ARTIFICIAL INTELLIGENCE 113

Asymptotié Properties of Minimax
Trees and Game-Searching Procedures®

Judea Pearl

Cognitive Systems Laboratory, School of Engineering and
Applied Science, University of California, Los Angeles, CA,
US.A.

Recommended by Nils Nilsson

ABSTRACT

The model most frequently used for evaluating the behavior of game-searching methods consists of a
uniform tree of height h and a branching degree d, where the terminal positions are assigned random,
independent and identically distributed values. This paper highlights some curious properties of such
trees when h is very large and examines their implications cn the complexity of various game-
searching methods.

If the terminal positions are assigned a WIN-LOSS status with the probabilities Py and 1— Py,
respectively, then the root node is almost a sure WIN or a sure LOSS, depending on whether P, is higher or
lower than some fixed -point probability P*(d). When the terminal positions are assigned continuous real
values, the minimax value of the root node converges rapidly to a unique predetermined value v*, which is
the (1 — P*)-fractile of the terminal distribution.

Exploiting these properties we show that a game with WIN-LOSS terminals can be solved by
examining, on the average, O[(d?] terminal positions if Py# P* and O[(P*/(1— P*)Y'] positions if
Po= P*, the former performance being optimal for all search algorithms. We further show that a game
with continuous terminal values can be evaluated by examining an average of O[(P*/(1—-P*)}']
positions, and that this is a lower bound for all directional algorithms. Games with discrete terminal values
can, in almost all cases, be evaluated by examining an average of O{(d)Y"*} terminal positions. This
performance is optimal and is also achieved by the ALPHA-BETA procedure.

1. The probability of winning a standard h-level game tree
with random WIN positions

We consider a class of two-person perfect information games répresented by
the tree of Fig. 1. Two players, called MAX and MIN, take alternate turns. In
each turn a player may choose one out of d legal moves. The game lasts exactly

*This work was supported in part by the National Science Foundation Grants MCS 78-07468 and
MCS 78-18924.

Arificial Intelligence 14 (1980), 113-138

Copyright © 1980 by North-Holland Publishing Company

TECHNICAL REPORT
R-21

114 J. PEARL

h: n

MOVES CYCLES PROB. OF
REMAINING REMAINING WIN
3 z A MAX
3 2 e [——————— MIN
2 i P! _ . MAX
1 Q| MIN

O

wow L w L L W oW W W L L w L L

F1G. |. A uniform binary game tree with two move-cycles. h =4, n =2, d =2,

n move-cycles or h =2n moves, at which point a terminal position is reached.
Each terminal position constitutes either a WIN or a LOSS for the first player.
We assume that the assignment of labels to the d" terminal positions is done at
random, prior to the beginning of the game, and that each terminal position
may receive a WIN with probability P, (and a LOSS with probability 1 — Py)
independently of other assignments. We shall refer to such a tree as a
(h, d, Py)-tree.

The first quantity we wish to compute is P,, the probability that MAX can
force a WIN given that it is his turn to move and that exactly n move-cycles are
left in the game. Similarly, we denote by Q, the probability that MAX can
force a WIN given that it is MIN's turn to move and there are a total of 2n — 1
individual moves left in the game. Clearly, P, and Q, are calculated prior to
examining the terminal positions. Once the WIN-LOSS assignment is known,
each node of the tree can be unequivocally labeled either a WIN or a LOSS.

For a MAX node (h even) to be a WIN, at least one of its d SUCCessors must
be a WIN: therefore:

1-P, =(1-Q,). (1)

Also, for a MIN position (h odd) to be a WIN, all of its d successors must be
a WIN; thus:

On = P‘,f_l. (2)
Combining (1) and (2) we obtain the recursive relationship:
Po=1-(1-Pi) 3)

The asymptotic behavior of P, for large n can be inferred from the diagram
below:

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 115

Py

The curve P, =1—(1—P%_)* intersects the line P, = P, in three points: two
stable points P,-, =0 and P,., =1, and one unstable point at P,-, = P*. P* is
the unique solution of the equation: (1 —x*)* = (1 —x) =0 in the range 0 <x <
1 or more conveniently, the positive root of the equation x?+x—1=0. It can
be easily ascertained that every root of the latier equation is also a root of the
former.

The significance of the probability P* lies in the fact that if the terminal
positions are assigned a WIN with probability Py = P*, then. prior to examining

"any of these positions, MAX is assured a probability P* of winning the game

from any of his moves, regardless of the height of the tree.

Most significantly, if P, is slightly different than P*. we have:

{1 if P> P*,

im P.(P)=1g it p,< P*. “)

This means that when P,> P*. MAX is almost assured a WIN if n is large
enough., whereas he faces an almost sure LOSS in the case where Py< P*. To
illustrate this phenomenon. consider a binary game (d =2) with five move-
cycles (n=35). P* is the solution to x*+x—1=0, or P*= 12V5-1)=
0.6180339. If all we know about the terminal positions is that 61.80% of them
are WIN’s. then we also know that the first player to move has a 61.8% chance
of being able to force a WIN. However, if only 50% of the terminal positions
are winning, his chances to force a WIN drop to 1.95%, whereas when
P, =70% his chances increase to 98.5%. These numbers become much more
dramatic in higher trees, as shown in Fig. 2.

It is simple to show that the slope at the transition region is increasing
exponentially with #n:

d _ d(l—P*)]z" d(1—-P*) -
3P P 1 = {—-——-———P* and — >1 ford>1. (5)
Py=P*

Also, a more detailed analysis shows that for sufficiently large n, P, converges
toward its asymptotic values at a super-exponential rate, i.e.. for every 0 <8 <
1 we can find two integers n, and 7, such that:

P, < (8)*" for all n > ny and Po< P*,

1-P,<(§)™ forall n >n, and Py> P~ (6)

116 I. PEARL

08

06

P(P,)

C2 4,

|
|

§
vl
)

i0 |
0 0.2 0.4 06 \ 08 e
P PLVE-1)/2

F1G. 2. The probability of winning a n-cycle game (P,) versus the probability of winning a terminal
position (Py), for a binary (d =2) tree.

