused by answering a(u,q) to
query g about dataset y, i.e., a real-valued function:

A: VXMXQ—-R™,
where R™ stands for the nonnegative real numbers, and ¥
is the answers’ vocabulary.

We assume that for every pair (u,q) there exists a
correct answer to query g about dataset , i.e., an a’ €V
such that

A(a™, p, q)=0.
The set

AT= {aT(I-")iaT(P")=(aT(“’ q1)s s aT(:u’ qQ))! for F‘EM}
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DATA STORAGE

M ?‘A“_‘. SETi PROCEDURE
A" Bfile

QUERY RETRIEVAL

SET QUERIES PROCEDURE
Q qu"":qo Bfind

alu,q)
Fig. 1. QA system model.

contains strings of answers which are consistent with some
realizable datasets, referred to as the set of the admissible
answers. Similarly, a system for which only admissible
answer strings are allowed will be referred to as a re-
stricted or admissible system. For systems permitted to
issue only binary answers, we have previously established
relationships between the restricted and unrestricted mod-
els and have shown that under certain general circum-
stances the asymptotic behavior of the unrestricted system
matches that of the restricted system {2]. We presently try
to relate the behavior of a probabilistic system to the
behavior of the corresponding binary system which is
constrained to produce only admissible answers. The latter
is much easier to analyze.

Calling P(u, g) the probability that dataset g would be
presented followed by query ¢, the overall performance of
the system will be degraded by

D= 2 2 P(.“"q)A[a(H,Q)yﬂ,Q],
rEM g€Q
the average mean distortion relative to P(u, q).
If the datasets and queries are independent, we will
have

P(p,q)=p,P,, pEM, qg€Q,

where p, and P, are the marginal probabilities correspond-
ing to the joint probability P(u,q), and D can then be
rewritten as
D=3 pdlp a(p)],
neEM
where
dlp,a(p)]= 3 BAla(p,q), 1. q].
9€Q

The developments in this paper assume distortion mea-
sures A based only on certain relationships between the
generated answer and the correct one but independent of
the particular query or the dataset:

Ala(p,q),p,q]=8[a(k, q),a(p,q)].
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If the true answer to question g about dataset p is “yes”
(a™(u, g)=1), then 8(1,7) represents the damage caused
to the user by assigning a credibility # to a proposition
which is in fact true. By symmetry we should have

8(0,m)=6(1,1—=). (1)

Standard scoring rules have been developed [4] for the
purpose of evaluating the quality of probability assess-
ments. An important property of these scoring rules, called
“reproducibility”, is their tendency to keep the forecaster
“honest”. For present purposes, however, it is not neces-
sary to limit ourselves to reproducing scoring rules since
our scope is to evaluate from a general standpoint what
reduction in memory requirements would be obtained by
allowing probabilistic statements instead of true—false
answers. Here we will consider two types of distortion
measures:

e 6(1, 7) concave,

@ 5(1, ) convex of the form (1—-7)", a> 1.

For the purpose of calculating the minimum storage
requirement, it is convenient to regard a QA system as a
communication channel which receives at its input the
dataset u and reproduces at this output the answer-string
II. Thus the source alphabet is M and the reproducing
alphabet is II=[0, 1]2. Note that the set of the extreme
points of II is merely 4, the set of all possible binary
answer strings associated with the query ensemble Q.

To remain consistent with the literature on rate distor-
tion theory we index the datasets in the input ensemble by
an integer i, varying from one to M, replacing the generic
variable g. To each dataset i (i=1,--+, M) and each
question g, a true answer a’(i,q) and an actual answer
7(i, q) are associated so that

o= D P8 a(i,q), 7(i,q)]

defines a distortion between dataset i and the answer
string

M=[n(i,q,). 7(i, q2), - 70, qp) ]

We assume that all queries in @ are equally likely, ie.,
P =1/Q. Letting the set of conditional probability assign-
ments which lead to an average distortion less than D be

%= | P(ID| S pp@iden<n). @
i1 ,
Shannon’s rate distortion function is defined by
R(D)= min J(M,I), 3
(D)=, min  I(h.11) )

where I(M,II) is the mutual information between the
source and the user associated with P(II}¢), ie.,
P(ILli
(M, 1)= '3 p, P(TT}i) log UL

I

P 2 4)

and
Py= 3 p,P(TT}i) ®)

is the probability density function of the output.
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The definition of R(D) takes its operational signifi-
cance from the negative part of Shannon’s source-coding
theorem, stating that no code exists for which both the
average distortion is less than D and the rate is less than
R(D). This implies, in particular, that any QA system
must be provided with an average memory size of at least
R(D) nats per dataset in order to achieve a mean distor-
tion at most D.

