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Introduction
Probabilistic models based on directed acyclic graphs have a long
and rich tradition, beginning with work by the geneticist Sewall
Wright in the 1920s. Variants have appeared in many fields. Within
statistics, such models are known as directed graphical models;
within cognitive science and artificial intelligence (AI), they are
known as Bayesian networks. The name honors the Reverend
Thomas Bayes (1702–1761), whose rule for updating probabilities
in light of new evidence is the foundation of the approach. The
initial development of Bayesian networks in the late 1970s was
motivated by the need to model the top-down (semantic) and
bottom-up (perceptual) combination of evidence in reading. The
capability for bidirectional inferences, combined with a rigorous
probabilistic foundation, led to the rapid emergence of Bayesian
networks as the method of choice for uncertain reasoning in AI and
expert systems, replacing earlier, ad hoc rule-based schemes (Pearl,
1988; Shafer and Pearl, 1990; Jensen, 1996).

The nodes in a Bayesian network represent propositional vari-
ables of interest (e.g., the temperature of a device, the sex of a
patient, a feature of an object, the occurrence of an event) and the
links represent informational or causal dependencies among the
variables. The dependencies are quantified by conditional proba-
bilities for each node, given its parents in the network. The network
supports the computation of the probabilities of any subset of vari-
ables given evidence about any other subset.

Figure 1 illustrates a simple yet typical Bayesian network. It
describes the causal relationships among five variables: the season
of the year (X1), whether it’s raining or not (X2), whether the sprin-
kler is on or off (X3), whether the pavement is wet or dry (X4), and
whether the pavement is slippery or not (X5). Here, the absence of
a direct link between X1 and X5, for example, captures our under-
standing that there is no direct influence of season on slipperiness;

Bayesian Networks

appropriate with how likely each model would be to have generated
the data. This results in an elegant, general framework for fitting
models to data, which, however, may be compromised by com-
putational difficulties in carrying out the ideal procedure. There are
many approximate Bayesian implementations, using methods such
as sampling, perturbation techniques, and variational methods. Of-
ten these enable the successful approximate realization of practical
Bayesian schemes. An attractive, built-in effect of the Bayesian
approach is an automatic procedure for combining predictions from
several different models, the combination strength of a model being
given by the posterior likelihood of the model. In the case of mod-
els linear in their parameters, Bayesian neural networks are closely
related to Gaussian processes, and many of the computational dif-
ficulties of dealing with more general stochastic nonlinear systems
can be avoided.

Bayesian methods are readily extendable to other areas, in par-
ticular density estimation, and the benefits of dealing with uncer-
tainty are again to be found (see Bishop in Jordan, 1998). Tradi-
tionally, neural networks are graphical representations of functions,
in which the computations at each node are deterministic. In the
classification discussion, however, the final output represents a sto-
chastic variable. We can consider such stochastic variables else-
where in the network, and the sigmoid belief network is an early
example of a stochastic network (Neal, 1992). There is a major
conceptual difference between such models and conventional neu-
ral networks. Networks in which nodes represent stochastic vari-
ables are called graphical models (see BAYESIAN NETWORKS) and
are graphical representations of distributions (GRAPHICAL MOD-
ELS: PROBABILISTIC INFERENCE). Such models evolve naturally
from the desire of incorporating uncertainty and nonlinearity in
networked systems.

Road Map: Learning in Artificial Networks
Related Reading: Bayesian Networks; Gaussian Processes; Graphical

Models: Probabilistic Inference; Support Vector Machines
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Figure 1. A Bayesian network representing causal influences among five
variables. Each arc indicates a causal influence of the “parent” node on the
“child” node.
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the influence is mediated by the wetness of the pavement. (If freez-
ing is a possibility, then a direct link could be added.)

Perhaps the most important aspect of Bayesian networks is that
they are direct representations of the world, not of reasoning pro-
cesses. The arrows in the diagram represent real causal connections
and not the flow of information during reasoning (as in rule-based
systems and neural networks). Reasoning processes can operate on
Bayesian networks by propagating information in any direction.
For example, if the sprinkler is on, then the pavement is probably
wet (prediction); if someone slips on the pavement, that also pro-
vides evidence that it is wet (abduction, or reasoning to a probable
cause). On the other hand, if we see that the pavement is wet, that
makes it more likely that the sprinkler is on or that it is raining
(abduction); but if we then observe that the sprinkler is on, that
reduces the likelihood that it is raining (explaining away). It is this
last form of reasoning, explaining away, that is especially difficult
to model in rule-based systems and neural networks in any natural
way, because it seems to require the propagation of information in
two directions.

