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Abstract 

We present a symbolic machinery that admits 
both probabilistic and causal information 
about a given domain and produces proba­
bilistic statements about the effect of actions 
and the impact of observations. The calculus 
admits two types of conditioning operators: 
ordinary Bayes conditioning, P(ylX = x) , 
which represents the observation X = x, and 
causal conditioning, P(yldo( X = x)), read 
the probability of Y = y conditioned on hold­
ing X constant (at x) by deliberate action. 
Given a mixture of such observational and 
causal sentences, together with the topology 
of the causal graph, the calculus derives new 
conditional probabilities of both types, thus 
enabling one to quantify the effects of ac­
tions (and policies) from partially specified 
knowledge bases, such as Bayesian networks 
in which some conditional probabilities may 
not be available. 

1 INTRODUCTION 

Probabilistic methods, especially those based on 
graphical models, have proven useful in tasks of predic­
tion, abduction and belief revision [Pearl 1988, Beck­
erman 1990, Goldszmidt 1992, Darwiche 1993]. In 
planning, however, they are less popular, 1 partly due 
to the unsettled, strange relationship between proba­
bility and actions. In principle, actions are not part 
of standard probability theory, and understandably 
so: probabilities capture normal relationships in the 
world, while actions represent interventions that per­
turb those relationships. It is no wonder, then, that ac­
tions are treated as foreign entities throughout the lit­
erature on probability and statistics; they serve neither 
as arguments of probability expressions nor as events 
for conditioning such expressions. Even in the decision 
theoretic literature, where actions are the target of op-

1Works by Dean & Ka.naza.wa. [1989) and Kushmerick 
et al. [1993] notwithstanding.

timization, the symbols given to actions serve merely 
as indices for distinguishing one probability function 
from another, not as propositions that specify the im­
mediate effects of the actions. As a result, if we are 
given two probabilities, P A and Ps, denoting the prob­
abilities prevailing under actions A or B, respectively, 
there is no way we can deduce from this input the prob­
ability PAAB corresponding to the joint action A 1\ B, 
or any Boolean combination of the propositions A and 
B. This means that, in principle, the impact of all 
anticipated joint actions would need to be specified in 
advance-an insurmountable task by any standard. 

The peculiar status of actions in probability theory 
can be seen most clearly in comparison to the status 
of observations. By specifying a probability function 
P( s) on the possible states of the world, we automat­
ically specify how probabilities would change with ev­
ery conceivable observation e, since P(s) permits us
to compute (using Bayes rule) the posterior probabil­
ities P(Eie) for every pair of events E and e. How­
ever, specifying P(s) tells us nothing about how our 
probabilities should be revised as a response to an ex­
ternal action A. In general, if an action A is to be de­
scribed as a function that takes P( s) and transforms it 
to P A ( s) , then Bayesian conditioning is clearly inade­
quate for encoding this transformation. For example, 
consider the statements: "I have observed the barom­
eter reading to be x" and "I intervened and set the 
barometer reading to x" . If processed by Bayes con­
ditioning on the event "the barometer reading is x", 
these two reports would have the same impact on our 
current probability function, yet we certainly do not 
consider the two reports equally informative about an 
incoming storm. 

The engineering solution to this problem is to include 
the acting agents as variables in the analysis, construct 
a distribution function including the behavior of those 
agents, and infer the effect of the action by condition­
ing those "agent variables" to a particular mode of 
behavior. Thus, for example, the agent manipulat­
ing the barometer would enter the system as a vari­
able such as, "Squeezing the barometer" or "Heating 
the barometer". After incorporating this variable into 
the probability distribution, we could infer the impact 
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of manipulating the barometer by simply conditioning 
the distribution on the event "Squeezing the barometer 
reached level x". This is, in effect, the solution adopted 
in influence diagrams (IDs), the graphical tool pro­
posed for decision theory [Howard & Matheson 1981, 
Shachter 1986]. Each anticipated action is represented 
as a variable (a node in the diagram), and its impact 
on other variables is assessed and encoded in terms of 
conditional probabilities, similar to the impact of any 
other parent node in the diagram. 

