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Abstract

This paper highlights relationships among stochastic
control theory, Lewis’ notion of "imaging", and the rep-
resentation of actions in AI systems. We show that the
language of causal graphs offers a practical solution to
the frame problem and its two satellites: the ramifi-
cation and concurrency problems. Finally, we present
a symbolic machinery that admits both probabilistic
and causal information and produces probabilistic state-
ments about the effect of actions and the impact of ob-
servations.

1 Representing and Revising
Probability Functions

Engineers consider the theory of stochastic control as
the basic paradigm in the design and analysis of sys-
tems operating in uncertain environments. Knowledge
in stochastic control theory is represented by a function
P(s), which measures the probability assigned to each
state s of the world, at any given time. Given P(s), it is
possible to calculate the probability of any conceivable
event E, by simply summing up P(s) over all states that
entail E. The process of revising P(s) in response to new
observations is handled by Bayes conditioning, since by
specifying P(s) one specifies not only the probability of
any event, but also the conditional probabilities P(s[e),
namely, the dynamics of how probabilities would change
with any conceivable observation e.

The question naturally arises how one could ever spec-
ify, store and revise a probability function P(s), when
the number of states is, in effect, astronomical. This
problem is the topic of much research in the literature on

probabilistic diagnostics, and it has been managed to a
large extent by graphical representations; Bayesian net-
works, influence diagrams, Markov networks etc. [Pearl,
1088].

2 Actions as Transformations of
Probability Functions

If an observation e causes an agent to modify its prob-
ability from P(s) to P(sIe), one may ask how probabil-
ities should change as a result of actions, rather than
observations. This question does not have a clear cut
answer since, in principle, actions are not part of stan-
dard probability theory; they do not serve as arguments
of probability expressions nor as events for conditioning
such expressions. Whenever an action is given a formal
symbol, that symbol serves merely as an index for dis-
tinguishing one probability function from another, but
not as a predicate which conveys information about the
effect of the action. This means, for example, ’that the
impact of two concurrent actions A and B need not have
any connection to the impact of each individual action.
Thus, while P(s) tells us everything about responding
to new observations, it tells us close to nothing about
responding to external actions.

In general, if an action A is to be described as a
function that takes P(s) and transforms it to PA(S),
then Bayesian conditioning is clearly inadequate for this
transformation. For example, consider the statements:
"I have observed the barometer reading to be x" and "I
intervened and set the barometer reading to x". If pro-
cessed by Bayes conditioning on the event "the barome-
ter reading is x" these two reports would have the same
impact on our current probabilities, yet we certainly do

204

In Symposium Notes of the 1994 AAAI Spring Symposium on Decision-Theoretic Planning, 
204-210, March 1994. 

TECHNICAL REPORT 
R-204 

March 1994



not consider the two reports equally informative about
an incoming storm.

Philosophers [Lewis, 1974] studied another probabil-
ity transformation called "imaging" (to be distinguished
from "conditioning") which was deemed useful in the
analysis of subjunctive conditionals. Whereas Bayes
conditioning P(s[e) transfers the entire probability mass
from states excluded by e to the remaining states (in pro-
portion to their current P(s)), imaging works differently;
each excluded state s transfers its mass individually to a
select set of states S* (s), which are considered "closest"
to s. The reason why imaging is a more adequate repre-
sentation of transformations associated with actions can
be seen more clearly through a representation theorem
due to Gardenfors [1988, Theorem 5.2 pp. 113] (strangely,
the connection to actions never appears in Gardenfors’
analysis). Gardenfors’ theorem states that a probability
update operator P(s) --~ PA(s) is an imaging operator
iff it preserves mixtures, i.e.,

[aP(s) (1- a)P’(S)]A = s PA(s) + (1 -- a)P~(s) (1)

for all constants 1 > a > 0, all propositions A , and
all probability functions P and P~. In other words, the
update of any mixture is the mixture of the updates1.