The positive form of Shannon’s theorem, stating that
codes exist which achieve a mean distortion D with an
amount of memory arbitrarily close to R(D), would be
applicable only if simultaneous coding of very large num-
bers of datasets was allowed. In the model examined
above, each dataset has to be coded individually; there-
fore R(D) provides only a lower bound to the memory
size, unless a filing procedure achieving R(D) can be
exhibited. However, if the QA system serves many users
connected to a central unit, each using a dataset u in M,
then R(D) is a proper measure of the average storage
space (per user) required to serve them with fidelity D.

As shown by Shannon, R(D) is a continuous convex
function for D_;, <D< D, with

D= zpi mr%npin’ (6)

Dmax= mﬁ.n Zpipiﬂ‘ (7)
i
For the QA systems considered, there always exists an
answer string II such that p,;=0 for a given /, and
therefore

D_,.=0.

min

®)

Convexity implies strict monotonicity of R(D), which is
strictly decreasing from R(0) to O (obtained for D=D_, ).
Furthermore, R'(D) is continuous, strictly increasing from
— oo over the range [0, D__ ]

A QA system is said to be identifiable if every dataset
can be identified knowing its true answer string, ie., if
and only if a’(g,)=a’(p,) implies u, =y,. For identifia-
ble systems R(0) coincides with H, the source entropy.
Throughout this paper we assume we are treating identifi-
able systems. Our results will remain valid for nonidentifi-
able systems, however, provided that R(0) and H have the
same asymptotic behavior, ie., if lim,, R(0)/H>0.

A typical situation for a QA system is depicted in Fig.
2, the superscript a referring to the admissible system
{output vocabulary restricted to the admissible answer
strings).

To answer all queries without error requires H=
-—2,‘EMPM log p, nats of memory, so that R(D)/H is a
measure of the impact of the distortion allowance on the
memory requirements of QA systems. If this ratio is very
small, the distortion allowance could be made beneficial.
We therefore make the following definition.

Definition: A QA system such the R(D)/H tends to
zero for every D>0 when M-»>c0 will be called elastic,
while a system such that R(D,)/H is bounded away from
zero (bafo) for some D, >0 will be called inelastic.
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admissible system AT
binary system A
probabilistic system i

0 ol p  p? D

Max max max

Fig. 2. Typical rate for PQA system.

Although one can certainly conceive of cases which are
neither elastic nor inelastic, for instance where R(D)/H
oscillates, only systems exhibiting regularity properties
will be treated here. In all practical cases, both R(D) and
H are monotonic functions of M, and the corresponding
systems are either elastic or inelastic.

For an inelastic system, the fact that R(D,)/H does not
tend to zero dispels any hope of achieving a drastic
reduction in memory by allowing imprecision; for such
systems, one should not attempt, therefore, to find filing
schemes achieving more than a fractional saving in stor-
age space.

For elastic systems, there is no theoretical impediment
to the existence of filing schemes achieving a large reduc-
tion in memory by error allowance. As noted, however,
one is not guaranteed to achieve R{D) by filing schemes
where each dataset is coded individually. A separate effort
would be required to demonstrate the existence of such a
scheme, or at least a scheme which achieves a memory
saving of the same order as R(D)/H.

The results of the present paper are based on the
asymptotic properties of the following lower bound [7] to
R(D). Let u, be any function of s satisfying

M

¥, > max > el e
¢ neng : ®

Then, for all s<0, R(D) satisfies

R(D)>H+sD—logu,= R,(s, D). (10)

Optimizing this family of lower bounds with respect to s
yields
R(D)>RL(D)=magRL(s,D). (1
8 <
If u, is differentiable and log-convex, R, (D) is given by
the following parametric equations:

D=—% log u,, (12a)
R (D)=H+sD—logu,. (12b)

These two equations define the lower bound to be.used in
elasticity tests and will be referred to as the set of funda-
mental equations associated with u,.