©

where n, and n, are functions of § and P* — P;. It is, thus, safe to conclude that for
sufficiently large n, the function P,(P;) resembles a step function with an
extremely narrow transition region around P*.

2. Game trees with an arbitrary distribution of terminal values

Consider a uniform tree (constant d) where the terminal nodes are assigned
numerical values, Viy(S1), Vo(Sa), ..., Vo(Ss#), and assume the latter to be in-
dependent identically distributed random variables, drawn from a common
distribution function Fy,(v) = P(V, < v). We shall refer to a tree drawn from such
an ensemble as a (h, d, F)-tree and calculate the distribution of the minimax value
of the root node.

Denoting the minimax values of nodes at the nth cycles by V,(S) for MAX
nodes and by U,(S) for MIN nodes, we have:

V. (S) = max[U,(S), U.(S2). ..., U.(S2)].
U, (S) = min[V,-(S), Va-i(S2), ... Vaei(Sy)] 7
where §,, 5., ..., S; denote the d successors of S. The distribution of V,(§) is

obtained by writing:

Fy,(0) = P[V.(S)< o] =] PIU.(S) < v] = [Fy, (). (8)

d
=1

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 117

- Fi)2 PUL(S) > 0] = [P[Va($)> 0] = L= Fr,) ©)
yielding the recursive relation:
Fv,(v)={1—{1-Fy,_)"} (10)

Note that (8), (9), and (10) are identical to (1), (2), and (3), respectively, if one
identifies 1 — Fy, (v) with P, and 1— Fy,(v) with Q,. This is not surprising since
for any fixed v, the propositions ‘V(S;)> v’ propagate by the same logic as the
propositions ‘S; is a WIN’; MAX nodes function as OR gates and MIN nodes
perform an AND logic.

From the fact that P, converges to a step-function as n - (see (4)), we must
conclude that Fy, (v), likewise, satisfies:

J 0 Fy(v)<1-P*,
lim Fy (v)={ 1-P* Fyfv)=1-P*, (11)
nee 1 Fy(v)>1-P*.

Assume. for the moment, that the terminal values Vj are continuous random
variables and that the distribution Fy(v) is strictly increasing in the range
0< Fy,< 1. In this case Fy(v) has a unique inverse and the condition Fyv)=
1 — P* is satisfied by one unique value of v which we call v*:

v* = Fyi(1-P*). (12)

(11) then implies that when the game tree is sufficiently tall, the cumulative
distribution of the root-node value approaches a step function in v, and that the
transition occurs at a unique value v* which is the (1— P*)fractile of the
terminal distribution Fy(-). That implies that the density of V,(S), fv,(v),
becomes highly concentrated around v* or, in other words, that the root-node
value is almost certain to fall in the very close neighborhood of v*. It appears
that the repeated application of alternating MIN-MAX operations on the
terminal values has the effect of filtering out their uncertainties until the result
emerges at the high levels of the tree as an almost certain, predetermined,
quantity.

This is a rather remarkable phenomenon which deserves to be decorated by
a theorem.

Tueorem 1. The root value of a (h, d, F)-tree with continuous strictly increasing
terminal distribution F converges, as h—x (in probability) to the (1—P*)-
fractile of F, where P* is the solution of x* +x—1=0.

If the terminal values are discrete: vi<v2<:--<uvy, then the root value
converges to a definite limit iff 1 — P* # Fy(v;) for all i, in which case the limit is

the smallest v; satisfying:
FV()(Ui‘l)< I-P*< Fv()(l),‘).
The second part of Theorem | becomes evident by writing:

P[VH(S) = U,‘] = FV"(Ui)‘—FVn(Ui—I)~

118 J. PEARL

If 1—P* can be ‘sandwiched’ between two successive levels of F in such a way
that Fy(v;-1) <1~ P* < Fy(v;), then according to (11) Fv, (v;)— 1, Fy, (v,-;) -0,
and consequently PV, (S)=v,]— 1.

The remarkable feature of this phenomenon is that Theorem 1 holds for any
arbitrary distribution of the terminal values. Thus, for example, the root value
of a binary tree (d =2) with terminal values uniformly distributed between 0
and 1 would converge to the value 1 - 1/2(\/5— 1)=10.382 ... If the terminal
values are integers, uniformly distributed between | and 100, then F,,(38)<

= P* =0.382 < Fy,(39).

37 31 39

Therefore, the root value will converge to the integer 39. Exceptions to the
theorem would occur only in rare pathological cases where 1~ P* coincides
exactly with one of the plateaus of F, (v), as shown in the diagram below.

Fyy¥)

vy v

In such a case, the asymptotic distribution of the root node would go from 0 to
1 in two steps, one at v, and the other at v, as is shown below:

1 FV-(V)

i
|
1
:
{
1.p* 1--..-——...71
1
! i

v
vi V2

This implies that V,(S) does not converge to a single limit but may assume two
possible values; in a fraction P* of the instances it will be assigned the value v,
and in the remaining instances the value v,. In fact, Section | dealt with such a
case where. if P,=P* the status of the root-node remains undetermined
between WIN (V, = 1) and LOSS (V, =0).

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 119

For the reader’s amusement, another manifestation of Theorem 1 will be
mentioned, unrelated to game trees. Consider a large collection of unreliable
electrical components (e.g., light bulbs) whose times to failure are identically
distributed random variables. Connect two of them in series:

O
I8 T2
The failure time of this series connection is given by min{7}, T>]. Now connect
two such circuits in parallel:

¢

T

Tk

T2

The failure time of the parallel circuit is equal to that of the longest surviving
branch, i.e., max(T}{, T5). Continue the process, alternatingly connecting dupl-
icate circuits in series and in parallel, for n cycles. What can be said about the
limiting distribution of the failure time, T,, of the entire circuit? Clearly, T, is
equal to the minimax value of the root-node in an n-cycle binary tree with
terminal values determined by the failure times of the individual components.
According to Theorem 1, T, converges to a definite value given by the
(1—-P*)fractile of the terminal distribution. Thus, assuming that n is
sufficiently large, the entire circuit should fail at a predictable, precise time,
which is quite remarkable considering the fact that the circuit is assemblied
from a host of independent, unreliable, and unpredictable components.