The difficulties with this approach are twofold. First , 
the approach is procedural (rather than declarative) 
and therefore lacks the semantics necessary for sup­
porting symbolic derivations of the effects of actions. 
We will see in Section 3 that such derivations be­
come indispensable in processing partially specified di­
agrams. Second, the need to anticipate and represent 
all relevant actions in advance renders the elicitation 
process unduly cumbersome. In circuit diagnosis, for 
example, it would be awkward to represent every con­
ceivable act of component replacement (similarly, ev­
ery conceivable connection to a voltage source, cur­
rent source, etc.) as a node in the diagram. Instead, 
the effects of such actions are implicit in the circuit 
diagram itself and can be inferred directly from the 
(causal) Bayesian network that represents the work­
ings of the circuit.2 We therefore concentrate our 
discussion on knowledge bases where actions are not 
represented explicitly. Rather, each action will be in­
dexed by a proposition which describes the condition 
we wish to enforce directly. Indirect consequences 
of these conditions will be inferred from the causal 
relationships among the variables represented in the 
knowledge base. 

As an alternative to Bayesian conditioning, philoso­
phers [Lewis 1976] have studied another probability 
transformation called "imaging" which was deemed 
useful in the analysis of subjunctive conditionals and 
which more adequately represents the transformations 
associated with actions. Whereas Bayes condition­
ing P(sle) transfers the entire probability mass from 
states excluded by e to the remaining states (in pro­
portion to their current P(s)), imaging works differ­
ently : each excluded state s transfers its mass in­
dividually to a select set of states S*(s), considered 
"closest" to s. While providing a more adequate and 
general framework for actions, imaging leaves the pre­
cise specification of the selection function s· ( s) almost 
unconstrained. The task of formalizing and represent­
ing these specifications can be viewed as the proba-

2 Causal information can in fact be viewed as an implicit 
encoding of responses to future actions, and, in practice, 
causal information is assumed and used by most decision 
analysts. The ID literature's insistence on divorcing the 
links in the ID from any causal interpretation [Howard & 
Matheson 1981, Howard 1989] is, therefore, at odds with 
prevailing practice. Section 2 of this paper can be viewed 
as a way to formalize and reinstate the causal reading of 
influence diagrams. 
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bilistic version of the infamous frame problem and its 
two satellites, the ramification and concurrent actions 
problems. 

An assumption commonly found in the literature is 
that the effect of an elementary action do(q) is merely 
to change •q to q where the current state satisfies •q 
and, otherwise, to leave things unaltered.3 We can call 
this assumption the "delta" rule, variants of which are 
embedded in STRIPS as well as in probabilistic plan­
ning systems. In BURIDAN [Kushmerick et al. 1993], 
for example, every action is specified as a probabilistic 
mixture of several elementary actions, each operating 
under the delta rule. 

The problem with the delta rule and its variants is that 
they do not take into account the indirect ramifications 
of an action such as, for example, those triggered by 
chains of causally related events. To handle such ram­
ifications, we must construct a causal theory of the 
domain, specifying which event chains are likely to be 
triggered by a given action (the ramification problem) 
and how these chains interact when triggered by sev­
eral actions (the concurrent action problem). Elabo­
rating on the works of Dean and Wellman [1991], this 
paper shows how the frame, ramification, and concur­
rency problems can be handled effectively using the 
language of causal graphs, (see also [Darwiche & Pearl 
1994]). 

The key idea is that causal knowledge can efficiently 
be organized in terms of just a few basic mechanisms, 
each involving a relatively small number of variables 
and each encoded as a set of functional constraints 
perturbed by random disturbances. Each external el­
ementary action overrules just one mechanism while 
leaving the others unaltered. The specification of 
an action then requires only the identification of the 
mechanisms that are overruled by that action. Once 
these mechanisms are identified, the effect of the ac­
tion (or combinations thereof) can be computed from 
the constraints imposed by the remaining mechanisms. 

The semantics behind causal graphs and their relations 
to actions and belief networks have been discussed in 
prior publications [Pearl & Verma 1991, Goldszmidt 
& Pearl 1992, Druzdzel & Simon 1993, Pearl 1993a, 
Spirtes et al . 1993, Pearl 1993b]. In Spirtes Elt al. 
[1993] and later in Pearl [ 1993b], for example, it was 
shown how graphical representation can be used to 
facilitate quantitative predictions of the effects of in­
terventions, including interventions that were not con­
templated during the network's construction. Section 
2 reviews this aspect of causal networks, following the 
formulation in [Pearl 1993b]. 

The main problem addressed in this paper is quantifi­
cation of the effects of interventions when the causal 
graph is not fully parameterized, that is, when we are 

3This assumption corresponds to Dalal's [1988] 
database update, which uses the Hamming distance to de­
fine the �closest world" in Lewis's imaging. 
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given the topology of the graph but not the conditional 
probabilities on all variables. In this situation, numer­
ical probabilities are given to only a subset of vari­
ables, in the form of unstructured conditional prob­
ability sentences. This is a unless you have a com­
parative realistic setting in AI applications, where the 
user/designer might not have either the patience or 
the knowledge necessary for specification of a com­
plete distribution function; some combinations of vari­
ables may be too esoteric to be assigned probabilities, 
and some variables may be too hypothetical (e.g., "life 
style" or "attitude") to even be parameterized numer­
ically. 