Probabilistic Semantics

Any complete probabilistic model of a domain must, either explic-
itly or implicitly, represent the joint distribution—the probability
of every possible event as defined by the values of all the variables.
There are exponentially many such events, yet Bayesian networks
achieve compactness by factoring the joint distribution into local,
conditional distributions for each variable given its parents. If xi

denotes some value of the variable Xi and pai denotes some set of
values for Xi’s parents, then P(xi | pai) denotes this conditional
distribution. For example, P(x4 | x2, x3) is the probability of wetness
given the values of sprinkler and rain. The global semantics of
Bayesian networks specifies that the full joint distribution is given
by the product

P(x , . . . , x ) � P(x | pa ) (1)1 n � i i
i

In our example network, we have

P(x , x , x , x , x )1 2 3 4 5

� P(x )P(x | x )P(x | x )P(x | x , x )P(x | x ) (2)1 2 1 3 1 4 2 3 5 4

Provided that the number of parents of each node is bounded, it is
easy to see that the number of parameters required grows only
linearly with the size of the network, whereas the joint distribution
itself grows exponentially. Further savings can be achieved using
compact parametric representations, such as noisy-OR models, de-
cision trees, or neural networks, for the conditional distributions.
For example, in sigmoid networks (see Jordan, 1999), the condi-
tional distribution associated with each variable is represented as a
sigmoid function of a linear combination of the parent variables;
in this way, the number of parameters required is proportional to,
rather than exponential in, the number of parents.

There is also an entirely equivalent local semantics that asserts
that each variable is independent of its nondescendants in the net-
work given its parents. For example, the parents of X4 in Figure 1
are X2 and X3, and they render X4 independent of the remaining
nondescendant, X1. That is,

P(x | x , x , x ) � P(x | x , x )4 1 2 3 4 2 3

The collection of independence assertions formed in this way suf-
fices to derive the global assertion in Equation 1, and vice versa.
The local semantics is most useful in constructing Bayesian net-
works, because selecting as parents all the direct causes of a given
variable invariably satisfies the local conditional independence
conditions (Pearl, 2000, p. 30). The global semantics leads directly
to a variety of algorithms for reasoning.

Evidential Reasoning
From the product specification in Equation 1, one can express the
probability of any desired proposition in terms of the conditional
probabilities specified in the network. For example, the probability
that the sprinkler is on, given that the pavement is slippery, is

P(X �on, X �true)3 5P(X �on | X �true) �3 5
P(X �true)5

P(x , x , X �on, x , X �true)� 1 2 3 4 5
x ,x ,x1 2 4

�
P(x , x , x , x , X �true)� 1 2 3 4 5

x ,x ,x ,x1 2 3 4

P(x )P(x | x )P(X �on|x )P(x | x , X �on)P(X �true | x )� 1 2 1 3 1 4 2 3 5 4
x ,x ,x1 2 4

�
P(x )P(x | x )P(x | x )P(x | x , x )P(X �true | x )� 1 2 1 3 1 4 2 3 5 4

x ,x ,x ,x1 2 3 4

These expressions can often be simplified in ways that reflect the
structure of the network itself. The first algorithms proposed for
probabilistic calculations in Bayesian networks used a local, dis-
tributed message-passing architecture, typical of many cognitive
activities (Kim and Pearl, 1983). Initially this approach was limited
to tree-structured networks, but it was later extended to general
networks in Lauritzen and Spiegelhalter’s (1988) method of join-
tree propagation. A number of other exact methods have been de-
veloped and can be found in recent textbooks (Jensen, 1996; Jor-
dan, 1999).

It is easy to show that reasoning in Bayesian networks subsumes
the satisfiability problem in propositional logic and, hence, is NP-
hard. Monte Carlo simulation methods can be used for approximate
inference (Pearl, 1988), giving gradually improving estimates as
sampling proceeds. (These methods use local message propagation
on the original network structure, unlike join-tree methods.) Alter-
natively, variational methods provide bounds on the true probabil-
ity (Jordan, 1999).