At this point a natural question to ask is how fast the density distribution of
the root value contracts to its final value v*. The answer is that the width of the
density function decreases exponentially with n. The range of values W,
(around v*) which contains all but 2e of the total area under the density
function can be shown (for d = 2) to be proportional to (log 1/2¢ 23840 -n,

This finding raises some interesting questions regarding the advisability of
searching deep uniform game trees. If the final values of these trees can be
predetermined with virtual certainty, why spend the exponentially growing
effort demanded by an exact evaluation? Instead of insisting on selecting the
best first move, we might as well select just any move at random. The expected
loss of opportunity induced by such selection is guaranteed not to exceed some
predetermined limit which diminishes exponentially with the height of the
remaining tree. It makes more sense to reserve one’s computational powers for
the end-game where the shallowness of the trees is accompanied by more
widely varying node values.

These arguments touch on the more general question of how the willingness
to act somewhat suboptimally can be converted into computational savings, a
question which we hope to study more fully in future studies. At this point, it

120 ' o J. PEARL

suffices to state that the uniform tree model with independent and identically
distributed terminal values was not devised as a practical game playing tool but
rather as a test bed for comparing the efficiencies of various exact-search
methods. We shall pursue this plan in the remaining part of this report.

3. The mean complexity of solving (h, d, P,)-game

Solving a game tree means deciding whether the root-node is a WIN or a
LOSS. An absolute lower bound on the number of terminal node examinations
needed for establishing the status of the root-node is given by the following
argument. If the root node is a WIN, then there exists a subtree (called a
solution tree) consisting of one branch emanating from each MAX node and all
branches emanating from each MIN node, terminating at a set of WIN terminal
positions. Similarly, if the game is a LOSS, such a solution tree exists for the
opponent, terminating at all LOSS nodes. In either case, the number of
terminal positions in a solution tree is d” (representing a branching factor 4 in’
each move-cycle) or d"* where h is the number of individual moves. The
number of terminal node examinations required to solve the game must exceed
d"* since, regardless of how the solution tree was discovered, one must still
ascertain that all its d*? terminal nodes are WIN in order to defend the
proposition ‘root is a WIN’. Thus, d*? represents the number of terminal nodes
" inspected by a non-deterministic algorithm which solves the (h, d, P;)-game and
is, therefore, a lower bound for all deterministic algorithms.

It is not hard to show that any algorithm solving the (, d, Py)-game would, in
the worst case, inspect all d* terminal positions. This can be done by cleverly
arranging the terminal assignments in such a way that a decision could not be
reached until the last node is inspected. Since the difference between d*? and
d* may be quite substantial, it is interesting to evaluate the expected number of
terminal examinations where the expectation is taken with respect to all
possible WIN-LOSS assignments to the terminal nodes.

Dermrrion. Let A be a deterministic algorithm which solves the (h, d, Py)-game
and let I,(h, d, P,) denote the expected number of terminal positions examined
by A. The quantity:

rald, Po) = lim [L4(h, d, P)]"
, hso
is called the branching factor corresponding to the algorithm A.

DerintTion. Let C be a class of algorithms capable of solving a general
(h, d, Po)-tree. An algorithm A is said to be asymptotically optimal over C if for
some Py and all 4:

ra(d, Po)<rs(d,P}) VBEC

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 121

DerinrTION. An algorithm A is said to be directional if for some linear
arrangement of the terminal nodes it never selects for examination a node
situated to the left of a previously examined node.

Simply stated, an algorithm is directional if it always examines nodes from
left to right, regardless of the content of the nodes examined.

We now compute the branching factor of a simple directional algorithm,
called SOLVE, given by the following informal description':

AvrcoriraMm SOLVE(S): To solve S, start solving its successors from left to
right.

If S is MAX, return 2 WIN as soon as one successor is found to be a WIN:
return a LOSS if all successors of S are found to be a LOSS.

If S is MIN, return a LOSS as soon as one successor is found to be a LOSS;
return a WIN if all successors of S are found to be a WIN.

To compute Isorve(h, d, Py) we consider the nth cycle preceding the terminal
positions. Let x, stand for the expected number of terminal nodes inspected in
solving the root S of an n-cycle tree, and y, the expected number of inspections
used for solving any of the successors of S.

X
N

’
® éa\®)"
The probability of issuing a WIN after solving the kth successor is (1—
Q,)'Q,. Such an event requires an average of (k—1)y,+y, terminal in-
spections, where y, and y; stand for the mean number of inspections required
for establishing a LOSS or a WIN, respectively. Also, the event of issuing a

LOSS for S carries a probability (1-Q,)* and a mean expenditure of dy;
inspections. Therefore:

X, = é Q1= Q) 'tk — Dy +yr1+d(1 - Qu)ys
_ _ - - d
- yIOn _I_JLQ_QLX-F y;(l - Qn)l___@ao_ﬁl_

= [yiQ. +yi(1— Q)] [1_—4%9_,3)‘11 (using (1) and (2))
N
= Yn Pﬁ—xl (13)

'A more formal definition is given by the flow-chart of Fig. 5, with the few simple modifications
discussed at the head of Section 4.

122 J. PEARL

Now examine the solution of any successor of S, say S,. .