To manage this problem, this paper introduces a calcu­
lus that operates on whatever probabilistic and causal 
information is available and, using symbolic transfor­
mations on the input sentences, produces probabilis­
tic assessments of the effects of actions. The calculus 
admits two types of conditioning operators: ordinary 
Bayes conditioning, P(y\X = x ) ; and causal condi­
tioning, P(yido(X = x)), that is, the probability of 
Y = y conditioned on holding X constant (at x) by 
deliberate external action.4 Given a causal graph and 
an input set of conditional probabilities, the calcu­
lus derives new conditional probabilities of both the 
Bayesian and the causal types and, whenever possi­
ble, generates closed form expressions for the effect of 
interventions in terms of the input information. 

2 THE MANIPULATIVE READING 

OF CAUSAL NETWORKS: A 
REVIEW 

The connection between the probabilistic and the ma­
nipulative readings of directed acyclic graphs (DAGs) 
is formed through Simon's [1977] mechanism-based 
model of causal ordering.5 In this model, each child­
parent family in a DAG G represents a deterministic 
function 

(1) 

where pa; are the parents of variable X; m G, and 
f;, 0 < i < n, are mutually independent, arbitrarily 
distributed random disturbances. A causal theory is 
a pair < P, G >, where G is a DAG and P is the 
probability distribution that results from the functions 

/; in ( 1 ). 

Characterizing each child-parent relationship as a de­
terministic function, instead of the usual conditional 
probability P(x; I pa1), imposes equivalent indepen­
dence constraints on the resulting distributions and 

4The notation set(X = x) was used in [Pearl 1993b), 
while do(X = x) was used in [Goldszmidt and Pearl1992). 

5This mechanism-based model was adopted in [Pearl & 
Verma 1991] for defining probabilistic causal theories. It 
has been elaborated in Druzdzel & Simon [1993] and is 
also the basis for the "invariance" principle of Spirtes et 
al. [1993]. 

leads to the same recursive decomposition 

P(xt. ... , Xn) = IJ P(x; I pa1) (2) 

that characterizes Bayesian networks [Pearl 1988]. 
This is so because each f; is independent on all non­
descendants of X;. However, the functional character­
ization X; = f,(pa;, £;)also specifies how the resulting 
distribution would change in response to external in­
terventions, since, by convention, each function is pre­
sumed to remain constant unless specifically altered. 
Moreover, the nonlinear character of/; permits us to 
treat changes in the function/; itself as a variable, F;, 
by writing 

X; = /[{pa;, F;, t:;) (3) 
where 

ff(a, b, c) = f; (a, c) whenever b = f; 

Thus, any external intervention F; that alters /; can 
be represented graphically as an added parent node 
of X;, and the effect of such an intervention can be 
analyzed by Bayesian conditionalization, that is, by 
simply setting this added parent variable to the ap­
propriate value f;. 

The simplest type of external intervention is one in 
which a single variable, say X;, is forced to take on 
some fixed value, say, x�. Such intervention, which we 
call atomic, amounts to replacing the old functional 
mechanism X; = /;(pa;, £i) with a new mechanism 
X; = x� governed by some external force F; that sets 
the value x�. If we imagine that each variable Xi could 
potentially be subject to the influence of such an ex­
ternal force F;, then we can view the causal network G 
as an efficient code for predicting the effects of atomic 
interventions and of various combinations of such in­
terventions. 

G G' 

Figure 1: Representing external intervention F; by an 
augmented network G' = G U { F; -+ X;}. 

The effect of an atomic intervention do(X; = xD is 
encoded by adding to G a link F; --+ X; (see Fig­
ure 1), where F; is a new variable taking values in 
{do(xD, idle}, xi ranges over the domain of X,, and 
idle represents no intervention. Thus, the new parent 
set of X; in the augmented network is pa: = pa1 U{ Fi}, 
and it is related to X; by the conditional probability 

P(x; I paD { P(x; I pa;) 
= 0 

1 

if F; = idle 
if F; = do(xi) and x; #- x� 
if F; = do(xi) and x; =xi 

(4) 



The effect of the intervention do( .:r:D is to transform 
the original probability function P( .:r:1, . .. , Xn) into a 
new function P.,•(xio . .. , .:r:n), given by ' 