This property, called homomorphism, is what permits
us to specify actions in terms of transition probabilities,
as it is usually done in stochastic control. Denoting by
PA(SlS~) the probability resulting from acting A on a
known state s~, homomorphism (1) dictates:

PA(s) = ~ PA(Sls’)P(s’) (2)
$1

saying that, whenever s~ is not known with certainty,
PA(s) is given by a weighted sum ofPa(sls’) over s’, with
the weight being the current probability function P(s~).
Contrasting Eq. (2) with Bayes conditioning formula,

P(slA) = ~ P(s]s’, A)P(s’IA), (3)
St

(2) can be interpreted as asserting that s’ and A are
independent, namely, A acts not as an observed proposi-
tion, but as an exogenous force since it does not alter the
prior probability P(s’) (ordinary propositions cannot be
independent of a state).

3 Action Representation: the
Frame, Concurrency, and
Ramification Problems

Imaging, hence homomorphism, leads to substantial sav-
ings in the representation of actions. Instead of speci-

1 Assumption (1) is reflected in the (U8) postulate of [Katsuno
and Mendelzon, 1991]: (gl v K2)otz = (Klo#) v (K2o#), where o
is an update operator

fying a probability Pa(s) for every probability function
P(s) anunboundedly long description, Eq. (2) tell
us that for each action A we need to specify just one
conditional probability PA(s[s~). This is indeed where
stochastic control theory takes off; the states s and s~

are normally treated as points in some Euclidean space
of real variables or parameters, and the transition proba-
bilities PA(S[S’) are encoded as deterministic equations-
of-motion corrupted by random disturbances.

While providing a more adequate and general frame-
work for actions, imaging leaves the precise specification
of the transition function almost unconstrained. It does
not constrain, for example, the transition associate with
a concurrent action relative to those of its constituents.
Aside from insisting on PA(s[s’) = 0 for every state s sat-
isfying --A, we must also specify the distribution among
the states satisfying A, and the number of such states
may be enormous. The task of formalizing and repre-
senting these specifications can be viewed as the prob-
abilistic version of the infamous frame problem and its
two satellites, the ramification and concurrent actions
problems.

An assumption commonly found in the literature is
that the effect of an elementary action do(q) is merely
to change --q to q in case the current state satisfies -~q,
but, otherwise, to leave things unaltered2. We can call
this assumption the "delta" rule, variants of which are
embedded in STRIPS as well as in probabilistic planning
systems. In BURIDAN [Kushmerick et al, 1993], for ex-
ample, every action is specified as a probabilistic mixture
of several elementary actions, each operating under the
delta rule.

The problem with the delta rule and its variants, is
that they do not take into account the indirect ramifica-
tions of an action such as, for example, those triggered
by chains of causally related events. To handle such
ramifications we must construct a causal theory of the
domain, specifying which event chains are likely to be
triggered by a given action (the ramification problem)
and how these chains interact when triggered by several
actions (the concurrent action problem).

A related paper at this symposium [Darwiche & Pearl,
1994] shows how the frame, ramification and concurrency
problem can be handled effectively using the language
of causal graphs. The key idea is that causal knowledge
can efficiently be organized in terms of just a few basic
mechanisms, each involving a relatively small number of
variables. Each external elementary action overrules just
one mechanism leaving the others unaltered. The speci-
fication of an action then requires only the identification
of the mechanism which are overruled by that action.
Once this is identified, the effect of the action (or combi-
nations thereof) can be computed from the constraints

2This assumption corresponds to Dalal’s [1988] database up-
date, which uses the Hamming distance to define the "closest
world" in Lewis’, imaging.
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imposed by the remaining mechanisms.
The semantics behind probabilistic causal graphs and

their relations to actions and belief networks have been
discussed in [Goldszmidt & Pearl 1992, Pearl 1993a,
Spirtes et al 1993 and Pearl 1993b]. In Spirtes et al
[1993] and Pearl [1993b], for example, it is shown how the
graphical representation can be used to facilitate quanti-
tative predictions of the effects of interventions, includ-
ing interventions that were not contemplated during the
network construction a

The problem addressed in the remainder of this pa-
per is to quantify the effect of interventions when the
causal graph is not fully parameterized, that is, we are
given the topology of the graph but not the conditional
probabilities on all variables. Numerical probabilities
will be given to only a subset of variables, in the form
of unstructured conditional probability sentences. This
is a more realistic setting in AI applications, where the
user/designer might not have either the patience or the
knowledge necessary for the specification of a complete
distribution function. Some combinations of variables
may be too esoteric to be assigned probabilities, and
some variables may be too hypothetical (e.g., "weather
conditions" or "attitude") to even be parameterized nu-
merically.

