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Abstract 

Testing the validity of probabilistic models 
containing unmeasured (hidden) variables is
shown to be a hard task. We show that 
the task of testing whether models are struc­
turally incompatible with the data at hand, 
requires an exponential number of indepen­
dence evaluations, each of the form: "X is 
conditionally independent of Y, given Z ." In 
contrast, a linear number of such evaluations 
is required to test a standard Bayesian net­
work (one per vertex). On the positive side, 
we show that if a network with hidden vari­
ables G has a tree skeleton, checking whether 
G represents a given probability model P 
requires the polynomial number of such in­
dependence evaluations. Moreover, we pro­
vide an algorithm that efficiently constructs a 
tree-structured Bayesian network (with hid­
den variables) that represents P if such a net­
work exists, and further recognizes when such 
a network does not exist. 

1 Introduction 

Bayesian Networks possess several desirable properties 
for representing uncertain knowledge, especially in sys­
tems that perform diagnosis and forecasting. One such 
property is the ability to encode and update prob­
abilistic knowledge economically, using modular rep­
resentation and distributed computations. Another 
property is the ability to represent causal knowledge 
of the domain in a way that supports a wide vari­
ety of inferences, including prediction, abduction and 
the control of actions. A third property, which is the 
central topic of this paper, is the possibility of model 
validation, namely, testing by objective measurements 
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whether a Bayesian network, constructed by a domain 
expert accurately represents the target domain. Much 
of the basic work on Bayesian networks can be found 
in [Pe88J, and more recent advances are summarized
in [Pe93a, Pe93b]. 
The appeal of the Bayesian network model has 
prompted researchers to suggest several useful exten­
sions one of which is Embedded Bayesian Networks ( e­
BN) [PV91]. E-BNs enhance the language of Bayesian
networks by allowing bidirected edges in addition to 
the directed edges permitted in Bayesian networks; 
each bidirected edge represents a pair of variables that 
are correlated but have no causal influence on each 
other. Such symmetrical correlations normally em­
anate from causal factors which the analyst chooses to 
exclude from formal analysis, either because they lie 
beyond the scope of the domain, or because they are 
inaccessible to direct measurement. In this paper, we 
address the task of validating Embedded Bayesian net­
works subject to the constraint that all causal factors 
responsible for the bidirected arcs are unobservable. 

Model validation involves two subtasks; validating the 
qualitative graph structure provided by the expert and 
validating the numerical parameters associated with 
the edges of the graph. Each parameterized graph 
structure defines a joint probability distribution on the 
observed variables which, in principle, can be tested for 
compatibility with the observed data. A graph struc­
ture is said to be valid if it can be parameterized so 
as to define a probability distribution compatible with 
an observed distribution P. 1 

When the structure is valid, then iterative learning 
technique can be employed for tuning the parameters 
so as to fit a given stream of empirical observations 
[La91] . However, if the structure itself is erroneous, no
parameter tuning can ever render the model compat­
ible with the data. We, therefore focus our attention 
on the task of validating the structure of an embedded 
Bayesian network . 

1We assume that the entire distribution P is observed 
directly, which is a good approximation when the sample 
size is large. 
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Testing structural validity of an e� BN is much harder 
than that of a Bayesian network. In BN, the values of 
all parameters are uniquely determined from the ob­
served distribution P by mere projection and, so, we 
can test for structural validity by checking whether the 
parameterized structure defines a probability distribu­
tion compatible with the observed data. Alternatively, 
a BN is known to be valid if and only if all the inde­
pendencies implied by the BN hold in the observed 
distribution P and, moreover, this matching of inde­
pendencies can be verified by testing a linear number 
of conditional independence statements (one per ver­
tex). 

Things are different in e-BNs. First, the set of pa­
rameters defining an e-BN model cannot be obtained 
by projection. Moreover, the domain of the hidden 
variables may be unbounded or undefined, so one can­
not test model validity by first fitting parameters (say 
by maximum-likelihood techniques) and then testing 
the resulting model for agreement with P. Second, 
matching independencies is a necessary but not suf­
ficient condition for e-BN validity. In other words, 
even if all independencies implied by the structure of 
a given e-BN hold in a distribution P, it is still possible 
that the e-BN is incapable of generating P (see [Verma 
and Pearl 1991) for a counterexample). Finally, while 
matching independencies could serve as a potentially 
quick way of screening invalid models, it is not clear 
how one would test the validity of all independencies 
in a given e-BN, because, in principle, the number of 
(X, Y, Z) triplets to be tested is exponential with the 
number of vertices . 

This last problem is the central theme of our paper to 
which we find a negative result. We prove that given 
an embedded Bayesian network G, checking whether 
G faithfully represents independencies of an empiri­
cal distribution P, requires a number of evaluations of 
independence statements, each of the form: "X is con­
ditionally independent of Y, given that we observe Z", 
which grows exponentially in the number of vertices. 
This result is rather surprising since for Bayesian net­
works this task requires only a linear number of such 
evaluations. Obviously, to verify even one indepen­
dence statement that contains n variables requires to 
verify an exponential number of equalities, however, 
when the number of parents of each vertex is a fixed 
constant, then a linear number of statements can be 
verified by a linear number of hypothesis tests one per 
equality. 