Y

|
S

The event of issuing a LOSS after solving its kth successor has a probability
P%Zi(1—-P,.)) and carries a mean expenditure of (k — 1)x;_, +x; inspections.
The event of exiting with a WIN involves solving all d successors and,

therefore, occurs with probability P2, and costs an average of dx;_, in-
spections. Thus: ' '

n

d
Yn = p> Pﬁ:{(l"Pn_()[(k“ I)X;_l"*‘x;_[]‘{'dpt,f‘]x:..]
k=1

— pd
= [x:-lP,,_1 +x;_1(1 —_ Pn—l)] (]i —I;n-—!{}

— pd
L P"“. (14)

= Xn-y 1 “Pn—l

Combining (13) and (14) we obtain:

___-’Fn___l—On Pn = Pn(l“Pg-])
X,,-i_ Q. =P, P‘:—!'(I__PH—I).

(15)
Since x, is equivalent to Iso ve(2n, d, Py) and x;,=1, we can state:
THEOREM 2. The expected number of terminal position in a (h, d, Py)-tree examined

by the SOLVE algorithm is given by-

_w P(A-PL)
ISOLVE(h9 ds PO) - iI—:‘I{ Pld—l(l _ Pi—[) (16)

where P, i =1,...,%h, is related to P, by (3).
Theorem 2 permits an easy calculation of IsoLve(h, d, Py) for wide ranges of d

and h, as shown in Fig. 3. In the special case where P, = P* all terms in the
product of (16) are equal and, using P*? = 1— P* (16) reduces to:

P* h
Isowve(h, d. P*) = <1 £ P*) . (17)

Note that

n

lim = im —%+=d
Py =0 Xp~1 Pyl Xyt

MINIMAX TREES AND GAME-SEARCHING PROCEDURES . 123

j PO . p'= 835078

F1G. 3. The expected number of terminal nodes examined by SOLVE (normalized by (-)}* to
represent an effective branching factor).

which implies:

(18)

n—sm Xp -1

lim 2 = (pP*

124 , J. PEARL

This limit, combined with the -very rapid convergence of P, (see (6)), leads
directly to the asymptotic branching factor of SOLVE:

CoroLLARY 1. The branching factor of the SOLVE algorithm is given by:

am Py # P*,
d,Py)=1{ P*
rsoLve(d, Po) T P, = P*

where P* is the positive solution of x4 + x — 1 =0.

(19)

Recalling that d'? is an absolute lower bound for the branching factor of any
tree solving algorithm, we conclude:

Cororrary 2. SOLVE is asymptotically optimal for P, # P*.

For finite values of h or for P, = P* we have no guarantee that SOLVE is
optimal. Non-directional algorithms, such as that proposed by Stockman [7]
may outperform SOLVE. However, Corollary 2 states that for very deep trees
the savings could not be substantial in all cases where P, # P*.

Any directional algorithm which is governed by a successor-ordering scheme
identical to that of SOLVE must examine all the nodes examined by SOLVE.
This is so because if some left-to-right algorithm B skips a node visited by
SOLVE, a WIN-LOSS assignment can be found which would render the
conclusion of SOLVE contrary to that of B. Thus B could not be a general
algorithm for solving all (h, d, Py)»-trees. Now, since Isouve(h, d, Py) is in-
dependent on the particular choice of ordering scheme, we may conclude that
SOLVE is optimal over the class of directional game-solving algorithms. This
leads to: :

CorovrLARY 3. The optimal branching factor of any directional algorithm which
solves a general (h, d, Py)-tree is given by (19).

The case Py=P* deserves a special attention. Although it is not very likely
to occur in practical WIN-LOSS games, it plays an important role in the
analysis of the a—B procedure. We conclude this section by examining the
behavior of rsorve(d, P*)= P*/(1 — P*) for large values of d. Writing:

q(d)=1-P*(d) 20)
the defining equation for gq(d) becomes:
q(d)=[1-q(d)) @n

which can be satisfied only when:

lim g(d) = 0. (22)

MINIMAX TREES AND GAME-SEARCHING PROCEDURES

Taking log on both sides of (21), gives:

log ¢(d) = d log[1 - q(d)] = ~d[g(d)+ O(¢?)
or:

q(d)=(1/d)log 1/q(d)

By repeated iteration, the solution of (24) can be written:

q(d)=1/d[logd —loglogd +logloglogd —- - -]

from which we see that for large 4:

q(d) = logd+o<logi§>gd).

125

23)

24)

(25)

(26)

This result was also shown by Baudet [1] using a slightly different method.
Substituting (26) in (19), the asymptotic behavior of rsoryve(d, P *) becomes:

rsoLve(d, P*) = gd[1+o(£%l§q%i>]'

@7

the log-log graph of Fig. 4 depicts rsorve(d, P*) for the range 2 < d < 10,000. It
is shown to be in remarkable agreement with the formula (0.925)d%7¥* while
the asymptotic expression d/logd becomes a better approximation only for

d > 5000.
Jo00 = O-m— P¥/|-p*
[0
@]
=
2
[
Q
< oo
I
Q
=
<I
% 20 — (0.925)00'?474!
10— d/jnd
5 -
2
[/ J |

2358 20 100 lolele}
d - BRANCHING DEGREE

FIG. 4. Worst case branching-factor for the SOLVE algorithm

i - 238

126 ' J. PEARL

4. Solving, testing, and evaluating game trees

When the terminal positions are assigned real values, the root-node must be
evaluated rather than solved. The SOLVE algorithm discussed in Section 3 is
insufficient to fully evaluate a (h, d, Fy,}-game tree because it produces a binary
WIN-LOSS outcome rather than the (real) minimax value V(S) of the root-
node. It can, however, be used to test the proposition ‘V(S)> v’, where v is
any fixed reference value chosen for the test. We simply interpret any terminal
node ¢t for which Vi(t)>v as a WIN position (otherwise it is a LOSS), and
apply SOLVE directly. If it issues a WIN, the proposition ‘V(S)> v’ is proven,
otherwise we deduce ‘V(S)=<v’. This procedure, which we call TEST(S, v, >),
is described in algorithmic details in Fig. 5. An almost identical algorithm,
TEST(S, v, =), could be used to test whether V(S)= v by simply permitting
equality in all the comparison tests of Fig. 5.