To manage this problem, we introduce a calculus
which operates on whatever probabilistic and causal
information is available, and, using symbolic transfor-
mations on the input sentences, produces probabilis-
tic assessments of the effect of actions. The calculus
admits two types of conditioning operators: ordinary
Bayes conditioning, P(yIX = x), and causal condition-
ing, P(ylset(X = x)), that is, the probability of Y = 
conditioned on holding X constant (at x) by deliber-
ate external action. Given a causal graph and an input
set of conditional probabilities, the calculus derives new
conditional probabilities of both the Bayesian and the
causal types, and, whenever possible, generates proba-
bilistic formulas for the effect of interventions in terms
of the input information.

4 A Calculus of Actions

and are summarized in [Pearl 1993b]. We denote by Gy
(Gx_., respectively) the graph obtained by deleting from
G all arrows pointing to (emerging from, respectively)
nodes in X.

Finally, we replace the expression P(y[do(x), by a
simpler expression P(yl~, z), using the ^ symbol to iden-
tify the variables that are kept constant externally. In
words, the expression P(y[$, z) stands for the probabil-
ity of Y = y given that Z = z is observed and X is held
constant at x.

4.2 Inference Rules

Armed with this notation we are now able to formulate
the three basic inference rules of the proposed calculus.

Theorem 1 Given a causal theory < P,G >, for any
sets of variables X, ]I, Z, W we have:

Rule 1 Insertion~deletion of Observations (Bayes con-
ditioning)

P(yJ ,z,w) = if (Y ]]_1_ Z]X,W)G_z
(4)

Rule 2 Action/observation Exchange
P(ylfc, w) = P(y]f¢, z, w) if (Y H__ Z]X, W)G- -

(5)
Rule 3 Insertion/deletion of actions

P(yl , w) = P(y]$, w) if (Y 5(6)
Each of the inference rules above can be proven from

the basic interpretation of the "do(x)" operation as a
replacement of the causal mechanism which connects X
to its parents prior to the action by a new mechanism
X = x introduced by the intervention. Graphically, the
replacement of this mechanism is equivalent to removing
the links between X and its parents in G, while keeping
the rest of the graph intact. This results in the graph

Gr.

4.1 Preliminary Notation

Let X, Y, Z, W be four arbitrary disjoint sets of nodes
in the dag G. We say that X and Y are independent
given Z in G, denoted (X H_I YIZ)a, if the set Z d-
separates all paths from X to Y in G. A causal theory is
a pair < P, G >, where G is a dag and P is a probability
distribution compatible with G, that is, P satisfies every
conditional independence relation that holds in G. The
properties of d-separation are discussed in [Pearl 1988]

3Influence diagrams, in contrast, require that actions be con-
sidered in advance as part of the network.

Rule 1 reaffirms d-separation as a legitimate test for
Bayesian conditional independence in the distribution
determined by the intervention do(X = x), hence the
graph G~-.

Rule 2 provides conditions for an external intervention
do(Z = z) to have the same effect on Y as the passive
observation Z -- z. It is equivalent to the "back-door"
criterion of [Pearl, 1993b].

Rule 3 provides conditions for introducing (or deleting)
an external intervention do(Z = z) without affecting the
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probability of Y = y. The validity of this rule stems,
again, from simulating the intervention do(Z = z) by
severing all relations between Z and its parent (hence
the graph G~---2").