Notably, our negative result (Theorem 4) does not ex­
clude the possibility that given additional properties 
of P which are not shared by all probability models, a 
test of independence will be devised which requires 
only a polynomial number of independence evalua­
tions. Consequently, it is advisable to consider proba­
bility distributions which are faithful [SV92] for which 
a test of independence may still be feasible. 

On the positive side, we show that if G has a tree 
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skeleton, checking whether G represents P requires 
the evaluation of only polynomial number of indepen­
dence assertions. Moreover, we provide an algorithm 
that efficiently constructs a tree-structured embedded 
Bayesian network that represents P if such a network 
exists, and further recognizes when such a network 
does not exist. 

2 Preliminaries 

Let U be a finite set of variables { u1 ... Un } and let the 
domain of each Ui be d( u;) . A probability model over
U is a probability distribution of the form P : d( ul ) x 

... x d(un) --+ [0, 1) where each d(u;), i = 1, .. . , n, 

is a finite set. The class of probability models over 
U is denoted by P. A probability model over U is 
strictly-positive if every combination of U's values has 
a probability greater than zero. The class of strictly­
positive probability models is denoted by p+. Note 
that p+ � P. 

An expression !(X, Z, Y) where X # 0, Y # 0, and 
Z (possibly empty) are disjoint subsets of a finite set 
U is called an independence statement. A set of inde­
pendence statements is called a dependency model. An 
independence statement I( X, Z, Y) is said to hold for 
a probability model P if for every value X, Y, and Z 
of X, Y, and Z, respectively, 

P(X, Y, Z) · P(Z) = P(X, Z) · P(Y, Z). (1) 
The set of statements that hold for P is denoted by 
M(P) and is called the dependency model induced by
P. 
When !(X, Z, Y) E M(P), then X and Y are condi­
tionally independent relative to P, and if in addition 
Z = 0, then X and Y are marginally independent rel­
ative toP. 

Eqs. (2) through (5) below are properties of condi­
tional independence that hold for every probability 
model and Eq. (6) is a property that holds for every 
strictly positive probability model. Variants of these 
properties were first introduced by Dawid (1979) and 
further studied by Spohn (1980), Pearl and Paz (1985), 
Pearl (1988), and Geiger (1990). 

Symmetry 

I( X, Z, Y):::} I(Y, Z, X) (2) 
Decomposition 

Contraction 

!(X, Z, Y U W) � !(X, Z, Y) (3) 

I( X, Z, Y) & I( X, Z U Y, W) �I( X, Z, Y U W) (4) 

Weak-union 

I( X, Z, Y U W) � I( X, Z U W, Y) (5) 

Intersection 

I( X, ZUW, Y )&I(X, ZUY, W) => I(X, Z, YUW) (6) 



246 Geiger, Paz, and Pearl 

The interpretation of each of these properties is 
straight forward. For example, Weak-union states that 
if X, Y, Z, and W are sets of variables such that 
I( X, Z, Y U W) is in M(P) for some probability model 
P, then I( X, ZUW, Y) must also be in M(P). In other 
words, according to Weak-union, if X and Y U W are 
conditionally independent given Z is known, then X 
and Y are conditionally independent given Z U W is 
known. 

Every dependency model that satisfies Eqs . (2) 
through (5) is called a graphoid. Hence, every prob­
ability model induces a graphoid. A Bayesian net­
work and the corresponding d-separation criteria, de­
fined below, is another example of a dependency model 
which is a graphoid .  A graphoid defined by a Bayesian 
network usually serves to represent graphoids induced 
by probability models. 

The primary advantage of a Bayesian network is that it 
allows a wide spectrum of independence assumptions 
to be conveniently considered by a model builder so 
that a practical balance can be established between 
computational needs and adequacy of conclusions. We 
now give a definition of a Bayesian network. 

A dag (directed acyclic graph) is a directed graph with 
no parallel edges and no directed cycles. A trail in a 
dag is a subgraph whose underlying graph is a path 
in which no vertex appears twice. A vertex b is called 
a sink on a trail t if there exist two consecutive edges 
a - b and b +-- c on t . A trail t is active by a set of 
vertices Z if ( 1) every sink with respect tot either is in 
Z or has a descendant in Z and (2) every other vertex 
along t is outside Z. A trail is said to be blocked by 
Z if it is not active by Z. An independence statement 
I(X, Z, Y) holds in D if X, Y, and Z are disjoint sub­
sets of vertices, and every trail between an element in 
X and an element in Y is blocked by Z. The set of all 
independence statements that hold in D are denoted 
by M(D). The set M(D) is called the dependency 
model induced by D. A dag D is an !-map of a prob­
ability model over U if I( X, Z, Y) E M(D) implies 
I( X, Z, Y) E M(P). A dag D is a minimal !-map of 
P if whenever an edge is removed from D, the result­
ing dag is not anI-map of P. A dag D = (U, E) is a 
Bayesian network of a probability model P over U 
if Dis a minimal I-map of P. 

Lemma 1 ([Pe88]) A dependency model induced by 
a dag is a graphoid. 

Bayesian networks as defined above would have re­
mained merely interesting mathematical objects un­
less an efficient procedure existed for testing whether 
a given dag is an I-map of a probability model. Since 
such a procedure does exist [Pe88), it became possible 
to construct a dag from causal knowledge and then test 
whether the dag constructed actually reflects reality as 
sensed by measured data. 