From the structural identity of SOLVE and TEST, it is clear that the
expected number of nodes inspected by TEST, Igsr(h, d, Fy,, v), is equal to
that inspected by SOLVE if the terminal WIN labels are assigned with
probability Py = P[V,(t)>v]=1— Fy(v). Therefore:

Itgst(h, d, F Vi v)=IsoLve(h, d, 1 - Fvo(v) (28)
(28), combined with (_19), yields:

THeOREM 3. The expected number of terminal positions examined by the TEST
algorithm in testing the proposition ‘V(S)> v’ for the root of a (h, d, Fy)-tree,
has a branching-factor:
dl/2 -y P *’
rrest(d, va U) = p* oo (29)
P ifo=rp*
= p~ ifv=v

where v* satisfies Fy(v*)=1—P*.

From the fact that TEST is directional and SOLVE is optimal we can also
conclude:

CoroLLARY 4. The optimal branching factor of any directional algorithm which
tests whether the root node of a (h, d, Fy)-tree exceeds a specified reference v is
given by rresr(d, Fy,, v) in (29).

Note that when the terminal values are continuous (and Fy(v) strictly
increasing) Theorem 1 states that V(S) converges to v* for very large h. Thus,
although testing the proposition *V(S)> v’ is easier for v # v*, the outcomes of
such tests are almost trivial. The most informative test is that which verifies
whether V(S)> v*, and such a test, according to (29) is indeed the hardest.

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 127

TEST (S, v, »)

v

Generate successors
return .
TRUE of S: S], 52. vees 3¢

. Yes:
s is termina

no

. return =
exit FALSE !

return return
FALSE TRUE

F1G. 5. A flow-chart of the TEST(S. v. >) procedure which tests whether the minimax value of
position § exceeds a reference v.

When the terminal positions are assigned discrete values then unless 1 — P*
coincides with one of the plateaus of Fy,, the equation Fy (v*)=1- P* would
not have a solution, and the limiting root value wouid converge to the smallest
v’ satisfying Fy (v)> 1~ P*. Thus all inequality propositions could be tested
with a branching factor 4'2.

Consider now the minimum number of terminal node examinations required
to evaluate a game tree. At the best possible case, even if someone hands us
for free the true value of S, any evaluation algorithm should be able to defend
the proposition *V(S)= v’ i.e., to defend the pair of propositions ‘V(S)= v’

128 J. PEARL

and ‘V(S)<v’. Since the solution tree required for the verification of an
inequality proposition contains d"? terminal positions and since the sets of
terminal positions participating in the defense of each of these inequalities are
mutually exclusive, save for the one position satisfying V,(r) = V(S), we have:

CoRrOLLARY 5. Any procedure which evaluates a (h, d, Fy,)-tree must examine at
least 2d"* —1 Terminakl nodes,

We assumed, of course, that the probability of two or more terminal nodes
satisfying Vo(t) = V(S) is zero, and that h is even. This result (in a slightly
different form) was also proven by Knuth and Moore [3)]. Earlier, Slagel and
Dixon [6] proved that the —B procedure achieves this optimistic bound if the
successor positions are perfectly ordered. '

Let us consider now the more interesting question of estimating I'(h, 4, F,),
the expected number of terminal examinations required for evaluating
(h, d, Fy,)-game trees. Let Ip(h, d) be the minimal value of I(k, d, Fy,) achieved
by any directional algorithm under the worst-case Fy,

In(h.d)= min max L (h, d, F). (30)
A

directional

Every algorithm which evaluates a game tree must examine at least as many
nodes as that required for testing whether the. root value is greater than some
reference v. This is so because an evaluation procedure produces a more
informative outcome than any inequality test, and moreover, one can always
use the value V(§) to deduce all inequality propositions regarding V/(S). This
fact combined with the optimality of TEST over the class of directional
algorithms (see Corollary 4) leads to:

h Py 31
2 P —

ID(’d) (1_})*) ()

The right-hand side of (31) is obtained when the terminal positions are assigned

continuous values and TEST is given the task of verifying ‘V(S)> v*’. This

leads directly to:

THEOREM 4. The expected number of terminal positions examined by any direc-
tional algorithm which evaluates a (h, d)-game tree with continuous terminal
values must have a branching factor greater or equal to P*/(1— P*).

The quantity P*/(1 - P*) was shown by Baudet [1] to be a lower bound for
the branching factor of the @~ procedure. Theorem 4 extends the bound to all
directional game-evaluating algorithms.

In the next section we will present a straightforward evaluation algorithm
called SCOUT which actually achieves the branching factor P*/(1 —~ P*), thus

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 129

establishing the asymptotic optimality of SCOUT over the class of directional
algorithms. including the a—fB procedure.
5. Test and, if necessary, evaluate—the SCOUT algorithm

SCOUT evaluates a MAX position S by first evaiuating its left most successor
S,, then ‘scouting’ the remaining successors, from left to right, to determine if

EVAL (S)

Y

Generate successors
of S: SI‘ 52‘ v Sd

T

return yes
terminal
value of §

no
v = EVAL (SI)

exempt

return v

exit

FIG. 6. A flow-chart of the SCOUT algorithm which evaluates the minimax value of position § by
invoking the TEST(S. v, >) procedure of Fig. 5.

130 - ‘ J. PEARL

any meets the condition V(S,)> V(S)). If the inequality is found to hold for St
this node is then evaluated exactly and its value V(S:) is used for subsequent
‘scoutings’ tests. Otherwise S is exempted from evaluation and S,., selected for
a test. When all successors have been either evaluated or tested and found
unworthy of evaluation, the last value obtained is issued as V(S). An identical
procedure is used for evaluating a MIN position S, save for the fact that the
event V(S,)= V(S,) now constitutes grounds for exempting S, from evalua-
tion. The flow-chart of Fig. 6 describes SCOUT in algorithmic details, calling
on the TEST algorithm of Fig. 5 to perform the inequality checks.