4.3 Example

We will now demonstrate how these inference rules can
be used to quantify the effect of actions, given partially
specified causal theories. Consider the causal theory
< P(z,y,z),G > where G is the graph given in Fig-
ure 1 below, and P(x, y, z) is the distribution over the

Task-2, compute P(yI~’)
Here we cannot apply Rule 2 to exchange :7 by z, because
Gz_ contains a path from Z to Y (so called a "back-door"
path [Pearl, 1993b]). Naturally, we would like to "block"
this path by conditioning on variables (such as X) that
reside on that path. Symbolically, this operation involves
conditioning and summing over all values of X,

We now have to deal with two expressions involving
Y., P(ylx, ~’) and P(xl~). The latter can be readily com-
puted by applying Rule 3 for action deletion.

("~ U (Unobserved)

¯ ~O *O
X Z F

Figure 1

observed variables X, Y, Z. Since U is unobserved, the
theory is only partially specified; it will be impossible to
infer all required parameters such as P(u), or P(ylz, u).
We will see however that this structure still permits us
to quantify, using our calculus, the effect of every action
on every observed variable.

The applicability of each inference rule requires that
certain d-separation conditions hold in some graph, the
structure of which would vary with the expressions to be
manipulated. Figure 2 displays the graphs that will be
needed for the derivations that follow.

¯ ¯ PO ¯ ¯ :;
X Z ? X Z Y

¯ ~O ¯ O-- --0 ¯
F

X Z r X Z

G1 GI I

Figure 2

Task-l, compute P(zl~)
This task can be accomplished in one step, since G
satisfies the applicability condition for Rule 2, namely
X [I Z in Gx_ (because the path X ~ U ---+ Y ~-- Z is
blo-~-ed by the collider at Y) and we can write

P(xl0 = P(x)if I X)a (9)

noting that, indeed, X and Z are d-separated in G~z.
(This can be seen immediately from Figure 1; manipu-
lating Z will have no effect on X.) To reduce the former
quantity, P(ylx, ~), we consult Rule 

P(ylx, i) P(ylx, z) if (Z I/YIX)a.__ (10

and note that X d-separates Z from Y in G_z. This
allows us to write Eq. (8) 

P(YIi) = ~ P(ylx, z)P(x) = E~,P(yIx, (11

which is a special case of the "back-door" formula [Pearl,
1993b, Eq. (14)] with S = X. This formula appears 
a number of treatments on causal effects (see for ex-
ample [Rosenbaum & Rubin, 1983; Rosenbaum, 1989;
Pratt & Schlaifer, i988]) where the legitimizing condi-
tion, (Z II YIX)Gz was given a variety of names, all
based on c’o’nditionaT-independence judgments of one sort
or another. Action calculus replaces such judgments by
formal tests (d-separation) on a single graph (G) which
represents the domain knowledge.

We are now ready to tackle a harder task, the evalu-
ation of P(yl~), which cannot be reduced to an obser-
vational expression by direct application of any of the
inference rules.

Task-3, compute P(yl~)

Writing

P(yI~) = P(ylz, ~)P(zl~) (12)

we see that the term P(zl~) was reduced in Eq. (7) while
no rule can be applied to eliminate the manipulation
symbol ̂  from the term P(ylz, ~). However, we can add
a ^ symbol to this term via Rule 2

P(zl~)=P(zlx) (7) P(ylz,,~) = P(yll, ~) (13)
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since Figure 2 shows:

(Y IlL zIx)a 

We can now delete the action ~ from P(y]~., ~) using Rule
3, since Y H_]_ XIZ holds in G~-~. Thus, we have

P(ylz, (14)
which was calculated in Eq. (11). Substituting, (11), 
and (7) back in (12), finally yields

P(YlX’) = Z P(zlx) ~_~ P(ylx’, z)P(x’) (15)
$ff!

Eq. (15) was named the Mediating Variable formula 
[Pearl, 1993c], where it was derived by algebraic manip-
ulation of the joint distribution and taking the expecta-
tion over U.

Task-4, compute P(y, zinc)

P(y, zl&) = P(ylz, ~)P(zl&) (16)

The two terms on the r.h.s, were derived before in Eqs.

