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ABSTRACT OF THE DISSERTATION

Qualitative Probabilities:
A Normative Framework for Commonsense
Reasoning

by

Moisés Goldszmidt

Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1992
Professor Judea Pearl, Chair

Intelligent agents are expected to generate plausible predictions and explanations
in partially unknown and highly dynamic environments. Thus, they should be
able to retract old conclusions in light of new evidence and to efficiently man-
age wide fluctuations of uncertainty. Neither mathematical logic nor numerical
probability fully accommodates these requirements.

In this dissertation I propose a formalism that facilitates reasoning with qual-
itative rules, facts, and deductively closed beliefs (as in logic), yet permits us to
retract beliefs in response to changing contexts and imprecise observations (as in
probability). Domain knowledge is encoded as if-then rules admitting exceptions
with different degrees of abnormality, and queries specify contexts with different
levels of precision. I develop effective procedures for testing the consistency of
such knowledge bases and for computing whether (and to what degree) a given
query is confirmed or denied. These procedures require a polynomial number
of propositional satisfiability tests and hence are tractable for Horn expressions.
Finally, I show how to give rules causal character by enforcing a Markovian condi-
tion of independence. The resulting formalism provides the necessary machinery
for embodying belief updates and belief revision, generating explanations, and
reasoning about actions and change.
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CHAPTER 1

Introduction

In their everyday interactions with the world, people continuously jump to con-
clusions on the basis of imperfect and defeasible information. For example, we
normally expect to find our car where we parked it last, and upon turning the
ignition key, we expect the engine to start. These expectations are plausible but
not provable from what is known at the time they are assessed, and they may
be replaced as new evidence is encountered. A stolen car will not be where we
parked it last. An engine with a dead battery will not start. Yet, despite the
multitude of possible scenarios, people operate under a fairly uniform consensus
as to what is plausible, that is, what should be upheld as true for practical pur-
poses. This suggests that there are simple principles that govern the dynamics of
plausible reasoning, including the distinction between plausible and implausible
conclusions.

This dissertation is concerned with casting the principles governing plausible
reasoning in a formal language. We wish to create through such formalization
programs capable both of accepting and organizing input ranging from defeasible
information such as “typically, if we turn the car’s ignition the engine starts”
to nondefeasible (strict) information such as “all humans are mortal” and of an-
swering queries about what would be a plausible conclusion given some particular
context. Figure 1.1 presents a schematic of this project. The set of “if ¢; then
;" rules, ¢; % Y, represents a knowledge base encoding information about the
world. The incompleteness of this information is modeled by allowing exceptions
to these rules, where §; represents the degree of abnormality of these exceptions.
Rules expressing what is normally the case without excluding the possibility of
exceptions, are commonly known in Artificial Intelligence (AI) as default rules.!
A query is a pair (¢,0) representing the context ¢ and the target o. The con-
text of a query contains factual information on what is currently known about
the environment, which may originate from either passive observations or ac-
tive manipulations.? The target o is a propositional hypothesis representing the

In the database literature, these rules play the role of integrity constraints, but are normally
treated as hard laws, tolerating no exceptions [111].
2This distinction is of crucial importance, as shown in Section 5.4.



Knowledge Base:

§
o *l”,f’l Confirmed
52 "
A= Y2 7 v ———— 0 (degree?)
©n §—"—>¢n Denied

¢: Actions — Observations Query: (¢, 0)

Figure 1.1: Schematic of the system proposed.

agent’s current interest. The output is a decision about whether o is plausible
(and to what degree) given that ¢ is true.

Recently, defaults have been proposed in Al for expressing commonsense
knowledge [109, 45]. Inheritance hierarchies, for instance, encode the prototypi-
cal properties of classes as defaults. In reasoning about change, defaults encode
the tendency of properties to remain invariant in the absence of relevant changes.
In diagnostic reasoning, defaults encode the rarity of faulty components. Even
deductive databases usually embed default “closed-world” assumptions to fill in
missing information. In short, any activity for which we cannot afford to spec-
ify in advance all responses to all conceivable situations seems to require use of
defaults.