At first glance it appears that SCOUT is very wasteful; any node S which is
found to fail a test criterion is submitted back for evaluation. The terminal
nodes inspected during such a test may (and in fact will) be revisited during the
evaluation phase. An exact mathematical analysis, however, reveals that the
amount of waste is not substantial and that SCOUT, in spite of some dupli-
cated effort, still achieves the optimal branching factor P*/(1-P*).

Two factors work in favor of SCOUT: (1) Most tests would result in
- exempting the tested node (and all its descendents) from any further evalua-
tion, and (2) testing for inequality using the TEST(S, v) procedure is relatively
speedy. In the worst possible case TEST only consumes an average of (P*/(1 -~
P*)Y inspections which according to (31) is below the average consumption of
the best directional evaluation procedure. The superiority of TEST stems from
the fact that it induces many cutoffs not necessarily permitted by EVAL or any
other evaluation scheme. As soon as one successor of a MAX node meets the
criterion V(S,)> v, all other Successors can be ignored. EVAL, by contrast,
would necessitate a further examination of the remaining successors to deter-
mine if any would possess a value higher than V(§,).

6. Analysis of SCOUT’s expected performance

Let § be a MAX node rooting an n-cycle tree (h =2n) with a uniform
branching degree d. Let z, denote the expected number of terminal examina-
tions undertaken by SCOUT. These examinations consist of those performed
during the EVAL(S,) phases (k=1,...,d) plus those performed during the
TEST(Sy, v, >) phases (k=2,...,d). Since the subtrees emanating from the
successors of S all have identically distributed terminal values, the number of

G CO() l’* I

positions examined in each EVAL(S,) phase have identical expectations, called
z,. Let v, be the test criterion during the TEST(S,, v, >) phase, and let ya(k)

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 131

and y.(k) have the same interpretations as in Section 3. The event that S, is
found to satisfy the criterion V(S,)> v, would consume a mean expenditure of
ya(k)+ z;, inspections while a successor found to refute this test would con-
sume, on the average, only y,(k) inspections. Thus, if G« stands for the
probability that successor S, would require an evaluation, we have:

d d
=20t 2 glza+yi(k)+ 2 (1= a)yn(k)

=21+ £ al+ 3 k) (32)

Since i would require an evaluation iff V(S,)> max[V(S,), V(Sa), ..., V(S.1)]
and all the node-values at any given level are independent, identically dis-
tributed and continuous random variables, we have:

%=%, k=2,.. .4 (33)

Moreover, since we are interested in a worst case analysis, each y,(k) can be
replaced by its highest possible value. This occurs when the probability that any
given terminal position ¢ satisfies V(r)> v, is equal to the fixed point prob-
ability P*. From (13) and (14) y,(k), in such a case, would be given by
(P*/(1=P*)P"! and we can write:

7= 2@+ (o) @1 | (34)
where
i1
(@=31 (35)

Note that this approximation is not too pessimistic in light of the fact that for
large n the values of all nodes converge rapidly toward the limiting value p*
and, therefore, most tests would employ a threshold level v, from the neigh-
borhood of v*,

To compute the solution of (34) we now examine the expected number of
inspections z, employed while evaluating any of the successors of S, say S,.
Since S, is a MIN position a successor would be submitted for evaluation iff its

.
n

JO
TN

132 J. PEARL

value is proven to be below the threshold level propagating from the left. Each
evaluation would require an average of z,_, inspections and each test would
consume at most an average of [x,; = (P*/(1 = P*)""? terminal inspections.
Consequently, using an argument similar to the one above, we obtain:

P* n=2
2= 2l @)+ (7o5s) | @-1) (36)
which, combining (34) and (36), yields: ;
=) @05 e+ ()
W=l -D(Eps) [c@+(7255)] (37)
(37) is a linear difference equation of the form:

Zn =@z, + KB" (38)
with '

zp=1,
K= _ 1)(1 ;I:*)z[g(d)+ (1 f;*)]’

5= (7).
a =), (39)

Its solution is given by:

.=a+kpB - (40)

-—a

Clearly, it is the relative size of @ and 8 which governs the asymptotic behavior
of z, for large values of n. However, since for all d we have:

P*(d
I_P*(d)>§(d)

(e.g., for d—w, P*/(1-P*)= O(dflog d) while {(d)=O(log d)) B would
become the dominant factor, and we can write:

K
B—a
or equivalently (with h = 2n):

g (41)

Zy ™~

Iicour(h, d. F)~ =1 FE=) - @)

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 133

THEOREM 5. The expected number of terminal examinations performed by
SCOUT in the evaluation of (h,d)-game trees with continuous terminal values
has a branching factor:

= (43)
-

So far, our analysis was based on the assumption that the terminal nodes
may be assigned continuous values. We will now demonstrate that Iscour is
substantially reduced if the terminal nodes are assigned only discrete values.

Let’s ignore the rare case where 1— P* coincides exactly with one of the
plateaus of F. When coincidence does not occur, we showed in Section 2 that
the values of all nodes at sufficiently high levels converge to the same limit,
given by the lowest terminal value v’ satisfying Fy (v')>1-P*. This con-
vergence has two effects on the complexity of SCOUT as analyzed in (32): first,
gx is no longer equal to 1/k but rather, converges to zero at high n for all
k > 1. The reason for this is that in order for V(S,) to be greater than V(S;)
(which is most probably equal to v’) it must exceed V/(S) by a finite positive
quantity and, at a very high h, finite differences between any two nodes are
extremely rare. Second, the threshold levels u, against which the
TEST(S,, v, >) procedures are performed are no longer close to v* but differ
from it by finite amounts. Under such conditions the proposition ‘V(S$;)> v’
can be t<¢sted more efficiently since rrest = d'? (see (29)).