(7) and (14), from which we obtain

P(y,z]$) = P(yl~)P(zlx)
= P(zlx) ~, P(ylx’, z)P(x’)

5 Discussion

In this example we were able to compute answers to all
possible queries of the form P(ylz, ~) where Y, Z, and
X are subsets of observed variables. In general, this will
not be the case. For example, there is no general way of
computing P(yl~,) from the observed distribution when-
ever the causal model contains the subgraph shown in
Figure 3, where X and Y are adjacent, and the dashed

o" ...

X Y

Figure 3

line represents a path traversing unobserved variable4.

4 One can calculate upper and lower bounds on P(y[&) and these
bounds may coincide for special distributions, P(x, y, z) [Balke &
Pearl, 1993] but there is no way of computing P(yl&) for every
distribution P(x, y, z).

Similarly, our ability to compute P(yl&) for every pair
of singleton variables does not ensure our ability to com-
pute joint distributions, e.g. P(yt,y21$). Figure 4, for
example, shows a causal graph where both P(YlI~) and
P(y21&) are computable, but P(Yl, Y21&) is not. Conse-
quently, we cannot compute P(zl&). Interestingly, the
graph of Figure 4 is the smallest graph which does not

.......

X Q~ ............ \u \

Z

¥2

Figure 4

contain the pattern of Figure 3 and still presents an un-
computable causal effect.

Another interesting feature demonstrated by the net-
work in Figure 4 is that it is often easier to compute the
effect of a joint action than the effects of its constituent
singleton actions5. In this example, it is possible to com-
pute P(zl&, ~Jl), yet there is no way of computing P(zl&).
For example, the former can be evaluated by invoking
Rule 2, writing

P(zl& ~12) = ~_, P(zIY~, x, ~k )P(y~ lx, ~2’)
yl

= ~ P(z]Yl,xl,Y2)P(Yllx)
yl

On the other hand, Rule 2 cannot be applied to the
computation of P(yl Ix, y2) because, conditioned on Y2,
X and ]I1 are d-connected in Gx_ (through the dashed
lines). We conjecture, however, that whenever P(y[&) is
computable for every singleton xi, then P(y]xl, x~, ...xl)
is computable as well, for any subset of variables

Computing the effect of actions from partial theories
in which probabilities are specified on a select subset
of (observed) variables is an extremely important task
in statistics and socio-economic modeling, since it deter-
mines when a parameter of a causal theory are (so called)
"identifiable" from non-experimental data, hence, when
randomized experiments are not needed. The calculus

SThe fact that the two tasks are not equivalent was brought to
my attention by James Robins who has worked out many of these
computations in the context of sequential treatment management
[Robins 1989].
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proposed above, indeed uncovers possibilities that have
remained unnoticed by economists and statisticians. For
example, the structure of Figure 4 uncovers a class of
observational studies in which the causal effect of an ac-
tion (X) can be determined by measuring a variable (Z)
that mediates the interaction between the action and its
effect (Y). The relevance of such structures in practi-
cal situations can be seen, for instance, if we identify X
with smoking, Y with lung cancer, Z with the amount
of tar deposits in one’s lung and U with an unobserved
carcinogenic genotype which, according to the tobacco
industry also induces an inborn crave for nicotine. Eq.
(20) would provide us in this case with the means for
quantifying, from non-experimental data, the causal ef-
fect of smoking on cancer. (Assuming, of course, that
the data P(x, y, z) is made available, and that we be-
lieve that smoking does not have a direct effect on lung
cancer except that mediated by tar deposits).

However, our calculus is not limited to the derivation
of causal probabilities from non-causal probabilities; we
can reverse the role, and derive conditional and causal
probabilities from causal expressions as well. For exam-
ple, given the graph of figure 3 together with the quanti-
ties P(z[~) and P(y[~), we can derive an expression 
P(yI~),

P(y]~) = ~ P(y]~)P(zl~) (17)
z

using the steps that led to Eq. (19). Note that the deriva-
tion is still valid when we add a common cause to X and
Z, which is the most general condition under which the
transitivity of causal relationships holds.
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