Initial attempts in Al to formalize plausible reasoning based on default rules
favored extensions of classical logic [108, 87, 88, 90] to account for the nonmono-
tonicity of the default-based inferences.®> Deduction in classical logic is monotonic:
given that C' is entailed by a theory T', C is also entailed by a theory T”, where
T is a superset of T'. On the other hand, inferences based on default rules are
nonmonotonic: For example, I belicve/infer that my car’s engine will start (C)
once I turn the ignition key (7"), but would like to retract this belief (and in-
fer that it will not start, i.e., =C) if the battery is dead (7”). Although these
extensions successfully reproduced this nonmonotonic behavior, the interactions
among defaults rules yield conflicting and sometimes couterintuitive conclusions.

3These formalisms are reviewed in Section 1.2.



For example, consider a knowledge base containing the defaults: “typically pen-
guins don’t fly”, “typically birds fly”, and the nondefeasible rule “all penguins
are birds”. Given that Tweety is a penguin we may conclude that Tweety does
not fly based on the information provided by the first default. On the other hand,
since Tweety is a penguin, she is also a bird, we may conclude that Tweety flies
using the second default rule. The reason we prefer to uphold the conclusion that
Tweety does not fly is based on the intuition that defaults providing information
about a more specific class of individuals (i.e., penguins in this case) should be
considered with a higher priority. There are other cases of default interactions
and criteria for avoiding undesirable inferences based on assumptions of minimal
change, and on notions of causality and explanation [37, 36, 8, 45, 121, 54, 118].
Some proposals address the problem of default interactions by asking the user to
explicitly specify preferences among rules (e.g., [112, 30, 88, 80]). Ideally, how-
ever, such information should be extracted from the rules themselves (or their se-
mantical interpretation), since anticipating interactions among defaults becomes
increasingly difficult as the size of the knowledge base grows. Furthermore, user
specification of these preferences seems to require a possibly exhaustive enumer-
ation of cases, situations, and exceptions, which was precisely what the use of
default rules meant to avoid. A related problem is the observation that some
plausible conclusions are harder to retract than others in the face of conflicting
evidence. This observation suggests that semantical interpretations of plausible
beliefs should involve rankings or orderings among these beliefs (in addition to
truth values) [33, 34, 120].

On the positive side a formalization in terms of a logical framework offers
several advantages such as: independence of a specific implementation or do-
main and the possibilities of model theoretic interpretations and well-founded
semantics.

On the other extreme, an alternative to extending classical logic may be prob-
ability theory: Uncertainty can be used to represent both the incompleteness
of the information in the knowledge base and numbers can be used to model
rankings of beliefs. Furthermore, Bayesian conditioning offers a successful and
well understood method of dealing with retractions and belief change. Yet, a
straightforward probabilistic interpretation of plausibility in terms of numbers
and thresholds will encounter obstacles of its own. First, the picture we form
about our environment seems to be encoded in terms of plain beliefs, that is,
propositions that are accepted as true (for practical purposes), and continue to
guide our actions until refuted by new evidence. These propositions are trans-
mitted linguistically, and are qualified by expressions such as such as “generally”,
“extremely typical”, and “very likely”, which are void of precise numerical value.



Second, plain beliefs also seem to be deductively closed: If ¢ is believed and ¢ is
believed, then ¥ A ¢ is believed as well. Note that if we associate the acceptance
of 1 as a believed proposition with P(1) > t, where ¢ is some suitable threshold,
it is possible to have both P(y) >t and P(p) > ¢ but P(¢ A ¢) < t.

In this thesis, I propose a conditional interpretation of the default rules that
presents the merits of both logic and probability. The sentence “if ¢ then ”
is interpreted as imposing a preference for accepting 1 over =) if ¢ is all that
is known. This interpretation is based on an abstraction of probability theory
where “if ¢ then ¢” constrains the conditional probability of ¥ given ¢ to be
infinitesimally close to 1. Intuitively, this amounts to according the consequence
1 a very high likelihood when ¢ is all we know.* As will be seen, at the heart of
this formulation 1s the concept of default priorities, namely, a natural ordering
of the rules which is derived automatically from the knowledge base. Repre-
senting and reasoning with causal relations is enabled through a stratified set of
(probabilistic) independencies based on Markovian considerations. The result is
a model-theoretic and semantically well-founded account of plausible beliefs that,
as in classical logic, are qualitative and deductively closed and, as in probability,
are subject to retraction and to varying degrees of firmness.