P.,•(Xt, ... ,.:r:n) = P'(.:r:t, ... ,.:r:n I F;:::: do(.rD) (5) ' 
where P' is the distribution specified by the augmented . 
network G' = GU {F;-+ X;} and Eq. (4), with an ar­
bitrary prior distribution on F;. In general, by adding 
a hypothetical intervention link F; -+ X; to each node 
in G, we can construct an augmented probability func­
tion P'(.r1, . .. , xn; Ft, ... , Fn) that contains information 
about richer types of interventions. Multiple interven­
tions would be represented by conditioning P' on a 
subset of the F;'s (taking values in their respective 
do(xD), while the pre-intervention probability func­
tion P would be viewed as the posterior distribution 
induced by conditioning each F; in P' on the value 
idle. 

This representation yields a simple and direct trans­
formation between the pre-intervention and the post­
intervention distributions:6 

p ( 
) { :fzt,� .. ,xn) if x; = x� z: Xt, ... ,Xn = 

0 X; pa, if Xj of X� 
(6) 

This transformation reflects the removal of the term 
P(x; I pa;) from the product decomposition of Eq. 
(2), since pa; no longer influence X;. Graphically, the 
removal of this term is equivalent to removing the links 
between pa; and X;, while keeping the rest of the net­
work intact. 

The transformation (6) exhibits the following proper­
ties: 

1. An intervention do(x;) can affect only the descen­
dants of X; in G. 

2. For any set S of variables, we have 

P:�:;(S I pa;) = P(S I x;, pa;) (7) 
In other words, given X; = x; and pa;, it is super­
fluous to find out whether X; = x; was established 
by external intervention or not. This can be seen 
directly from the augmented network G' (see Fig­
ure 1), since {X;} U pa; d-separates F; from the 
rest of the network, thus legitimizing the condi­
tional independence S JL F; I (X;, pa;). 

3. A sufficient condition for an external intervention 
do(X; = x;) to have the same effect on X; as the 
passive observation X; = x; is that X; d-separates 
pai from Xi, that is, 

P'(x;ldo(x;)) = P(x; I xi) iff X; II pa; I X; -
(8) 

6Eq. (6) is a special case of the Manipulation The­
orem of Spirtes et al. (1993] which deals with interven­
tions that modify several conditional probabilities simulta­
neously. According to this source, Eq. (6) was "indepen­
dently conjectured by Fienberg in a seminar in 1991". An 
additive version of Eq. (6) was independently presented in 
(Goldszmidt & Pearl 1992}. 
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The immediate implication of Eq. (6) is that, given the 
structure of the causal network G, one can infer post­
intervention distributions from pre-intervention distri­
butions; hence, we can reliably estimate the effects 
of interventions from passive (i.e., nonexperimental) 
observations. However, use of Eq. (6) is limited for 
several reasons. First, the formula was derived under 
the assumption that the pre-intervention probability 
P is given by the product of Eq. (2), which represents 
general domain knowledge prior to making any spe­
cific observation. Second, the formula in Eq. (6) is 
not very convenient in practical computations, since 
the joint distribution P(x1, ... , Xn) is represented not 
explicitly but implicitly, in the form of probabilistic 
sentences from which it can be computed. Finally, 
the formula in Eq. (6) presumes that we have suffi­
cient information at hand to define a complete joint 
distribution function. In practice, a complete specifi­
cation of P is rarely available, and we must predict the 
effect of actions from a knowledge base containing un­
structured collection of probabilistic statements , some 
observational and some causal. 

The first issue is addressed in [Pearl 1993a and Balke 
& Pearl 1994] , where assumptions about persistence 
are added to the knowledge base to distinguish prop­
erties that terminate as a result of an action from those 
that persist despite that action. This paper addresses 
the latter two issues It offers a set of sound (and pos­
sibly complete) inference rules by which probabilistic 
sentences involving actions and observations can be 
transformed to other such sentences, thus providing 
a syntactic method of deriving (or verifying) claims 
about actions and observations. We will assume, how­
ever, that the knowledge base contains the topological 
structure of the causal network G, that is, some of 
its links are annotated with conditional probabilities 
while others remain unspecified. Given such a par­
tially specified causal theory, our main problem will 
be to facilitate the syntactic derivation of expressions 
of the form P(xildo(x;)). 

3 A CALCULUS OF ACTIONS 

3.1 PRELIMINARY NOTATION 

Let X, Y, Z, W be four arbitrary disjoint sets of nodes 
in the DAG G. We say that X andY are independent 
given Z in G, denoted (X 

_
I I YI Z)a, if the set Z d­

separates X from Y in G. We denote by Gx (G� _ _, 
respectively) the graph obtained by deleting from G 
all arrows pointing to (emerging from, respectively) 
nodes in X. 