Uncertainty over Time
Entities that live in a changing environment must keep track of
variables whose values change over time. Dynamic Bayesian net-
works, or DBNs, capture this process by representing multiple cop-
ies of the state variables, one for each time step (Dean and Kana-
zawa, 1989). A set of variables Xt denotes the world state at time
t and a set of sensor variables Et denotes the observations available
at time t. The sensor model P(Et | Xt) is encoded in the conditional
probability distributions for the observable variables, given the
state variables. The transition model P(Xt�1 | Xt) relates the state
at time t to the state at time t � 1. Keeping track of the world,
known as filtering, means computing the current probability dis-
tribution over world states given all past observations, i.e., P(Xt |
E1, . . . , Et). Dynamic Bayesian networks include as special cases
other temporal probability models, such as hidden Markov models
(DBNs with a single discrete state variable) and Kalman filters
(DBNs with continuous state and sensor variables and linear Gaus-
sian transition and sensor models). For the general case, exact fil-
tering is intractable, and a variety of approximation algorithms have
been developed. The most popular and flexible of these is the fam-
ily of particle filtering algorithms (see Doucet, de Freitas, and Gor-
dan, 2001).

Learning in Bayesian Networks
The conditional probabilities P(xi | pai) can be updated continu-
ously from observational data using gradient-based or Expectation-
Maximization (EM) methods that use just local information derived
from inference (Binder et al., 1997; Jordan, 1999), in much the
same way as weights are adjusted in neural networks. It is also
possible to learn the structure of the network, using methods that
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trade off network complexity against degree of fit to the data (Fried-
man, 1998). As a substrate for learning, Bayesian networks have
the advantage that it is relatively easy to encode prior knowledge
in network form, either by fixing portions of the structure or by
using prior distributions over the network parameters. Such prior
knowledge can allow a system to learn accurate models from much
less data than are required by tabula rasa approaches.

Causal Networks

Most probabilistic models, including general Bayesian networks,
describe a distribution over possible observed events, as in Equa-
tion 1, but say nothing about what will happen if a certain inter-
vention occurs. For example, what if I turn the sprinkler on? What
effect does that have on the season, or on the connection between
wetness and slipperiness? A causal network, intuitively speaking,
is a Bayesian network with the added property that the parents of
each node are its direct causes, as in Figure 1. In such a network,
the result of an intervention is obvious: the sprinkler node is set to
X3 � on, and the causal link between the season X1 and the sprin-
kler X3 is removed. All other causal links and conditional proba-
bilities remain intact, so the new model is

P(x , x , x , x , x ) �1 2 3 4 5
P(x )P(x | x )P(x | x , X � on)P(x | x )1 2 1 4 2 3 5 4

Notice that this differs from observing that X3 � on, which would
result in a new model that included the term P(X3 � on|x1). This
mirrors the difference between seeing and doing: after observing
that the sprinkler is on, we wish to infer that the season is dry, that
it probably did not rain, and so on; an arbitrary decision to turn the
sprinkler on should not result in any such beliefs.

Causal networks are more properly defined, then, as Bayesian
networks in which the correct probability model after intervening
to fix any node’s value is given simply by deleting links from the
node’s parents. For example, fire r smoke is a causal network,
whereas smoke r fire is not, even though both networks are equally
capable of representing any joint distribution on the two variables.
Causal networks model the environment as a collection of stable
component mechanisms. These mechanisms may be reconfigured
locally by interventions, with correspondingly local changes in the
model. This, in turn, allows causal networks to be used very nat-
urally for prediction by an agent that is considering various courses
of action (Pearl, 2000).

Functional Bayesian Networks

The networks discussed so far are capable of supporting reasoning
about evidence and about actions. Additional refinement is neces-
sary in order to process counterfactual information. For example,
the probability that “the pavement would not have been slippery
had the sprinkler been OFF, given that the sprinkler is in fact ON
and that the pavement is in fact slippery” cannot be computed from
the information provided in Figure 1 and Equation 1. Such coun-
terfactual probabilities require a specification in the form of func-
tional networks, where each conditional probability P(xi|pai) is re-
placed by a functional relationship xi � fi( pai, �i), where �i is a
stochastic (unobserved) error term. When the functions fi and the
distributions of �i are known, all counterfactual statements can be
assigned unique probabilities, using evidence propagation in a
structure called a “twin network.” When only partial knowledge
about the functional form of fi is available, bounds can be computed
on the probabilities of counterfactual sentences (Pearl, 2000).