1.1 Overview and Summary of Contributions

Attaching probabilistic semantics to conditional sentences (i.e., if-then expres-
sions) goes back to Adams [1, 2], who developed a logic of indicative conditionals
based on infinitesimal probabilities. This logic includes a norm of consistency,
called p-consistency, which tolerates exceptions (e.g., “typically, if ¢ then ¢ and
if o A ¢’ then —3”) and rules out contradictions (e.g., the pair “typically, if ¢
then ¥” and “typically, if ¢ then —¢”). It also admits a notion of entailment,
called p-entailment, which guarantees arbitrarily high probabilities for the con-
clusions whenever sufficiently high probabilities can be consistently assigned to
the premises.

Unfortunately, Adams’ notions of p-consistency and p-entailment were re-
stricted to knowledge bases containing only defeasible information. The first
contribution of this thesis is the extension of Adams’ consistency and entailment
to handle both defeasible and strict information (Chap. 2). Strict information
is essential for representing definitional or taxonomic information (e.g., “all men
are mortal”, “penguins are birds”), and incorporating such information into the

4For a different probabilistic interpretation of the default rules, see Neufeld and Poole [93].
For a statistical interpretation, see the Bacchus [6].



knowledge base requires nontrivial changes in the notions of both consistency
and entailment. This extension cannot be accomplished by simply treating to
the strict conditional ¢ = o as the material implication ¢ D o. For example,
whereas the pair {b D f, b D =f} is logically consistent, the desired semantics
should render the set {b = f, b = —f} inconsistent. In Chapter 2, I provide
a probabilistic semantics for strict conditionals ¢ = ¢ as constraints on admis-
sible probability functions forcing the conditional probability of o given ¢ to be
equal to 1. I then establish effective decision procedures for testing both consis-
tency and entailment in knowledge bases containing mixtures of defeasible and
strict information. Procedures for reasoning with inconsistent knowledge bases
and ways of uncovering the set of rules responsible for the inconsistency are also

AQIiiiid

The second contribution is the formalization and characterization of more
powerful notions of entailment (Chaps. 3 and 4). Default reasoning requires two
facilities: One forcing retraction of conclusions in light of new refuting evidence
(e.g., once we learn that the battery is dead, we no longer expect the engine
to start); the other protecting conclusions from retraction in light of new but
irrelevant evidence (e.g., the color of the car should not affect inferences regarding
ignition keys, batteries, or engines). p-Entailment excels in the first task, but
fails on the second because it is extremely cautious; it only sanctions conclusions
that attain high probability in all probability distributions p-consistent with the
knowledge base. In order to respect the communication convention that, unless
stated explicitly, properties are presumed to be irrelevant to each other, we must
consider only distributions that minimize dependencies, that is, they contain only
the dependencies that are absolutely implied by the knowledge base (and none
others).

Chapter 3 details an extension of p-entailment where dependencies are mini-
mized via the principle of maximum entropy.® Chapter 3 also provides symbolic
procedures for answering queries based on this principle, without the explicit
computation of the maximum entropy distribution. A second extension of p-
entailment, called system-Z7, is presented in Chapter 4. System-Z* restricts the
set of probability distributions to those that assign to each model the highest
possible likelihood consistent with the default rules. The behavior of these two
formalisms is compared and new insights on how semantical features influence the
plausibility of the resulting theories are discussed. The approach based on maxi-
mum entropy yields more intuitive conclusions in some domains, but system-Z*

>The results in this chapter were originally reported in Goldszmidt and Pearl [49].
6The use of maximum entropy in default reasoning as an extension of p-entailment was
proposed by Pearl in [97].



provides considerable computational advantages. An earlier version of Chapter 3
can be found in Goldszmidt et. al. [47], while preliminary versions of the results
in Chapter 4 were first reported in Goldszmidt and Pearl [50, 53]. These two for-
malisms, maximum entropy and system-Z¥, are completely independent of each
other, and Chapter 3 is not a prerequisite for the understanding of Chapter 4.