IfI. SumMARY OF PREVICUS RESULTS

In [2] we studied the relationship between the admissi-
ble system and the unrestricted binary system where both
admissible and nonadmissible binary answers are per-
mitted. In particular we established the following result [2
th. 4].

Theorem 1: In the case where the datasets are equally
likely, if there exists a log-convex and differentiable func-
tion u, such that

u, > max >, e
JEAT

{52)
Vo

and s, (D), the solution to the first fundamental equation
associated with u, satisfies!

Su(D)=0(log M), (14)

then the system is inelastic.

The power of this result stems from the fact that it
provides an inelasticity test which involves the admissible
answers only. We wish to derive similar results here since
it often happens that while the distortion matrix of the
probabilistic system is intractable, the admissible matrix is
easier to handle and the test for inelasticity becomes a
simple computational task. For convenience we make the
following definition.

Definition: A system such that its admissible distortion
matrix fulfills the conditions of Theorem 1 will be called
tractably inelastic.

The reason for coining the name “tractable” for such
systems is that there appears to be no manageable method
for testing inelasticity in cases where these conditions do
not hold.

The analysis of the next section requires additional
results, proved in [2], which will be restated here without
proof.

Lemma I: The asymptotic behavior of s2(D), the
unique solution of (12a) associated with u? =
max . 2", satisfies

O <|sZ( D) < Olog M). {15)

Theorem 2: If the datasets are equally likely, a neces-
sary and sufficient condition for the inelasticity of the
admissible system is that s (D) satisfies s2(D)=0O(log
M) for some D >0,

Lemma 2:
RY(D)
log M

log ug. (D)

log M (16)

»1.

Lemma 3: If,? for all O <D< D,, |s3(D)|~¢(D) iog
M, thenlim,_ g, D¢(D)=0.

"We say that u,, = O(¥,,) if and only if there exist 4 and B (4B >0)
such that for m large enough 4 <u,, /v,, < B, m is an intrinsic parameter
tending to + oo with M and Q.

?We use the notation u,,~uv,, to denote lim,, o, ¥,,/0,=1.
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IV. RELATION BETWEEN BINARY AND
PROBABILISTIC QA SYSTEMS

In this section we consider the case where the function
7—>8(1, 7) is convex of the form &(1,#)=(1—a)" for
a > 1. Note that there are two subcases of great interest:
a =1 which yields the Hamming distance and a=2 which
1s known as the guadratic scoring rule. The quadratic
scoring rule is the only reproducing scoring rule of the
family 8(3, m}y={(1 — = )" [4].

We first establish two lemmas which will be used in
deriving the main theorem of this section,

Lemima 4: Foralla,b>0and a> 1

(a'/*+b/*)* <min{a, by +{2°~ 1) max(a, b).
Proof: Assume a<b. Then

min{a, b}+(2%—1) max(a, b)

1
=a+(2‘*‘~l)bzb{ +20-1].

SRS

Furthermore by writing

(a‘/“-frb‘/“)“:b[l +<%)E/ar,

the inequality stated in the lemma is equivalent to

(T+xV*) " <x+29—1, 0<x<1,

y={1+x"")"—x— (2= 1)<0.
hat vy’ =u~1 where

u=x"/* "Y1+ x/eyt

[—« 1

u'
1 P
U

— <0,
o x(14+x)

Therefore u is decreasing, u(x) > u(1)=2°"" and conse-

quently y' > 271 —1>0; p(x) is therefore increasing and
y{x)<y(1)=0.

Lemma 5:
M
= max 5 e%m o AU e 1/2
= max g e MY 0. g
e ;g
Proof: Let
& mi - all; T Tief
pim = Min g < oy, foralliced’, II€L. (a7
H

Note that piﬂr:Q’iE?,,]iiq"qu“ is not a distance but
(Op.)V/¢ is, since it satisfies the triangular inequality

(Qpim)"+ (st'@n}l/a 2(’;5{):':0:}}/“,

or
Pii, g(!)%!a +p§'(,/f‘xi)a~
Applying Lemma 4 with a=p, g and b=p,
P, <(2°— 1o, +po,1n
or, since s <0,

@ = Dspn. 580, 1t 565
e il o Gl“ge ”0’
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which implies

(18)