Applying these considerations to the analysis of z, in (32) gives:

rscour ~ d"? (44)
and we obtain:
TueoreMm 6. The expected number of terminal positions examined by the

SCOUT procedures in evaluating a (h, d, Fy,)-game with discrete terminal values
has alranching factor:

Tscout = d? (45)
with exceptions only when one of the discrete values, v*, satisfies Fy(v*)=

1-P*

COROLLARY 6. For games with discrete terminal values satisfying the conditions
of Theorem 6, the SCOUT procedure is asymptotically optimal over all evalua-
tion algorithms.

Of course, the transition from rsorve = P*/{1 — P*) in the continuous case to
rsoLve = d'? in the discrete case does not occur abruptly. When the quan-

134 J. PEARL

tization levels are very close to each other it takes many more levels before
SCOUT begins to acquire the lower branching factor of d'? In fact, using the
discussion of Section 1, it is possible to compute at what height SCOUT begins
to act more efficiently. For example, if the terminal values are integers,
uniformly distributed from 1 to M, we know that at very high levels of the tree
the values of all nodes will converge to I*, where I'* is the lowest integer
satisfying Fy,(I*)>1- P*. The probability that a node n cycles away from the
bottom would acquire this value is:

P[V.(8)=1I*]=Fy,(I*)~ Fy,(I* - 1). (46)

If Fy, (I*)and Fy,(I*—1) are very close to each other, P[V,(S)=1I*] will be
governed by the linear regions of the curves in Fig. 2. Therefore, we can write:

PLV,($)=I7) = SEeal)

dFVO(u) Fvoatx-P-[FvU(I)— FV()(I — 1)]

and, using (5) and (10):

— *\2n
P[V,(S)=1I*]= [d(lp,f’] M. (47)
In order for the TEST procedures nested in SCOUT to achieve a branching
factor of d'” the parameter P,_, appearing in (15) must be sufficiently close to
zero. But this is achieved when P[V,(S)= I*] approaches unity, i.e., when h
satisfies:
log M A
he—280 2 pM, d). (48)

Thus, above the critical level hy(M, d) it becomes fairly sure that every node
has a minimax value /* and, consequently, the SCOUT procedure would have
to expand only d'? nodes per level. Note that the critical height increases
logarithmically with the number of quantization levels M.

Several improvements could be applied to the SCOUT algorithm to render it
more efficient. For example, when a TEST procedure issues a non-exempt
verdict, it could also return a new reference value and seme information
regarding how the decision was obtained in order to minimize the number of
nodes to be inspected by EVAL. The main reasons for introducing SCOUT
have been its conceptual and analytic simplicity and the fact that it possesses
the lowest branching factor of any algorithm known to date. However, the
potential of SCOUT as a practical game-searching procedure should not be
dismissed altogether. Recent simulation studies using he game of Kalah show?

*Peter Homeier, personal communication.

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 135

that the efficiency of SCOUT, even in its unpolished version, compares
favorably with that of the «—B procedure.

7. On the branching factor of the ALPHA-BETA (a-f) pro-
cedure

The reader is assumed to be familiar with the basic features of the ALPHA-
BETA (a—B) pruning method. Descriptions of the method can be found in the
text-books by Nilsson [4, Section 4] and Slagel {5, pp. 16-24]. A historical
survey of the development of the concept is given by Knuth and Moore [3,
Section 5]. ,

The fact that the number of terminal nodes examined by -8 may vary from
(d2 + g™ — 1) to d* was shown by Slagle and Dixon [6] and elaborated by
Knuth and Moore [3]. .

The analysis of expected performance using uniform trees with random
terminal values has begun with Fuller et al. [2] who obtained formulas by which
the average number of terminal examinations can be computed. Unfortunately,
the formulas are very complicated and would not facilitate an asymptotic
analysis. Simulation studies conducted by Fuller ef al. led to the estimate:

feg =~ do™.

Knuth and Moore {3] have analyzed a less powerful but simpler version of
the a—B procedure by ignoring deep cutoffs. They have shown that the
branching factor of this simplified model! is O(d/(log d)) and speculated that the
inclusion of deep cutoffs would not alter this behavior substantially. However,
the gap between the upper and lower bounds for the branching factor remained
appreciable, even for the simplified model.

A more recent paper by Baudet [1] contains several improvements. Starting
by considering possible equalities between terminal values, Baudet derived a
general formula for I, (deep cutoffs included) from which the branching
factor can be estimated. In particular, Baudet shows that for bivalued terminal
positions r,_, could be as high as P*/(1— P*) (a special case of (19)); and for
the continuous case that r,_; is lower bounded by r, 5 = P*/(1 ~ P*) (a special
case of (31)). A tighter upper bound for r,z was then computed which
significantly narrowed the gap left by Knuth and Moore to less than 20% in the
range 2=<d =32.

In view of the fact that the SCOUT algorithm was found to achieve the
lower bound P*/(1— P*), we were first led to believe that -8, which appears
to be much more economical than SCOUT, also achieves this bound and that
the uncertainty concerning the actual branching factor of a8 has finally been
eliminated. However, after several futile attempts to prove the superiority of
a-B over SCOUT, we found counter-examples demonstrating that SCOUT’s

136 J. PEARL

extra caution in testing prior to evaluation may sometimes pay off, causing it to
skip nodes which would be visited by a—8. In the diagram below, the node
marked ¢, would be examined by the -8 procedure but ignored by SCOUT.

When J is submitted to the test TEST(J, 5, >), the zero value assigned to node
t; causes the test to fail, whereas during the TEST(K, 5, >) phase, #, is skipped
by virtue of its elder sibling having the value 10. @—8, on the other hand, has
no way of finding out the low value of ¢, before ¢, is examined.