A known example of a Bayesian network is given in 
Figure 1. It is depicted using the assertions that a 

Earthquake 0 0 Burglary 

Radio c{ v Ala<m 

Figure 1 

Burglary (B) and an Earthquake (E) may each ac­
tivate an Alarm (A) and that Radio announcement 
( R) may follow an earthquake. Examining the de­
pendency model induced by this dag we see, for ex­
ample, that Br = {I(B, 0, E),I(R, E, {A, B})} is a 
subset of M(D). The first statement asserts that bur­
glaries and earthquakes are independent. The second 
statement asserts that once an earthquake is known 
to happen or not to happen with certainty, whether 
or not a radio announcement is broadcasted is in­
dependent of both the alarm system and a burglary 
occurrence. Suppose P(B, E, A, R) is a probability 
model describing the 16 possible outcomes, then one 
can test whether I(B, 0, E) E M(P) and whether 
I(R, E, {A, B})} � M(P). If it is not the case, ad­
ditional edges, such as an edge from E to B, could be 
added to reflect reality more accurately. 

Pearl and Verma [PV91] show that if Br � M(P), 
then M(D) � M(P) and therefore D is an 1-map of 
P. In fact , each dag defines a linear-sized set like Br, 
called a recursive basis, such that Br � M(P) im­
plies M(D) � M(P). Thus, 1-mapness can be tested 
efficiently. Furthermore, Pearl and Verma show that 
M(D) is precisely the set of statements that can be 
derived from a recursive basis by repeated application 
of Eqs. (2) through (5). For example, by applying, 
Decomposition, Symmetry, and Contraction one can 
derive I(B,0,R) E M(D) from Br. It is worthy to 
mention that the definition of active trails cannot be 
enhanced because every statement entailed from a re­
cursive basis can be derived using Eqs. (2) through (5) 
[GVP90]. 

3 Embedded Bayesian Nets 

In real-life applications each edge in a Bayesian net­
work is usually directed from cause to effect . However, 
two variables are often correlated without having a 
causal influence of one on the other. Such a situation 
arises when a latent variable, not modeled by the net­
work, is a common cause of the two observable vari­
ables. Embedded Bayesian networks, defined below, 
encode such a situation with a bidirected edge , x +-+ y. 
Each such edge is equivalent to a trail x +- a - y in 
a Bayesian network in which the variable a is latent 
(unobservable) .  For example, two symptoms x andy 
of a disease a can be modeled by the network x +--+ y. 



An embedded directed graph is a graph with two types 
of edges: directed edges, x-+ y, and bidirected edges, 
x +4 y. A path a1, . . . , an is directed from a1 to an 
if each edge (ai, ai+l ) is a directed edge from a; to 
ai+l· A directed cycle is a directed path where a1 = an. 
An E-dag is an embedded directed graph that has no 
parallel edges and no directed cycles. A descendant 
y of a vertex x is any vertex such that there exists 
a directed path from x to y. A trail in a dag is a 
subgraph whose underlying graph is a path in which 
no vertex appears twice. A vertex b is called a sink 
on a trail t if there exist two consecutive edges (a, b) 
and (b, c) on t such that none of these two edges is a 
directed edge that points away from b. (If b is incident 
with only one edge on t, then b is not a sink). A trail 
t is active by a set of vertices Z if (1) every sink on t 
either is in Z or has a descendant in Z and (2) every 
other vertex along t is outside Z. A trail is said to be 
blocked by Z if it is not active by Z. 

An independence statement I(X, Z, Y) holds in an E­
dag G if X, Y, and Z are disjoint subsets of vertices, 
and every trail between an element in X and an ele­
ment in Y is blocked by Z. The set of independence 
statements that hold in an E-dag G are denoted by 
M(G). The set M(G) is called the dependency model 
induced by G. An E-dag G is an !-map of a prob­
ability model over U if l(X, Z, Y) E M(D) implies 
I( X, Z, Y) E M(P). An E-dag G is a minimal !­
map of P if whenever an edge is removed from G, 
the resulting E-dag is not an 1-map of P. An E-dag 
G = (U, E) is an Embedded Bayesian network of a 
probability model P over U if G is a minimal I-map of 
P. 

Similar to dags, we have: 

Lemma 2 A dependency model induced by an E-dag 
is a graphoid. 

Proof. Let D be an E-dag and let D1 be a dag formed 
from D by replacing each bidirected edge x +4 y with a 
new vertex a and two directed edges a -+ x and a -+ y. 
It is easy to verify that whenever X, Y and Z are 
disjoint sets of vertices of D, then I( X, Z, Y) E M(D) 
if and only if I(X, Z, Y) E D'. The lemma now follows 
directly from Lemma 1. 0 

In order to check whether G is an I-map of P one could 
naively test that each element of M(G) is in M(P). We 
call each such test a membership test. Analogously to 
what we have claimed in the previous section for dags, 
one can check whether an E-dag G is an I-map of P 
using less than IM(G)I membership tests. The rest of 
this section shows how. 