2 e T Dsein o Pigmn. u:‘
i
Exponentiating (17) and summing with respect to / yields

M
u,= max o ePm< MePion,
nen [
Note that since s<0, (2~ s<s, e@ 7V <e, and thus

M M
14(2‘:,_ s = 2 e(zu‘l)San < E esfm g Mem;on’ (ﬁg)

i=1 i=1
(18) and (19} together imply

Uge s S M 5/2(”;1)1/2

ar

u, < MVZ[ u;"/aa,”] 12

This ineguality gives rise to the following theorem.
Theorem 3: For distortion measures of the type 8(1, 7)
={]—7), a>1, and equally likely datasets, if s;(Dy)=

Odlog M) for some fixed D, >0, the probabilistic system is .
inelastic.

Proof. The proof parallels that of Theorem 3 in [2].
We first lower bound R(D}/log M using R (D, s) of (10},
then show that the condition of Theorem 3 restricts
R;(D, s} to be bounded away from zero. Let

then for all +<<0 we have

R(D)>R,(D,s)=log M+sD~logu,.

In particular
R(D)>R(D,s5,(D)).
Since s2( D)= 0O(log M) the ratio R3(D)/log M does not
tend to zero and consequently
log ule py 20
log M A

by virtue of Lemma 2. From Lemma 5 we have

I 1
0
log ua py < 3 log M+ 3 log uls py o1y
where
M
u?: z e
i
Using an argument similar to the one which led to (20) it
can be shown that
108 5s (py/x

P
fog M fork>1,

1,

which implies
I
log Uga Dy

Tog M for IT<Il.

1,
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Consequently,
max log ull
a g Uss (D)

log M

log Use (D)
log M
More precisely, since log . p,/log M is bounded away
from one, there exist m, and 1>7>0 such that
log 4,zp)
log M
Since [s2(D)| is a decreasing function of D, the assump-
tion sp(Dy)=0(og M) implies that s (D) cannot be of
an order less than log M for all D<D,. Moreover, by

Lemma 1, s;(D) cannot be of order larger than log M,
ie.,

1.

m<m;= <l-7, forDeE[0,DZ,].

sm(D)~—¢(D)log M,  ¢(D)>0,
with
lim D¢(D)=0
D0
by virtue of Lemma 3. Therefore, there is a number D, >0
such that

D<D,=D¢(D)<n/2.
Let now D=min(D,, D,). Since

s(D)
log M /(P(D)"‘)I
there exists an m; such that for m>m,
EZL).
EogM /¢(D
le.,
Sm(D)

- 2> —-3n/4D.
g > 3e(D)/2> 3/
Consequently for m > mg= max(m,, m,) and D=

min{ Dy, D,) we have

R(D) _R,[D,s,(D)]

log M log M
. Dsé(D) 108ugp)
h log M log M

Consequently for m > m, and D=min(D,, D,)
R(D) | Ry[D,s:(D)] _ log u; )
log M log M log M
>1-3n/4—(1—n)=n/4
which establishes Theorem 3.

—D¢(D)—

A somewhat more general (and useful) version of this
result is the following.

Theorem 4. For distortion measures of the type 6(1, 7)
=(1—7)% a> 1, and equally likely datasets, if the binary
system is tractably inelastic, then the probabilistic system
is inelastic. ,

Proof: Equations (12) associated with u, define a
lower bound R, (D) to R{(P). Consequently R (D) /log
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M does not tend to zero since R,(D)/log M does not
tend to zero and thus s.(D)=O(log M) by Theorem 2.
By Theorem 3 the system is therefore inelastic.

Theorem 5: For distortion measures such that there
exists a>0 satisfying 8(1, 7)> (1 — )%, if the binary sys-
tem is tractably inelastic, then the probabilistic system is
inelastic.

Proof: Simply note that if §,(1, 7)>8,(1,#) and if
8,(1,00=8,(1,0)=1, R(D)>R,(D), where R|(D) is the
rate distortion function for a QA system in which &, is
used and R,{D) is the rate distortion function for the
same QA system in which §, is used as distortion measure.
Consequently, if there exists an a >0 such that Theorem 4
holds for 8,(1,7)=(1—m)% Ry D)/log M is bounded
away from zero. Theorem 4 would also hold for §,(1, =) >
(1—-m)* since R (D)/log M > Ry(D)/log M is also
bounded away from zero. In particular, taking 6,(1, 7)=(1
—w)ﬂ, 0< <1, extends the validity of Theorem 4 to the
range a>0.