The third contribution of this thesis is the development of a semantical the-
ory and a computational facility for reasoning with variable strength defaults
(Sec. 4.3) and soft or imprecise evidence (Sec. 4.5). The capability to reason with
variable strength defaults is necessary in domains such as diagnosis, where the
analyst may feel strongly that failures are more likely to occur in one type of
devices (e.g., multipliers) than in other (e.g., adders). The capability of process-
ing soft evidence is important when the context ¢ (of a query) is not given with
absolute certainty, that is, when there is some vague testimony supporting ¢ but
that testimony is undisclosed (or cannot be articulated using the basic proposi-
tions in our language, e.g., testimony of the senses) so that only a summary of
that testimony saying that “¢ is supported to a degree n” can be ascertained.

The introduction of graded defaults and soft evidence requires new query
answering machinery which, in the traditional probabilistic setting turned out to
be intractable.” This thesis shows that the symbolic nature of system-Z% admits
a more manageable class of procedures; they require a polynomial number of
propositional satisfiability tests and are therefore tractable for Horn expressions.

Augmenting the proposed semantics with the capability to represent causal
relations, actions, and reasoning about change is the final contribution of this the-
sis (Chap. 5). This is accomplished by invoking the principle of Markov shielding,
which imposes a stratified set of (probabilistic) independences among events. In-
formally, the principle can be stated as follows:

Knowing the set of causes for a given effect renders the effect inde-
pendent of all prior events.

I show how the incorporation of this principle gives rise to a norm of consistency,
applicable to knowledge bases representing causal relations,® and how it solves
some of the common problems associated with tasks of prediction and explanation
reported in the nonmonotonic literature.

"Most logic-based schemes for default reasoning were also shown to be highly intractable [55]
residing in the Xf level of the complexity hierarchy, compared with AL in our system.

8To the best of my knowledge, this is the first consistency criterion devised to ensure the
coherence of causal theories.



In Section 5.4, I demonstrate how the framework proposed in this dissertation
can embody and unify the theories of belief revision (see Alchourrén, Gardenfors
and Makinson [3]) and belief updating (see Katsuno and Mendelzon [65]), two
theories of belief change that have been developed independently of research in
default reasoning and causal reasoning. Basically, theories of belief change seek
general principles for constraining the process by which a rational agent ought
to incorporate a new piece of information ¢ into an existing set of beliefs ¥,
regardless of how the two are represented and manipulated. Belief revision deals
with information obtained through new observations in a static world, while belief
update deals with tracing changes in an evolving world (subjected perhaps to the
external influence of actions).? I show that both revision and update can be
modeled within the same framework using a qualitative version of probabilistic
conditioning.

Finally, in Chapter 6 I discuss some open problems and suggest further chal-
lenges.

1.2 Extensional and Conditional Approaches

Approaches for formalizing defeasible reasoning can be loosely categorized as
either extensional or conditional, depending on the interpretation assigned to the
rule p — .'° Extensional approaches are based on “extending” classical logic
by using defaults as rules for augmenting the sets of beliefs in the absence of
conflicting evidence (see [87, 108, 89, 90, 45, 109, 38]). These approaches regard
the default “if ¢ then %” as a qualified license believe v given the truth of .
Conditional approaches, on the other hand, interpret the same rule as a hard but
context dependent constraint to prefer ¢ over =t when ¢ is all that is known
(see [36, 38, 69, T4, 23, 101, 14, 49, 50]). Conditional approaches are generally
related to conditional logics studied in philosophy.!!

As mentioned above, extensional approaches produced systems that exhibit
many aspects of nonmonotonicity, thus allowing the retraction of conclusions in
light of new information. However, they yield ambiguous results when confronted
with conflicting defaults, with no way of distinguishing the intended from the un-
intended conclusions (see [112, 57]). In order to impose preferences and prevent
generation of undesired inferences, special mechanisms must be devised to permit

Preliminary versions of this chapter can be found in Goldszmidt and Pearl [54, 52].

10Not all formalisms can be categorized as either extensional or conditional. The approach
based on multivalued logics proposed by Ginsberg [46] is one such example.