A set of statements 1: entails a set of statements r 
if for every probability model P, E � M(P) implies 
f � M(P). The set 1: positively entails r if for ev­
ery strictly-positive probability model P, 1: � M(P) 
implies r � M(P). A set B � M(G) is called a proba­
bilistic basis of an E-dag G if B entails M (G). The set 
B is a minimum probabilistic basis if there exists no 
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other probabilistic basis B' of G satisfying IB'I < IBI. 

Lemma 3 Let B be a basis of an E-dag G and let P 
be a probability model. If B � M(P), then M(G) � 
M(P). 

Proof. The proof follows from the definition of entail­
ment where I: =  B and f = M(G). D 

Lemma 4 Let B be a minimum basis of an E-dag 
G and let P be a probability model. The number of 
membership tests needed in order to determine whether 
M(G) � M(P) is equal to IBI . 

Proof. Let k be the smallest number of membership 
tests needed in order to determine whether M(G) � 
M(P). First we show that k ::; IB\. If B � M(P), 
then M(G) � M(P) because B is a probabilistic basis 
of G (Lemma 3). Testing whether B � M(P) requires 
at most IBI membership tests-one for each statement 
in B. Thus k ::; IBI. Next we show that k � \BI which 
implies the claim. 

Let R � M (G) be a smallest set of independence 
statements upon which the assertion M(G) � M(P) 
is made. By the definition of k, IRI = k. Further­
more, R is a probabilistic basis of G because otherwise 
M(G) � M(P) cannot have been asserted. Since IBI 
is a minimum basis, k 2. IBI. D 

We note that a recursive basis of a dag is in fact a 
probabilistic basis of at most n statements-one per 
vertex in G. Hence, according to Lemma 4, testing 
whether a dag is an 1-map of a probability model P 
requires only n membership tests. This property of 
having a poly-sized basis, as we show in the next sec­
tion, does not extend to E-dags, and thus, the number 
of membership tests needed in order to check whether 
an E-dag G is an I-map of some probability model P 
may grow exponentially in the number of vertices of 
G. 

This result is rather discouraging because it says that 
if the number of variables is large enough and some 
variables are unobservable, then one cannot verify in 
reasonable time that a given causal description is cor­
rect by simply observing the world. In Section 5 we 
show that some E-dags can be verified using a polyno­
mial number of membership tests. 

To prove the non-existence of a poly-sized basis in 
some E-dags we need the following completeness the­
orem concerning independence statements of the form 
I( X, 0, Y) which we call marginal statements. 

Theorem 1 ([GPP91]) Let B be a set of marginal 
statements and let B* be the set of all marginal state­
ments that B entails. Then u E B* if and only if u 

can be derived from B by repeated applications of the 
following properties: 

M-symmetry 

I(X, 0, Y) :::? J(Y, 0, X) (7) 
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M-decomposition 

I( X, 0, Y U W)::} I( X, 0, Y) 

M-mixing 

(8) 

I( X, 0, Y) & !(XU Y, 0, Z)::} !(X, 0, Y u Z) (9) 

This theorem states that the above three properties, 
which are satisfied by any graphoid (M-Mixing is de­
rived from Weak-union and Contraction), are sound 
and complete for the set of probability models P; Ev­
ery marginal statement that is entailed can be derived 
and vice versa. Theorem 1 remains correct when B* 
is redefined to be the set of statements positively en­
tailed by B. Thus, strictly-positive probability models 
do not share any property for marginal statements that 
is not already shared by all probability models. 

4 Verifying Embedded Bayesian Nets 

We now construct a sequence of E-dags, G�:, k 2: 1, 
such that each Gk has 2k + 2 vertices and the cardi­
nality of any of G k 's probabilistic bases is larger or 
equal to 21:. Consequently, due to Lemma 4, testing 
whether Gk is an I-map of a given probability model 
P requires a number of membership tests that grows 
exponentially in the number of vertices. 

We define G k as follows. The vertices of G k are CUD 
where C == {c0,c1, ... ,ck} and D = {d0,d1 ... ,dk}. 
All edges in Gk are bidirected. All vertices in C are 
connected with a bidirected edge to each other and 
all vertices in D are connected with a bidirected edge 
to each other. That is, C and D are cliques. For 
i = 1 . . . k (but not for i=O), c; and d; are connected 
with a bidirected edge. 

Theorem 2 If I(X, Z, Y) E M(Gk), then there exists 
a partition Z', zu of Z, such that I(XUZ', 0, YUZ") E 
M(Gk)· 

Proof. Suppose <r = I(X, Z, Y) E M(Gk)· The state­
ment <r has the form I(X, C' U D', Y) where C' � C, 
and D' �D. It cannot be the case that both XnC # 0 
andY n C # 0 because any two vertices inC are con­
nected with an edge. Similarly, it cannot be the case 
that both X n D # 0 andY n D =/; 0. Suppose now, 
with out loss of generality, that X n D = 0. Hence, 
since X is not the empty set, X n C # 0, and there­
fore, Y n C = 0. So <r has the form I( C", C' U D', D") 
where C11 C C and D' C D. The set C' U D' con­
tains no p�r (ci, d;), i j. 0, because otherwise each 
element x E C11 would be connected to each element 
y E D11 via the active trail x <---> c; ....... d; <---> y. 
Similarly, the set C" U D' contains no pair (c;, d;), 
i # 0, because otherwise c; E C" would be con­
nected to each element y E D" via the active trail 
c; <-+ d; <---> y. Thus, I({c},0,{d}) E M(Gk) for 
every c E C' U C" and for every d E D'. Hence, 
I(C' U C", 0, D') E M(Gk)· Symmetric arguments im­
ply I(D' U D11, 0, C') E M(G�<)· The last two state-

ments together with I(C", C' U D', D") E M(Gk) de­
rive I(C' UC", 0, D' U D") E M(Gk), using Symmetry, 
Weak-union and Contraction, and so, {C', D'} is the 
desired partition of Z. 0 

Theorem 3 Every probabilistic basis B of Gk satis­
fies IBI 2: 21:. 