Finally, we replace the expression P(yldo(x), z) by a 
shorter expression P(yli:, z), using the ' symbol to 
identify the variables that are kept constant externally. 
In words, the expression P(yli:, z) stands for the prob­
ability of Y = y given that Z = z is observed and X 
is held constant at x. 
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3.2 INFERENCE RULES 

Armed with this notation, we are now able to formu­
late the three basic inference rules of the proposed cal­
culus. 

Theorem 3.1 Given a causal theory < P, G >, for 
any sets of variables X, Y, Z, W we have: 

Rule 1 Insertion/deletion of observations (Bayes 
conditioning) 

P(ylx, z, w) = P(ylx, w) if (Y _II ZIX, W)Gx 

Rule 2 Action/observation exchange 

P(ylx, i, w) = P(ylx, z, w) if (Y II ZIX, W)G-- X� 

3.3 EXAMPLE 

We will now demonstrate how these inference rules can 
be used to quantify the effect of actions, given partially 
specified causal theories. Consider the causal theory 
< P(x, y, z), G >, where G is the graph given in Fig­
ure 2 below and P(x, y, z) is the distribution over the 

o U (Unobserved) 

./ . � 
X z 

Figure 2 

y 

Rule 3 Insertion/deletion of actions observed variables X, Y, Z. Since U is unobserved, the 
theory is only partially specified; it will be impossi-

P( 1" " ) P( 1' ) f (Y 11 ZIX W) ble to infer all required parameters, such as P(u) or yx,z,w = yx,w 1 - ' G-x zcw) P(ylz,u). We will see, however, that this structure 
where Z (W) is the set of Z nodes that are not still permits us to quantify, using our calculus, the ef-
ancestors of any W node in G x. feet of every action on every observed variable. 

Each of the inference rules above can be proven from 
the basic interpretation of the "do{x)" operation as a 
replacement of the causal mechanism t.hat connects X 
to its parent prior to the action with a new mechanism 
X = x introduced by the intervening force (as in Eqs. 
(4)- (5)). 

Rule 1 reaffirms d-separation as a legitimate test for 
Bayesian conditional independence in the distribution 
determined by the intervention do( X = x ) , hence the 
graph Gx· 

Rule 2 provides conditions for an external intervention 
do(Z = z) to have the same effect. on Y as the passive 
observation Z = z. The condition is equivalent to Eq. 
(8), since Gxz eliminates all paths from Z to Y (in 
Gy) which do-not go through paz.7 

Rule 3 provides conditions for introducing (or delet­
ing) an external intervention do( Z = z) without affect­
ing the probability of Y == y. Such operation would 
be valid if the d-separation (Y II FziX, W) is satis­
fied in the augmented graph G�, since it implies that 
the manipulating variables Fz have no effect on Y .  
The condition used in Rule 3, (Y II ZjX, W)G- -· - X Z(W) 
translates the one above into d-separation between Y 
and Z (in the unaugmented graph) by pruning the ap­
propriate links entering Z. 

7This condition was named the "back-door" criterion 
in [Pearl 1993b], echoing the requirement that only indi­
rect paths from Z to Y be d-separated; these paths can be 
viewed as entering Z through the back door. An equiva­
lent, though more complicated, graphical criterion is given 
in Theorem 7.1 of (Spirtes et al. 1993]. 

The applicability of each inference rule requires that 
certain d-separation conditions hold in some graph, 
whose structure will vary with the expressions to be 
manipulated. Figure 3 displays the graphs that will 
be needed for the derivations that follow. 

• 
X 

� 
·-·-· 
X Z Y 

Gi 

/0� 
• • • 
X Z Y 

Gz=� 0�/� � 
I I 1-1 I 1-1 I 
z r x z rx z r 

Figure 3 

Task-1, compute P(zlx) 
This task can be accomplished in one step, since G 
satisfies the applicability condition for Rule 2, namely 
X II Z in G x (because the path X <- U -+ Y <-Z 
is blocked by the collider at Y ), and we can write 

P(zlx) == P(zlx) (9) 

Task-2, compute P(ylz) 
Here we cannot apply Rule 2 to substitute z for z 
because Gz contains a back-door path from Z toY .  
Naturally, we would like to "block" this path by con­
ditioning on variables (such as X) that reside on that 
path. Symbolically, this operation involves condition­
ing and summing over all values of X, 

P(ylz) = 2:: P(ylx, i)P(xli) (10) 