Corollary 1: For all distortion measures which are con-
cave, if the binary system is tractably inelastic, then the
probabilistic system is inelastic.

Proof: If 8(1, 7) is concave, then 8(1, 7) >
the proof used for Theorem 5 applies directly..

1—7, and

The validity of Theorem 5 could be further extended if
the answer vocabulary is limited to a finite set of esti-
mates: 7€ {m, 7, -+, m}. In this case it is sufficient to
require that the distortion associated with any uncertain
answer (7 < 1) be a finite positive quantity

8(1,7)>0, ifx<l. 1)

If (21) is satisfied for a finite vocabulary we can always
find an «>0 such that 6(1,7)>(1—=)% leading to the
following result.

Corollary 2: For all distortion measures satisfying
8(1,7)>0 for #<1, if the binary system is tractably
inelastic, then any corresponding probabilistic system
which employs a finite set of probabilistic answers is also
inelastic,

The reason that (21) was insufficient in the continuous
case is due to pathological functions such as 8(1,#)=
exp{—w/1—=) which satisfy (21) but cannot be lower
bounded by (1 —)* for all #. Corollary 2 is useful for QA
systems which issue linguistic characterizations of the
answers’ credibilities, e.g., “probably”, “likely”, “doubt-
fully”, etc

V. APPLICATIONS

A. Classical Reproducing Scoring Rules

A scoring rule is called reproducing if it encourages a
probability assessor to be honest. In other words, an
assessor who minimizes his/her expected loss, pé8(1, 7))+
{1-p)8(0, 7), can do so only by reporting his/her actual
“degree of belief” p that an event will occur. There are
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three such rules commonly used:

quadratic 8(1,7)=(1 —77)2;

spherical 8(l,m)=1— il — ;
(w2+(l-7r)2) /

logarithmic 81, n)=—log .

Since the logarithmic scoring rule is undefined for 7#=0
the truncated logarithmic scoring rule:

—log 7, 7>e,

8(1,7)=
—log e,

7<E€,
is often used in practice [4].

The quadratic scoring rule directly falls into the cate-
gory of distortion measures studied in Section IV with
a=2. For the spherical scoring rule it can be shown that
8(1,7) > (1—m)*/2; consequently this scoring rule meets
the conditions of Theorem 5, except for the factor 1/2.
However, since two distortion measures which differ only
by a constant multiplier yield identical rate distortion
functions save for a scaling factor on the arguments, we
conclude that Theorem 5 applies to the spherical scoring
rule. For the truncated logarithmic scoring rule it is clear
that

8l,m)>1—m,

and consequently Theorem 5 applies to the logarithmic
scoring rule as well. To summarize, if a binary QA system
is tractably inelastic, relaxing the requirement that answers
be true or false by allowing probabilistic answers will not
change the asymptotic properties of the memory—quality
exchange for practically all distortion measures. In partic-
ular, the classical cases of quadratic, spherical, and trun-
cated logarithmic scoring rules fall into that category. This
generalizes the results of [3] to the case where questions
are not logically independent.

We next demonstrate the usefulness of Theorem 5 in
analyzing a probabilistic QA system with a highly interde-
pendent query set.

B. Example: The Compleie Binary System {(CBS)

A QA system whose query set consists of all binary
valued questions on the data is called a complete binary
system (CBS). The time-storage exchange in this system
was analyzed by Elias and Flower [8]. If the data requires
a code of m bits, then

M={0,1}",
@={f|f: M—{0,1}},
For such a system, every two distinct datasets produce
identical answers for exactly 50 percent of the questions.

Thus, using the proportion of erroneous answers as distor-
tion criterion, the admissible distortion matrix is balanced

{71

M=2m
Q=2M.

I=14+(M—1)e*?
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and

se(DY=—2log M+2log -1—/-5D_—D-

Consequently the CBS is tractably inelastic.