Proof. First we show that it is sufficient to prove this 
theorem for probabilistic bases that consist solely of 
marginal statements. 

Suppose B is a probabilistic basis of G k and let 0' = 
I( X, Z, Y) be a statement in B. According to Theo­
rem 2, there exists a partition Z', Z" of Z, such that 
O'm = I(X U Z', 0, Y U Z") is in M(G�:). Note that 
O'm entails <r due to Symmetry and Weak-union. Let 
Bm be a set of marginal statements obtained by re­
placing each statement <r in B with a statement <Tm 
of the form just defined. It follows that Bm entails B 
and that IBm I= IBI. Consequently, Bm is a basis that 
has the same size of B. Hence, if every probabilistic 
basis consisting solely of marginal statements satisfy 
IB I > k ,  then every probabilistic basis satisfies this 
inequality as well. 

Next we define a set T of marginal statements of size 
2k and show that every probabilistic basis that consists 
solely of marginal statements must have a size larger 
than ITI. Recall that the vertices in G�: are CUD. 
Let T be the set of all marginal statements having the 
form I( {co} U C', 0, {do} U D') where C' � C \{co}, 
D' � D \ { d0}, and C' U D' contains precisely one 
vertex of each pair { Ci, di}, i = 1 .. . k. Note that the 
cardinality of T is indeed 2�< and that T � M(Gk) 
because each trail between a vertex in {co} U C' and a 
vertex in { d0} U D' contains a vertex that is a sink on 
that trail. 

Let B be a probabilistic basis of G k that consists solely 
of marginal statements. Since T � M(G�:) and B is 
a basis, it follows that B entails T. Due to the com­
pleteness theorem 1, B entails T if and only iffor each 
0' E T, there exists a derivation of <r from B using M­
symmetry, M-decomposition and M-mixing. Let 0' be 
any statement in T such that 0' has a derivation chain 
from B of length l. Define the symmetric image of 
a statement I(X, 0, Y) to be the statement I(Y, 0, X). 
We now prove by induction on l that either <r E B 
or the symmetric image sym(<r) of <r is in B. Conse­
quently, IBI 2: ITI 2: 2" which proves the Theorem. 

The case 1 = 0 is trivial; a derivation chain of length 
zero means that <r E B. Assume the inductive claim 
holds for l :::; s. Let <r E T be a statement whose short­
est derivation chain has a length of s + 1. At the last 
derivation step either M-symmetry, M-decomposition 
or M-mixing where used. We consider each case sepa­
rately. If <r is derived from 0'1 by Symmetry, then <r1 is 
the symmetric image of <r. By the induction hypoth­
esis, either 0'1 or sym( <r') is in B. Hence, either <r or 
sym( <r) is in B as well. Next suppose <r is derived by 
decomposition from <r1• If 0'1 has the same number of 



vertices as (1, then (1 and (11 are the same statements 
and therefore by the induction hypothesis, either (11 or 
sym((11) is in B. Hence, either (1 or sym((1) is in B as 
well. However, the number of vertices in (11 cannot be 
strictly greater than that in (1; Assume it were greater. 
Then (11 is not in M(G) because the addition of any 
vertex to a statement in T creates an active trail since 
for some i, c; would belong to C1 and d; would belong 
to D1• But (11 is derived from a probabilistic basis 
of Gk using properties that hold in every E-dag, and 
therefore, (11 must be in M(G). Contradiction. 

F inally, suppose (1 = I({co}UC1,0,{d0} U D1) is 
derived using Mixing from two previous statements 
in the derivation chain 11 = I(U, 0, V) and 12 = 
I(U U V, 0, W). Both 1'1 and 1'2 must be in M(G�c) 
because they were derived from a probabilistic basis 
of G�c using properties that hold in every E-dag. If M­
mixing is applied, the resulting statement has the form 
I(U, 0, V U W) where V U W equals {do} U D'. Thus , 
either V or W must be empty or else I(U U V, 0, W) f/:. 
M(G�c). Consequently, either /l = (1 or r2 = (1. Thus, 
by the induction hypothesis, (1 or sym((1) is in B. 0 

We have thus derived the main claim of this section. 

Theorem 4 Testing whether an E-dag G is an !-map 
of a probability model P requires, in the worst case, a 
number of membership tests that grows exponentially 
in the number of vertices of G. 