We now have to deal with two expressions involving 
z, P(ylx, z) and P(xi.Z). The latter can be readily 
computed by applying Rule 3 for action deletion: 

P(xjz) = P(x) if (Z _ I I  X)az- (11) 

noting that, indeed, X and Z are d-separated in Gz. 
(This can be seen immediately from Figure 2; manip­
ulating Z will have no effect on X.) To reduce the 
former quantity, P(yjx, i), we consult Rule 2 

P(yjx, z) = P(yjx, z) if (Z _II YjX)a� (12) 

and note that X d-separates Z from Y in G z. This 
allows us to write Eq. (10) as 

� 

P(yli) = L P(yjx, z)P(x) = ExP(yl:c, z) (13) 
X 

which is a special case of the back-door formula [Pearl 
1993b, Eq. (11)] with S = X. This formula ap­
pears in a number of treatments on causal effects 
(e.g., [Rosenbaum & Rubin 1983, Pratt & Schlaifer 
1988, Rosenbaum 1989;]) where the legitimizing condi­
tion, ( Z II Y IX)a z, was given a variety of names, all 
based oncondition�l-independence judgments about 
counterfactual variables. Action calculus replaces such 
judgments by formal tests ( d-separation) on a single 
graph (G) that represents the domain knowledge. 

We are now ready to tackle the evaluation of P(yjx), 
which cannot be reduced to an observational expres­
sion by direct application of any of the inference rules. 

Task-3, compute P(yjx) 

Writing 
P(ylx) = L P(ylz, x)P(zjx) (14) 

we see that the term P(z!x) was reduced in Eq. (9) 
while no rule can be applied to eliminate the manipu­
lation symbol · from the term P(yjz, i:). However, we 
can add a · symbol to this term via Rule 2 

P(yjz,i:) = P(yji,x) 

since Figure 3 shows 

(Y II ZIX)a� - X.f 

(15) 

We can now delete the action x from P(ylz, i:) using 
Rule 3, since Y ���� X!Z holds in Gxz· Thus, we have 

P(yjz, i:) = P(ylz) ( 16) 

which was calculated in Eq. (13). Substituting Eqs. 
(13), (16), and (9) back into Eq. (14) finally yields 

P(yji:) = L P(zjx) L P(ylx', z)P(x') (17) 
z x' 

In contrast to the back-door formula of Eq. (13), Eq. 
(17) computes the causal effect of X on Y using an 
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intermediate variable Z that is affected by X. 

Task-4, compute P(y, zji:) 

P(y, z!i:) = P(yjz, i:)P(z!x) (18) 
The two terms on the r.h.s. were derived before in 
Eqs. (9) and (16), from which we obtain 

P(y, zlx) = P(yji)P(zjx) 
= P(z\x) I:x' P(yj:c', z)P(x') 

3.4 DISCUSSION 

Computing the effects of actions by using partial theo­
ries in which probabilities are specified on a select sub­
set of (observed) variables is an extremely important 
task in statistics and socio-economic modeling, since it 
determines when causal effects are "identifiable" (i.e., 
estimable consistently from non-experimental data) 
and this when randomized experiments are not needed. 
The calculus proposed here, reduces the problem of 
identifiability to the problem of finding a sequence of 
transformations, each conforming to one of the infer­
ence rules in Theorem 3.1, which reduces an expression 
of the form P(yli:) to a standard (i.e., hat-free) prob­
ability expression. Note that whenever a reduction is 
possible, the calculus provides a closed form expression 
for the desired causal effect. 

The proposed calculus uncovers many new structures 
that permit the identification of causal effects from 
nonexperimental observations. For example, the struc­
ture of Figure 3 represents a large class of observa­
tional studies in which the causal effect of an action 
(X) can be determined by measuring a variable (Z) 
that mediates the interaction between the action and 
its effect (Y ). Most of the literature on statistical ex­
perimentation considers the measurement of interme­
diate variables, affected by the action, to be useless, 
if not harmful, for causal inference [Cox 1958, Pratt 
& Schlaifer 1988]. The relevance of such structures 
in practical situations can be seen, for instance, if we 
identify X with smoking, Y with lung cancer, Z with 
the amount of tar deposited in a subject's lungs, and 
U with an unobserved carcinogenic genotype that, ac­
cording to the tobacco industry, also induces an in­
born craving for nicotine. In this case, Eq. (17) would 
provide us with the means to quantify, from nonexper­
imental data, the causal effect of smoking on cancer. 
(Assuming, of course, that the data P(x, y, z) is made 
available and that we believe that smoking does not 
have any direct causal effect on lung cancer except 
that mediated by tar deposits). 