Consider now the probabilistic version of this system.
All binary assertions about the data are still permissible as
queries but probabilistic responses, indicating the likeli-
hood of each assertion, may now be generated by the
system. Since the queries are highly interrelated (all 22"
queries could be deduced from only m bits), the method
used in {3] is no longer applicable. Using Theorem 5,
however, it follows immediately that the probabilistic CBS
is inelastic under distortion measures of the form 8(1, =) >
(1—o)* (a>1). Without invoking this theorem it would
be practically impossibie to provide any kind of analysis
as we would have to examine a huge output vocabulary
consisting of all 22"-dimensional vectors with entries be-
tween zero and one.

The analysis of CBS can be generalized to a larger class
of probabilistic QA systems.

Theorem 6: For any probabilistic QA system under
distortion measures of the type 8(1, 7)>(1—7)* >0, if
H=log M and the (normalized) distance between any two
distinct admissible answer strings is bafo, the system is
inelastic.

Proof: Assume that
p;;2r>0, i, j admissible, i/,
Then if j is admissible
M
S e+ (M—1)e” =u,.
i=1
Equation (16a) associated with u, is

(M—1)e*"

T+(M—1)e’

implying

Therefore
1
S (D)y~— - log M=0(log M),
and from Theorem 5 the system is inelastic.

C. A System Admitting Singly Conjunctive Queries

In [2] we considered a binary QA which receives as data
binary vectors M= {(x;, x,, -+, x,)|x, €{0,1}} and
answers queries of the type, “Are both x; and x; ONE?”
The rationale for studying this system was to test the
elasticity conditions for a redundant query set where the
(normalized) distance between any two admissible answer
strings approached zero. Our analysis of this system used
a fairly complex u, function as a basis for demonstrating
that the binary system (with the proportion of erroneous
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answers as a distortion criterion) 18 tractably inelastic.
MNow, by virtue of Theorem 3, we can conclude that the
probabilistic version of the QA system is also inelastic for
all distortion criteria of the type 8(1, #) > (1 — )%, where
a>0.

VI. SumMMARY

This paper investigated whether the storage require-
ments of question-answering systems can be greatly re-
duced by allowing some distortion in the form of indefi-
nite or imprecise answers. Using an information theoretic
model, it was shown that for true—false type questions, if
significant reduction is impossible for a restricted set of
true—false answers and a “fraction-of-wrong-answers” dis-
tortion criterion, then it is (for all practical purposes) also
impossible for systems issuing indefinite answers cast in
probabilistic phrasings. Thus, by giving partial credit for
unsure answers rather than counting an answer as wrong
if it is not both certain and correct, we are still unable to
reduce greatly the storage requirement.

Although our results were derived for systems issuing
probabilistic estimates, they remain largely applicable to
nonnumerical answers as well. Systems producing linguis-
tic phrases such as “almost certainly true” or “possibly
true” would be subject to the same storage space con-
straint as those issuing numerical estimates, as long as the
distortion associated with such messages can be expressed
numerically. In our analysis we did not assume that the
system’s probabilistic answers comply with the ruies of
probability calculus. For example, if the truth of query ¢,
subsumes the truth of g¢,, then we did not insist that the
respective responses m, and @, satisfy «, > 7,. That leaves
us the freedom of assigning a variety of interpretations to
the responses issued by the system. The only requirement
necessary for generalizing our results is that all answers
conveying uncertainty (7 <1) be assigned positive distor-
tion measures 8(1, 7)>0.

The results established in this paper also have implica-
tions for complexity measures other than storage space.
For exampile, one may wish to inquire whether by tolerat-
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ing imprecise answers it is possible to shorten the average
time required for generating the answers. In [9] it was
shown that, under quite general conditions, Shannon’s
rate distortion function underbounds the extent to which
many complexity measures such as number of gates, ex-
ecution time, and state complexity can be reduced by
allowing imprecision. A necessary condition for enabling
the conversion of a small degree of imprecision into a
drastic reduction of complexity is that the rate distortion
function exhibit a similar drastic drop, ie., that
R(D)/R(0)—0 as the size of the data increases. Hence the
conditions for inelasticity established in this paper not
only delimit the reduction of storage space due to impreci-
sion but also impose an absolute bound on the amount of
savings realizable in other computational resources. It
appears that the use of probabilistic answers, although
they benefit users by alerting them to variations in answers’
credibility, is not sufficient to permit a significantly larger
savings in computational resources than those realizable
by true—false type answers.
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