Proof Consider the E-dags Gk. k � 1. According 
to Theorem 3, each basis B of G�c , in particular a 
minimum basis, satisfies IBI ;::: 2" where 2k + 2 is the 
number of vertices in G�c. Lemma4 shows that IBI is 
the required number of membership tests, thus proving 
the claim. 0 

5 Verifying Embedded Bayesian Trees 

An E-tree is an E-dag whose underlying graph is a tree. 
In this section we show that each E-tree has a proba­
bilistic basis of a polynomial size and that such a basis 
can be easily found. Hence according to Lemma 4 
testing whether an E-tree is an I-map of a probabil­
ity model P can be done using polynomial number of 
membership tests. 

Let T = (U, E) be an arbitrary E-tree. Let x be a 
vertex in T. Let s1, . . •  , s1 be the set of vertices such 
that there exists a directed edge from each s; to x. 

Let q1, ... , qk be all other vertices in T which are con­
nected to x with an edge. Let S; be the set of vertices 
such that for each y E 5; the single trail connecting y 
with x passes through s;. Similarly, let Q; be the set 
of vertices such that for each y E Q; the single trail 
connecting y with x passes through q;. 

The set of all vertices in T is denoted by U. For each 
vertex x in T and for each si let (1f = I(Si, {x}, U\5; \ 
{x}). For each q£, let 1f = I(Q; , 0 , Ri) where Rf is 
set of all vertices that are not descendants of x and are 

Testing Embedded Bayesian Networks 249 

not in Q;. Let Br be the union over all vertices x in T 
of the set { (1f, 1j I i = 1 ... 1, j = 1 ... k}. Clearly the 
size of Br is no greater than n2 where n is the number 
of vertices in T because l + k, the number of edges 
adjacent with x, is less or equal to n. Furthermore, 
Br t;;;; M(T). 
The rest of this section shows that Br is a probabilistic 
basis ofT. Consequently, in order to test whether Tis 
an I-map of some probability model Pone must merely 
test that Br t;;;; M(P) using at most n2 membership 
tests. 

A statement I(X, Y, Z) is simple if X and Y are sin­
gletons. The set of independence statements that 
can be derived from a statement (1 using Weak-union 
and Decomposition is denoted by A((1). (Note that 
(1 E A( (1)) . The set of all simple statements in A( (1) is 
denoted by A. ( (1). 

Lemma 5 Let (1 be an independence statement and 
P be a probability model. If A,((1) t;;;; M(P), then (1 E 
M(P). 

Proof. Let (1 = I(X, Z, Y) and let (11 = I(X1, Z1, Y') 
be an element of A((1). We prove by induction on the 
size of X1UY1 that if A,((1) t;;;; M(P), then (11 E M(P). 
Since (1 is in A( (1), it follows from this induction that 
u E M(P). Induction basis: If IX' U Y'I = 2, then (11 is 
in A,((1) and hence in M(P) as well. Induction step: 
Assume that all (11 in A.((!') with IX' U Y11 ::=; k are in 
M(P) and let (111 = I( X", Z", Y") be a statement in 
A,(e1) withY"= Y' U {a}, a is a singleton and IX" U 
Y(ll = k+ 1. Consider the statements O"r = I(X", Z"U 
{a}, Y1) and (1� = I(X", Z", {a}). Both (1�1 and (1� can 
be derived by Weak-union and Decomposition from (111 
which is either equal to (1 or can be derived from (1 by 
Weak-union and Decomposition. Thus (1� and (1� can 
be derived from (1 by Weak-union and Decomposition 
and are therefore in A( (1). But I X" U {a} I ::=; k and 
IX" U Y11 ::=; k so that, by the induction hypothesis, 
both (1�1 and (1� are in M(P). Finally(!'" can be derived 
from (1� and (1� by Contraction and M ( P) is closed 
under Contraction thus implying that (111 is in M(P). 
A similar argument proves the symmetric case when 
X"= X' U {a} and IX" UY"I = k + 1. D 

Lemma 6 Let D be an E-D A G and let P be a proba­
bility model. If all the simple statements in M(D) are 
in M(P) then M(D) � M(P). 

Proof. If (1 E M(D), then A,((1) E M(D) be­
cause, according to Lemma 2, M(D) is closed un­
der Decomposition and Weak-union. If all the simple 
statements in M(D) are in M(P), then in particular 
A,(a) E M(P). Hence, by Lemma 5, (1 E M(P). 
Thus, M(D) � M(P). D 

The next theorem shows that Br is a probabilistic 
basis ofT. 

Theorem 5 Let T be an E-tree and P be a probability 
model. Then, Br t;;;; M(P) implies M(T) � M(P). 
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Proof. Let u = I({a},Z, {b}) be an arbitrary simple 
statement in M(T). We will show that if Br <;;; M(P), 
then I({a},Z,{b}) E M(P). Consequently, due to 
Lemma 6, M(T) <;;; M(P) which is what we need to 
show. Since T is a tree, there is a unique trail t in T 
connecting a with b. Since this trail is blocked by Z, 
there are two cases to consider. Either (1) some sink x 
on t and all x's descendants are not in Z, or (2) some 
vertex z that is not a sink on t is in Z. 

If the first case occurs then consider the independence 
statement u' = I( Q;, 0, Rf) E BT where a E Q; and 
b E Rf . Such a statement exists in BT according to 
BT 's definition. Furthermore, Rf does not contain x 
or any of x's descendants and nor does Q;. Thus, Z � 
Q;URf. The statement u is therefore derivable from (!'1 

by Symmetry, Decomposition, and Weak-union which 
hold for M(P). Hence, if BT <;;; M(T), then (!' is in 
M(P). 