HFor a survey of conditional logics see [94].



the specification of such preferences in the extensional approaches. These include,
for example, special nonnormal defaults in default logic [30] (see Sec. 1.2.1) and
priority-driven minimizations in circumscription [88] (see See. 1.2.2). Such mech-
anisms conflict with the original intent of default inference systems, since they
require a possibly exhaustive enumeration of the exceptions to each default rule
and/or an omniscient user capable of predicting and prioritizing all conceivable
interactions among default rules.

In contrast, proposals based on conditional approaches have proven success-
ful in enforcing the desired preferences in cases of conflicting defaults (see Ex-
amples 2.1 and 2.2). These preferences stem automatically from the semantical
interpretation of the default rules, based on either an infinitesimal abstraction
of probability theory or in rankings among possible worlds.'?> Unfortunately, the
initial versions of these conditional formalisms failed to sanction some desirable
patterns of inference that are readily sanctioned in common discourse [36, 97].
Their greatest limitation stems from the failure to properly handle irrelevant in-
formation. Recent extensions such as Delgrande’s [23], Lehmann and Magidor’s
rational closure [74], and Pearl’s system-Z [100], were successful in capturing
some aspects of irrelevance, but are still unable to handle some cases, for exam-
ple, property inheritance across exceptional subclasses (see Chapter 3). Solving
these problems is one of the main contributions of this dissertation (Chaps. 3
and 4). Comparisons to Lehmann and Magidor’s work can be found in Sec-
tions 3.2, 3.4, and 3.6.'% System-Z is a special case of system-Z* developed in
Chapter 4. Other conditional approaches described in the literature are Geflner’s
conditional entailment [36, 38] and Boutilier’s modal logic CO* [14]. Conditional
entailment is one of the most powerful formalisms for closing the gap between
conditional and extensional approaches. It is reviewed in Section 4.7. Boutilier
proves the equivalence between CO* and the notions of p-consistency and p-
entailment [14]. He also axiomatizes system-Z in terms of Levesque’s notion of
only knowing formulation [75], and proves an interesting relation between the
rule priorities of system-Z and the epistemic entrenchment of AGM [3, 33] (see
Sec. 4.6).

Reiter’s default logic [108], McCarthy’s circumscription [87, 88], and Moore’s
autoepistemic logic [90] are reviewed next.'* These three extensional approaches
constituted the state of the art in the field when I began this research project.

12A5 it turns out these interpretations are practically equivalent (see [69] and also Chapter 3).

13Delgrande’s [23] work is compared to Lehmann and Magidor’s in [69].

14The descriptions in Secs. 1.2.1, 1.2.2, and 1.2.3 are not to be taken as detailed accounts of
these formalisms. The reader is encouraged to examine the surveys in {45, 109] and to consult
the relevant papers listed.



This review should highlight the parameters researchers use to judge progress in
the field and clarify the significance of the contributions of this dissertation.

1.2.1 Reiter’s Default Logic

The extension proposed by Reiter [108] is based on augmenting classical first
order logic with inference rules of the form

, (1.1)

where a(z), 8(z), and y(z) are well-formed formulas (wffs) with free variables
among those in z. The formula a(z) is called the precondition, f(z) is called
the test condition, and y(z) is the consequent of the default. Given a tuple of
ground terms a, the rule in Eq. 1.1 allows us to conclude y(a) given that a(a) is
believed and provided that §(a) is consistent with the current set of beliefs. A
default theory T' = (W, D) is composed of a set W of wifs and a set D of default
rules of the form specified by Eq. 1.1. Thus, given the theory

bird(z) : flies(x)
flies(x)

we can derive flies(Tweety). However, if = flies(T'weety) can be established, for
example, by augmenting W with

T = ({bird(Tweety)}, {

1 (1.2)

dead(Tweety) D —flies(Tweety), and dead(Tweety),

the rule is blocked, and flies(T'weety) is no longer a conclusion. Thus, nonmono-
tonicity is achieved by means of the consistency check required by the rules. Note
that different rules also interact throughout this consistency check. For example,
the theory

T = ({penguin(Tweety), penguin(z) D bird(z)},
penguin(z) : — flies(x) bird(z) : flies(z)

{ = flies(z) ’ flies(z) N

(1.3)

yields two possible extensions: one in which the first rule is blocked and T'weety
flies, and the other in which the second rule is blocked and Tweety does not fly.
Extensions are formally defined as follows: Let us say that I'(S) expands a set of
wifs S according to 1" if I'(S) denotes the minimal deductively closed set of wifs
which includes W and every consequent « of default rules of the form « : =8/v
in D for which @ € I'(5) and - € 5. An extension of T' is a collection F of wifs
such that £ =T'(E).