The converse situation can, of course, also be demonstrated. The diagram
below shows how a node (r;) which is visited by SCOUT is cut off by a-8.
However, the asymptotic performance of SCOUT is at least as good as that of

a—f3 by virtue of Theorem 4 and the fact that a—f is directional.

Dur jnability to demonstrate the asymptotic equivalence of SCOUT and a-8
on a node by node basis leaves the branching factor of the -8 procedure
enigmatic and renders its asymptotic optimality unsettled. We wish to con-
jecture, though, that «~B probably does reach the branching factor P*/(1 — P*)
and that it is, therefore, asymptotically optimal over all directional algorithms.
It would simply be too amusing to find a wasteful procedure such as SCOUT
outperforming the a—f procedure.?

However, the uncertainty regarding the branching factor of the a—8 pro-
cedure only pertains to continuous valued trees. We shall next demonstrate
that when the terminal positions are assigned discrete values, the a—8 pro-
cedure attains the absolute minimal branching factor of d'2.

The fact that at high levels almost all nodes attain the same minimax value,

cfoficin
1

>This conjecture has recently been confirmed (see Pearl, J., “The Solution for the Branching
Factor of the Alpha~Beta Pruning Algorithm,” UCLA-ENG-CSL-8019, School of Engineering and
Applied Science, University of California, Los Angeles, May 1980).

MINIMAX TREES AND GAME-SEARCHING PROCEDURES 137

v”. makes it increasingly probable that the a-f cutoff conditions* are met
successfully at all nodes where they are applicable and this, in turn, gives rise to
a branching factor of d'. For, consider the top m cycles of a (n+m)-cycle
tree. if all cutoff conditions are met at this portion of the tree, only 24™ —1 nth
level nodes need be expanded. Therefore, denoting by x, the expected number
of terminal positions examined by a~8 in evaluating any nth level node, and
by P, g(n. m) the probability that all cutoff conditions are satisfied whenever
applicable, we can write:

—‘;——s (2d" = 1)P,(n, m)+ d*[1 = P, 4(n, m)). (49)

On the other hand, the event of meeting all cutoff conditions is subsumed by
the event that all the 2d™ — 1 nodes expanded attain the limit value v*, and
consequently:

Pog(n.m)=P[V,_\(S) = p*]e™,
Now. letting m = n? and recalling (6) that P[V,_,(S) = v*] approaches unity at
a super exponential rate:

1 =PlV.a(s)=v*]=<(8)" for n > ng

where & is a fraction strictly smaller than 1, and ny a function of §, Fy(v;) and
Fi(vi_)) (see Theorem 1), we obtain:
lim d*"[1 =P, g(n, m)] =0

n—ex

and from (49):

Xeoy? 2
—=02d4").
X,
The effective branching factor for the entire (n + n?)-cycle tree, even assuming
that every node expanded at the nth cycle requires the examination of all 42"
terminal nodes under it, becomes:

r =

Ia.ﬂ

o

{2d"2 . d]1/z<n+n2) =4

1
34

7 —2

R

We summarize this result by stating:

THEOREM 7. The expected number of terminal positions examined by the ALPHA-
BETA procedure in evaluating a (h, d, F)game with discrete terminal values
has a branching factor r,_g = d'? with exceptions only when one of the discrete
values, v*. satisfies F(v*) =1~ P*.

‘2] contains an elaborate description of the a~8 cutoff conditions, using a notation similar to
ours.

138 I. PEARL

CoroLLARY 7. For games with discrete terminal values satisfying the conditions
of Theorem 7, the a—f procedure is asymptotically optimal over all evaluation
algorithms.

Paralleling our discussion of the SCOUT algorithm, -8 too does not
acquire the more efficient branching factor of 42 by an abrupt transition from
the continuous to the discrete case. If the terminal values are drawn from M

“equally likely integers, (48) provides an estimate for the height ho(M, d) at
which the search would become more efficient. Note, however, that it is not the
total number of quantization levels vy, vs,..., vy which affects the search
efficiency but rather the distances of Fy(v;) and Fy(vi-y) from 1—P*. Thus,
coarser quantizations in the neighborhood of v* have a more significant role in
speeding up the a—8 procedure.

Recently, Stockman [7] has introduced a non-directional algorithm which
examines fewer nodes than a-B. The magnitude of this improvement has not
been evaluated yet, but the superiority of Stockman’s algorithm could be one
of the following two types. It may either possess a reduced branching factor. or
it may exhibit a marginal improvement at low h’s which disappears on taller
trees. If the superiority is of the former type, it must be singular to the
continuous case because in the discrete case, Corollary 7 states that a-f# it
asymptotically optimal over all algorithms, directional as well as non-direc-
tional.

It would still be interesting, though, to find out if any non-directional
algorithm can solve a (h, d, P*)-game with branching factor lower than P*/(1 —
P*). If such an algorithm exists it could be incorporated into SCOUT (replac-
ing TEST) and thus enabling it to evaluate continuous valued game trees with a
branching factor lower than P*/(1 - P*).

REFERENCES

1. Baudet, G.M., On the branching factor of the alpha-beta Pmning algorithm, Arrificial Intelligence
10 (1978) 173-199.

2. Fulier, S.H., Gaschnig, .G. and Gillogly, J.I., An analysis of the alpha-beta Pruning aigorithm.
Department of Computer Science Report, Carnegie-Mellon University (July 1973).

3. Knuth, D.E. and Moore, R.N., An analysis of alpha-beta Pruning, Arificial Intelligence 6 (1975)
293-326,

4. Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence (McGraw-Hill, New York.
1971).

5. Slagle, I.R., Arificial Intelligence: The Heuristic Programming Approach (McGraw-Hill, New
York, 1971).

6. Slagle, J.R. and Dixon, J.K., Experiments with some programs that search game trees, J. ACM
2 (1969) 189-207.

7. Stockman, G., A minimax algorithm better than alpha-beta?, Arificial Intelligence 12 (1979)
179-196.

Received 2 January 1980 revised version received 12 March 1980

/