If the second case occurs then consider the indepen­
dence statement u1 = I(S;, { x}, U \ S; \ { x}) which by 
definition is in BT where a E S; and b E U \ S; \ { x}. 
Recall that all vertices of T appear in (!'1• Thus, if 
BT <;;; M(P), then (!' E M(P) since (!' can be derived 
from (!'1 by Symmetry, Decomposition and Weak-union 
which hold in M(P). D 

It is worthy to note that one can define for each E-tree 
another polynomial basis B, that has the same num­
ber of independence statements as BT but some state­
ments include less vertices. B, is defined as follows. 
For each x in T, let B,(x) be the set {I(S;, {x}, U \ 
S, \ { x}) I i = 1, . . . , /} (as in BT), and let B� ( x) be the 
set {I(Q;,{x},U#;Qj) l i =  l, . . .  ,k}. Let B, be the 
union over all vertices x ofT of the set B, ( x) U B� ( x) . 

The set B. is a probabilistic basis of T because B, 
entails BT using Eqs. (7) through (9) . In fact, ev­
ery marginal statement in M(T) can be derived from 
B, using these three properties. The proofs of these 
claims are omitted. 

6 Learning Embedded Bayesian Trees 

In section 5 we have analyzed the task of testing 
whether a given E-tree is an I-map of a given proba­
bility model P. Now we are concerned with the much 
more complicated task of synthesizing an E-tree that 
represents a given probability model, if such an E­
tree exists, and recognizing when one does not exist. 
To facilitate our investigation we make two assump­
tions. F irst we consider only strictly positive prob­
ability models. This assumption is justified whenever 
categorical relationships can be  excluded from the rep­
resentation (as often happens, for example, in medical 
domains). Second, we only search for E-trees that rep­
resent P well, as defined below. 

A trail tis called a trek if no vertex oft is a sink on t. 
An E-dag D that is a minimal I-map of a probability 
model P is said to represent P well if whenever two 

vertices a and b are connected with a trek in D, then 
a and bare marginally dependent, i.e., I({a},0, {b}) 
does not hold in P. Equivalently, we will say that P 
is well-represented by D. 

The assumption of well-representation is quite natural 
because one expects that changes in a variable a on 
one side of a trek will reflect through the trek towards 
b on the other end of the trek, thus making the two 
variables dependent. 

The algorithm below determines whether a given 
strictly positive probability model P can be well­
represented by an E-tree and it finds such an E-tree 
if one exists. This result generalizes our claims in 
[GPP90, GPP93) in the sense that we now deal with 
embedded Bayesian networks instead of just Bayesian 
networks. There are examples in which the algorithm 
below recovers an E-tree 1-map while our previous al­
gorithm fail to recover a tree I-map because none ex­
ists. (For example, a chain of three bidirected edges). 

The Recovery Algorithm 

Input: A strictly-positive probability model P over U 

Output: An E-tree that represents P well if such ex­
ists, or acknowledgment that no such network exists. 

1. Start with a complete undirected graph having U 
as its vertex set. 

2. Remove every edge a- b for which I({a},U \ 
{a, b}, {b}) holds in P. 

3. Remove every edge a - b for which I( {a}, 0, { b}) 
holds in P. 

4. Let Ra be the resulting graph. If Ra is not a tree, 
then "FAIL". 

5. Orient every pair of edges (a, b) and (b, c) towards 
b whenever I( {a}, 0, { c}) holds in P. (Note that 
each edge can be oriented twice-once to each di­
rection). 

6. Orient the remaining edges without introducing 
new sinks on any trail .  

7. If the resulting E-tree does not represent P well 
then "FAIL". Otherwise, output the resulting net­
work. 

Step 7 is done using polynomial number of indepen­
dence statements as shown in Section 5. 

The following claims establish the correctness of the 
algorithm. First we define a skeleton of an E-tree T to 
be the underlying undirected graph of T. 

Theorem 6 Let P be a strictly-positive probability 
model. If P can be well-represented by an E-tree T, 
then the skeleton ofT is equal to Ra-the graph con­
structed m step 3. 

Theorem 6 shows that step 3 of the algorithm identifies 
the skeleton of an E-tree that represents P well, if such 



exists. Thus, if P can be well-represented by an E­
tree, then it must be one of the orientations of the 
undirected graph Ra produced by step 3. Hence by 
checking all possible orientations of this graph, one can 
decide whether a strictly-positive model can be well­
represented by an E-tree. Consequently, all E-trees 
that represent a strictly positive model P must have 
the same skeleton . 

The next theorem justifies an efficient way of estab­
lishing some orientations of the skeleton of Ra. 

Theorem 7 Let P be a strictly-positive probability 
m odel. If T is an E-tree that represents P well, and 
a - b - c is a chain in the skeleton of T, then b is a 
sink on a - b - c if and only if I( {a} ,  0, { c})  holds in 
P. 