In this example, we were able to compute answers to 
all possible queries of the form P(yjz, i:) where Y, Z, 
and X are subsets of observed variables. In general, 
this will not be the case. For example, there is no 
general way of computing P(yji:) from the observed 
distribution whenever the causal model contains the 
subgraph shown in Figure 4, where X and Y are adja-
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cent and the dashed line represents a path traversing 

L\ 
X y 

z 

Figure 4 Figure 5 

unobserved variable.8 Similarly, our ability to com­
pute P(yji) for every pair of singleton variables does 
not ensure our ability to compute joint distributions, 
such as P(Yt, Y2Jx). Figure 5, for example, shows a 
causal graph where both P(yd.i) and P(y2]x) are com­
putable, but P(y1, Y2Ji) is not; consequently, we can­
not compute P(zji). Interestingly, the graph of Figure 
5 is the smallest graph that does not contain the pat­
tern of Figure 4 and still presents an uncomputable 
causal effect. Graphical criteria for identifiability and 
nonidentifiability are given in [Pearl 1994}. 

Another interesting feature demonstrated by the net­
work in Figure 5 is that it is often easier to compute 
the effects of a joint action than the effects of its con­
stituent singleton actions9. In this example, it is pos­
sible to compute P(zji, !h) and P(zji:, 111), yet there is 
no way of computing P(zji). For example, the former 
can be evaluated by invoking Rule 2, giving 

P(z]i,1h) = L P(z]yt, X.!h)P(yl]idh) 
!/I 

On the other hand, Rule 2 cannot be applied to the 
computation of P(y1Ji:, y2) because, conditioned on 
Y2 , X and Yt are d-connected in Gx (through the 
dashed lines). We conjecture, however, that when­
ever P(yji:;) is computable for every singleton Xi, then 
P(y]i1. .i2, . .. , xt) is computable as well, for any subset 
of variables {Xt, ... , X1}. 

Our calculus is not limited to the derivation of causal 
probabilities from noncausal probabilities; we can de­
rive conditional and causal probabilities from causal 
expressions as well. For example, given the graph 
of Figure 2 together with the quantities P(zjx) and 
P(yji), we can derive an expression for P(yjx), 

P(yJ.i) = L P(yJi)P(zlx) (19) 
z 

80ne can calculate strict upper and lower bounds on 
P(yjx) and these bounds may coincide for special distribu­
tions, P( x, y, z) [Balke & Pearl 1994), but there is no way 
of computing P(ylx) for every distribution P(x, y, z). 

9The fact that the two tasks are not equivalent was 
brought to my attention by James Robins, who has worked 
out many of these computations in the context of sequential 
treatment management [Robins 1989). 

using the steps that led to Eq. {16). Note that this 
derivation is still valid when we add a common cause 
to X and Z, which is the most general condition un­
der which the transitivity of causal relationships holds. 
In [Pearl 1994] we present conditions for transforming 
P(yjx) into expressions in which only members of Z 
obtain the hat symbol. These would enable an agent to 
measure P(yjx) by manipulating a surrogate variable, 
Z, which is easier to control than X. 

3.5 CONDITIONAL ACTIONS AND 
STOCHASTIC POLICIES 

The interventions considered thus far were uncondi­
tional actions that merely force a variable or a group 
of variables X to take on some specified value x. In 
general, interventions may involve complex policies in 
which a variable X is made to respond in a specified 
way to some set Z of other variables, say through a 
functional relationship X = g( Z) or through a stochas­
tic relationship whereby X is set to x with probability 
P*(xlz). We will show that computing the effect of 
such policies is equivalent to computing the expression 
P(yjx, z). 

Let P(yjdo(X = g(Z))) stand for the distribution (of 
Y) prevailing under the policy (X = g(Z)). To com­
pute P(yjdo(X = g(Z))), we condition on Z and write 

P(yido(X = g(Z))) 

L P(yjdo(X = g(z)), z)P(zjdo(X = g(z))) 
z 

L P(yjx, z)i:.=g(z)P(z) 
z 

E. [P(yj£, z) l:r.=g( •)J 

The equality 

P(zjdo(X = g(z))) = P(z) 

stems, of course, from the· fact that Z cannot be a 
descendant of X, hence, whatever control one exerts 
on X, it can have no effect on the distribution of Z. 