Causal Discovery

One of the most exciting prospects in recent years has been the
possibility of using Bayesian networks to discover causal structures

in raw statistical data (Pearl, 2000)—a task previously considered
impossible without controlled experiments. Consider, for example,
the following intransitive pattern of dependencies among three
events: A and B are dependent, B and C are dependent, yet A and
C are independent. If you ask a person to supply an example of
three such events, the example would invariably portray A and C
as two independent causes and B as their common effect, namely,
A r B R C. (For instance, A and C could be the outcomes of tossing
two fair coins, and B could represent a bell that rings whenever
either coin comes up heads.) Fitting this dependence pattern with
a scenario in which B is the cause and A and C are the effects is
mathematically feasible but very unnatural, because it must entail
fine tuning of the probabilities involved; the desired dependence
pattern will be destroyed as soon as the probabilities undergo a
slight change.

Such thought experiments tell us that certain patterns of depen-
dency, which are totally void of temporal information, are concep-
tually characteristic of certain causal directionalities and not others.
When put together systematically, such patterns can be used to infer
causal structures from raw data and to guarantee that any alternative
structure compatible with the data must be less stable than the
one(s) inferred; namely, slight fluctuations in parameters will ren-
der that structure incompatible with the data.

Plain Beliefs

In mundane decision making, beliefs are revised not by adjusting
numerical probabilities but by tentatively accepting some sentences
as “true for all practical purposes.” Such sentences, called plain
beliefs, exhibit both logical and probabilistic character. As in clas-
sical logic, they are propositional and deductively closed; as in
probability, they are subject to retraction and can be held with
varying degrees of strength. Bayesian networks can be adopted to
model the dynamics of plain beliefs by replacing ordinary proba-
bilities with nonstandard probabilities, that is, probabilities that are
infinitesimally close to either zero or one (Goldszmidt and Pearl,
1996).

Discussion

Bayesian networks may be viewed as normative cognitive models
of propositional reasoning under uncertainty. They handle noise
and partial information using local, distributed algorithms for in-
ference and learning. Unlike feedforward neural networks, they fa-
cilitate local representations in which nodes correspond to propo-
sitions of interest. Recent experiments suggest that they accurately
capture the causal inferences made by both children and adults
(Tenenbaum and Griffiths, 2001). Moreover, they capture patterns
of reasoning, such as explaining away, that are not easily handled
by any competing computational model. They appear to have many
of the advantages of both the “symbolic” and the “subsymbolic”
approaches to cognitive modeling, and are now an essential part of
the foundations of computational neuroscience (Jordan and Se-
jnowski, 2001).

Two major questions arise when we postulate Bayesian networks
as potential models of actual human cognition. First, does an ar-
chitecture resembling that of Bayesian networks exist anywhere in
the human brain? At the time of writing, no specific work has been
done to design neurally plausible models that implement the re-
quired functionality, although no obvious obstacles exist. Second,
how could Bayesian networks, which are purely propositional in
their expressive power, handle the kinds of reasoning about indi-
viduals, relations, properties, and universals that pervade human
thought? One plausible answer is that Bayesian networks contain-
ing propositions relevant to the current context are constantly being
assembled, as needed, from a more permanent store of knowledge.
For example, the network in Figure 1 may be assembled to help



160 Part III: Articles

explain why this particular pavement is slippery right now, and to
decide whether this can be prevented. The background store of
knowledge includes general models of pavements, sprinklers, slip-
ping, rain, and so on; these must be accessed and supplied with
instance data to construct the specific Bayesian network structure.
The store of background knowledge must utilize some represen-
tation that combines the expressive power of first-order logical lan-
guages (such as semantic networks) with the ability to handle
uncertain information. Substantial progress has been made on con-
structing systems of this kind (Koller and Pfeffer, 1998), but as yet
no overall cognitive architecture has been proposed.

Road Maps: Artificial Intelligence; Learning in Artificial Networks
Related Reading: Bayesian Methods and Neural Networks; Decision Sup-

port Systems and Expert Systems; Graphical Models: Probabilistic
Inference
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