A default theory can give rise to one, none, or many extensions, and each
extension is intended to reflect a possible completion of the classical theory W
according to the rules in D. The natural encoding of a body of knowledge in the
form of a default theory often gives rise to unreasonable extensions, which must
be pruned (usually by the user) by properly selecting the test conditions of the
defaults {112, 30, 29]. Thus, for example, in Eq. 1.3 the second default rule can
be changed to read

bird(z) : flies(z) A —penguin(z)
flies(z) ’

(1.4)

and in general, the test condition should enumerate all anticipated exceptions.
Default rules (such as the one in Eq. 1.4) in which the test condition is not equal
to the consequent are commonly known as nonnormal defaults [30, 29].

On the positive side, Reiter’s default logic extends classical first-order logic
with nonmonotonic capabilities by means of a formal yet simple device, that is,
by treating default rules as special rules of inference. Of all the extensional ap-
proaches, default logic appears to be the most stable: most work on default logic
focuses on applying rather than modifying Reiter’s original ideas [45]. Recent
work extending default logic and solving some of its shortcomings can be found
in [17, 24, 43]. Work on the computational complexity of default logic is reported
in [66, 10], and the relation between default logic and formal semantics for logic
programming is studied in [42, 11]. Default logic is compared to ¢-semantics (a
conditional approach underlying the development of Chap. 2) in [97].

1.2.2 McCarthy’s Circumscription

Circumscription minimizes the extensions of various predicates in a given theory,
thereby providing a closed world view of their interpretations. This formalism
is best understood from a model-theoretic perspective. Let A(P) denote a first
order sentence containing the predicate P. In classical logic, a wif ¢ is said
to be entailed by A(P) if ¢ is true in every model for A(P). Circumscription
weakens this condition: ¥ is entailed by Circ[A(P); P] (to read: “the circum-
scription of P in A(P)”) if ¢ is true in every model of A(P) which is minimal
in P [88, 78]. A model M is minimal in P when there is no other model that
assigns a strictly smaller extension to P and that preserves from M the same
domain and the same interpretation of symbols other than P. Thus, given a set
of axioms, circumscription selects a minimal interpretation for some predicate(s)
subject to the constraints imposed by the axioms. As the set of axioms changes, so
does the minimal interpretation that circumscription selects, and consequently
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the set of inferred conclusions can shrink as new information arrives and the
desired property of nonmonotonicity is attained. For instance, given a knowl-
edge base containing the fact penguin(Tweety), the circumscription of penguin
yields the formula Va.penguin(z) O @ = Tweety. If Opus is an object differ-
ent from T'weety, circumscription will allow us to jump to the conclusion that
—penguin(Opus). If penguin(Opus) is learned, the circumscription of penguin
will now yields Ya.penguin(z) D (z = Tweety V z = Opus).

Syntactically, the circumscription Circ[A(P); P] of P in A(P) can be ex-
pressed as the second-order schema [87]

A(P) A A(®) A Ya.[B(z) D P(z)] O Ya.[P(z) D ®(z)], (1.5)

where A(®) denotes the logical sentence that results from replacing all the occur-
rences of P by a predicate ® with the same arity as P. Eq. 1.5 can be understood
as stating that among the predicates ® that satisfy the constraints in A(®), P is
the strongest; in other words, the objects that satisfy a predicate P are exactly
the objects that can be shown to satisfy P.