Thus, we see that the causal effect of a policy X = 
g(Z) can be evaluated directly from the expression of 
P(yjx, z), simply by substituting g(z) for x and taking 
the expectation over Z (using the observed distribu­
tion P(z)). 
The identifiability condition for policy intervention is 
somewhat stricter than that for a simple intervention. 
Clearly, whenever a policy do(X = g(Z)) is identifi­
able, the simple intervention do(X = x) is identifi­
able as well, as we can always get the latter by setting 
g(Z) = X. The converse, does not hold, however, 
because conditioning on Z might create dependencies 
that will prevent the successful reduction of P(yjx, z) 
to a hat-free expression. 

A stochastic policy, which imposes a new conditional 
distribution P*(xjz) for x, can be handled in a similar 



manner. We regard the stochastic intervention as a 
random process in which the unconditional interven­
tion do(X = x) is enforced with probability P*(xiz). 
Thus, given Z = z, the intervention set(X = x) will 
occur with probability P*(xiz) and will produce a 
causal effect given by P(y!x, z). Averaging over x and 
z gives 

P(yiP*(xlz)) = L L P(ylx, z)P*(xiz)P(z) 
r z 

Since P'"(x!z) is specified externally, we see again that 
the identifiability of P(ylx, z) is a necessary and suffi­
cient condition for the identifiability of any stochastic 
policy that shapes the distribution of X by the out­
come of Z. 

Of special importance in planning is a STRIP-like ac­
tion whose immediate effects X = x depend on the 
satisfaction of some enabling precondition C(w) on a 
set W of variables. To represent such actions, we let 
Z = WUpax and set 

{ P(xlpax) if C(w) =false 
P*(xlz) = 1 if C(w) = true and X = x 

0 if C( w) = true and X :f. x 

It should be noted, however, that in planning appli­
cations the effect of an action may be to invalidate 
its preconditions. To represent such actions, tempo­
rally indexed causal networks are necessary [Dean & 
Kanazawa 1989, Pearl 1993a, Balke & Pearl 1994) . 

4 CONCLUSIONS 

The calculus proposed in this paper captures in sym­
bols and graphs the conceptual distinction between 
seeing and doing. While many systems have imple­
mented this obvious distinction-from early systems 
of adaptive control to their modern AI counterparts of 
[Dean and Kanazawa 1989] and [Draper et al. 1994)­
the belief-changing operators of seeing and doing can 
now enjoy the power of symbolic manipulations. The 
calculus permits the derivation of expressions for states 
of belief that result from sequences of actions and ob­
servations, which, in turn, should permit the identifi­
cation of variables and relationships that are crucial 
for the success of a given plan or strategy. The ex­
ercise in Section 3.3, for example, demonstrates how 
predictions about the effects of actions can be derived 
from passive observations even though portions of the 
knowledge base (connected with the unobserved vari­
able U) remain inaccessible. Another possible applica­
tion of the proposed calculus lies in the area of learn­
ing, where it might facilitate the integration of the two 
basic modes of human learning: learning by manipu­
lation and learning by observation. 

The immediate beneficiaries of the proposed calculus 
would be social scientists and clinical trilists, as the 
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calculus enables experimental researchers to translate 
complex considerations of causal interactions into a 
formal language, thus facilitating the following tasks: 

1. Explicate the assumptions underlying the model. 
2. Decide whether the assumptions are sufficient for 

obtaining consistent estimates of the target quan­
tity: the total effect of one variable on another. 

3. If the answer to item 2 is affirmative, the method 
provides a closed-form expression for the target 
quantity, in terms of distributions of observed 
quantities. 

4. If the answer to item 2 is negative, the method 
suggests a set of observations and experiments 
which, if performed, would render a consistent es­
timate feasible. 

The bizzare confusion and controversy surrounding the 
role of causality in statistics stems largely from the 
lack of mathematical notation for defining, expressing, 
and manipulating causal relationships. Statisticians 
will benefit, therefore, from a calculus that integrates 
both statistical and causal information, and in which 
causal influences are kept distinct from probabilistic 
dependencies. 

There are also direct applications of action calculus 
to expert systems and Bayesian networks technology. 
One conceptual contribution, mentioned in Section 1, 
is the appeal to causality for inferring the effect of 
certain actions without those actions being explicitly 
encoded in the knowledge base. This facility simplifies 
the knowledge elicitation process by focusing atten­
tion on causal relationships and by dispensing with 
the specification of actions whose effects can be in­
ferred from those relationships. 

A second contribution involves the treatment of hid­
den variables. Such variables represent factors that the 
expert chooses to exclude from formal analysis, either 
because they lie beyond the scope of the domain or be­
cause they are inaccessible to measurement. The ex­
ample of Section 3.3 demonstrates that certain queries 
can be answered precisely without the parameters as­
sociated with hidden variables assessing. Action cal­
culus should identify the conditions under which such 
assessments can be saved. 
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