Proof. If b is a sink on a - b - c, then I ( {a} ,  0 ,  { c}) is 
in M (T) and is therefore in M(P) .  Otherwise a and 
c are connected by a trek in T which implies, by the 
well-representation assumption, that I( {a} ,  0, { c}) is 
not in M(P).  0 

Step 6 leaves us freedom to choose the orientation of 
some edges in the skeleton. For example, the E-trees: 
a ....-. b --+ c, a <-- b ....-. c, and a <---- b --+ c are three 
possible orientations of a - b - c. However, these three 
E-trees are indistinguishable (isomorphic) in the sense 
that they induce the same dependency models. Hence 
no algorithm that relies on independence statements 
can distinguish between them. On the other hand, 
the E-trees a ...... b <---- c and a ....... b +-+ c, are distin­
guishable from the previous three E-trees because both 
portray a new independence assertion , I({a} , 0 , {c}) ,  
w hich is not represented in  either of  the former three 
E-trees. Our algorithm uses this distinction to orient 
these edges. 

Two Embedded Bayesian networks D1 and D2 are iso­
morphic if M(Dl ) = M ( D2 ) .  Isomorphism defines 
the theoretical limitation on the ability to identify di­
rectionality of edges using information about indepen­
dence. 

Theorem 8 Two E-trees T1 and T2 are isomorphic 
iff they share the same skeleton and each of their cor­
responding trails have the same sinks on them. 

Sufficiency: If T1 and T2 share the same skeleton 
and have the same sinks on their corresponding trails 
then every active trail in T1 is an active trail in T2 and 
vice versa. Thus, M(Tt ) and M(T2 ) ,  the dependency 
models corresponding to T1 and T2 respectively, are 
equal . 

Necessity: T1 and T2 must have the same set of ver­
tices U ,  for otherwise their dependency models are not 
equal. If a --+ b is an edge in T1 and not in T2 , then the 
statement /({a} , U \  {a ,  b } ,  {b}) is in M (Tl ) but not in 
M (T2 ) .  Thus, if M(Tt ) and M(T2 ) are equal, then T1 
and T2 must have the same skeleton. Assume T1 and 
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T2 have the same skeleton and that a - c -b is a trail in 
these trees but that c is a sink on that trail in T1 while 
not being a sink on that trail in T2 . The trail a - c - b 
is the only trail connecting a and b in T2 because T2 is 
an E-tree and it has the same skeleton as T1 . Since c is 
not a sink on this trail in T2 , I( {a} ,  { c} ,  {b})  E M(T2). 
However, I( {a} ,  { c} , { b}) � M (Tt )  because the trail 
a -> c <-- b is active by {c} . Thus, if M(T1)  and 
M(T2 )  are equal, then T1 and T2 must have the same 
sinks on the each of the corresponding trails. 0 

Theorem 8 shows that all orientations of step 6 that do 
not introduce a new sink on any trail yield isomorphic 
E-trees because these E-trees satisfy the requirement 
of the theorem. Thus, in order to decide whether or 
not P can be well-represented by an E-tree it is suf­
ficient to examine one E-tree produced by step 6 ,  as 
performed by step 7 ,  because all other E-trees are iso­
morphic. 

Note that it is not only sufficient but actually nec­
essary to examine one E-tree produced by step 6 for 
1-mapness because there are cases where no orientation 
of Ra yields an I-map, as shown by the following exam­
ple. Let M(P) ;:::; { I({x1 } , 0, {x2}) , /({xt } , 0 , {xa} ) +  
symmetric images} .  Then the undirected graph Rc 
consists of three vertices { x 1 ,  x2, x3} and one undi­
rected edge (x2 ,  x3) but none of its three orientations 
yields an I-map of M(P).  Furthermore, note that The­
orem 8 cannot be extended from E-trees to E-dags (al­
though it does extend to every dag) because there are 
examples where two E-dags which have different skele­
tons are both minimal 1-maps of the same dependency 
model M(P).  

7 Discussion 

This paper exposes some of the basic difficulties in 
testing the validity of probabilistic models containing 
unmea.�ured (hidden) variables. On one hand, such 
models allow greater freedom in parameterizing the 
hidden links, requiring only that the chosen param­
eters be compatible with the observed relationships. 
On the other hand , and this is where the results de­
rived in this paper fit ,  there is no simple way of testing 
whether a compatible parameterization of the hidden 
links exists. Even an attempt to rule out models that 
display structural incompatibility turns out to be hard 
when hidden variables are included. 

Our results should also be viewed in the context of 
recent works on causal discovery, namely, the discov­
ery of causal graphs structures containing hidden vari­
ables, which m atch independencies found in empiri­
cal data [VP91, SV92] . The b asic assumption behind 
these works is that of structural stability [VP91], also 
called "faithfulness" [SV92] , which amounts to con­
sidering all independencies as produced by the graph 
topology, rather than by accidental matching of nu­
merical parameters. Our negative results no longer 
apply when the data is generated by such structurally 
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stable process, and it might still be possible (though 
unlikely) that with such assurance, one can verify 
model validity (or at least 1-mapness) by testing a 
polynomial number of independence claims. However , 
real-life data tends not to exhibit structural stabil­
ity because its source may be from several recursive 
processes and may involve aggregated variables. Un­
der such conditions, structural stability cannot be as­
sumed and the results established in this paper, both 
negative and positive, provide theoretical limits on the 
complexity of model validation in such cases. 
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