Circumscription adds nonmonotonic features to first order logic but does not
specify how defeasible knowledge should be encoded. McCarthy [88] introduced
a convention by which defaults such as “birds fly” are written as

Va.bird(z) A ~abi(z) D flies(z) (1.6)

and read as “every non-abnormal bird flies”. Thus, given a set of these de-
faults, the expected behavior follows from minimizing the abnormalities, that is,
from circumscribing the ab predicates. Note, however, that given Eq. 1.6 and
bird(Tweety), the minimization of ab; by Eq. 1.5 will not suffice to sanction
flies(T'weety). This happens because the model in which no bird is abnormal
and therefore Tweety flies is competing with a model M’ in which ab,(Tweety)
and - flies(Tweety) and M’ is also minimal with respect to ab; if we leave all
the other objects constant. To remedy this undesirable situation, McCarthy [88]
proposed a more powerful formula circumscription in which certain other predi-
cates are allowed to vary, thus allowing the minimization of some predicates at
the expense of others. The circumscription Circ[A(P, Z) : P, Z] of the predicate
P in A(P,Z), where Z stands for a tuple of predicates allowed to vary in the
minimization of P, is defined as

A(P,Z) A A(®,0) AVe.[®(z) D P(z)] D Va.[P(z) D ®(z)] (1.7)

Note that Eq. 1.7 is stronger than the schema in Eq. 1.5, since, in addition to
substitutions for P, Eq. 1.7 permits substitutions for Z. The model-theoretic
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interpretation of Cire[A(P, Z); P, Z] sanctions as theorems the sentences that
hold in all models for A(P,Z) that are minimal in P with respect to Z [78]. A
model M of A(P,Z) is minimal in P with respect to Z, if there are no other
models M’ of A(P,Z) that assign a smaller extension to P and that preserve
from M the same domain and the same interpretation of symbols other than P
and Z. Note that the expected conclusion, flies(Tweety), follows in the example
above by minimizing the ab; predicate while allowing flies to vary since the only
minimal models are those in which —ab;,(T'weety) holds.

The generalization of circumscription to the case of many predicates (known as
parallel circumscription) is straightforward. A more interesting extension is that
of prioritized circumscription, in which the user is allowed to specify a priority
ordering among the predicates to be circumscribed, where predicates with higher
priority are circumscribed (minimized) at the expense of predicates with lower
priority [88, 81]. Thus, for example, if we add to Eq. 1.6

Va.penguin(z) A ~abj(z) D ~flies(x) (1.8)
Va.penguin(z) D bird(z (1.9)
penguin(Tweety) (1.10)

then —fly(Tweety) will follow only if we circumscribe ab; with a higher priority
than ab;. Note that the circumseriptive policy — namely, the predicates to be
minimized, the priority ordering, and the predicates to be allowed to vary — must
be specified by the user.

Circumscription has been extensively studied due to its power and mathe-
matical tractability. Circumscription shares some of the shortcomings of default
logic: The user remains responsible for establishing preferences among default
rules and for sorting out their possible interactions. Circumscription uses prior-
ities among predicates on the minimization process to express such preferences.
Lifschitz [80] reports on ways to incorporate the specification of such priorities
into the object language. Efforts directed toward providing guidelines for specific
domains can be found in [82, 8, 70]

1.2.3 Moore’s Autoepistemic Logic

Moore [90] originally proposed autoepistemic logic as a reconstruction of Mc-
Dermott and Doyle’s nonmonotonic logic [89]. Autoepistemic logic augments
propositional theories with a belief operator L, where sentences of the form Ly
are read as “p is believed”. The stable expansion of an autoepistemic theory T,
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S(T), is defined as follows
S(Ty=Th(TU{Lp:peS(T)}u{-Lp:pg S(T)}) (1.11)

where Th(X) stands for the set of tautological consequences of X. Stable expan-
sions are intended to reflect possible states of belief of an ideal rational agent,
closed under both negative and positive introspection [90].

Defaults can be encoded in autoepistemic logic using an ab predicate similar
to circumscription; thus, “typically birds fly” will be written bird A=Lab; O flies.
Given bird, the only autoepistemic expansion will contain = Lab; and consequently
the proposition flies. An autoepistemic theory may have one, none, or many
stable expansions. For instance, T = {=Lp D p} has no stable expansion, while
T ={-Lp D q,~Lg D p} has two.

Since its introduction, autoepistemic logic has been studied by [86, 67, 41, 91].
It has been successfully applied to characterize the semantics of general logic pro-
grams [40, 42] and of truth maintenance systems [107]. Both characterizations
require only the replacement of logical negation by autoepistemic negation, that
is, literals of the form —p are replaced by —Lp. Levesque [75] provides an appeal-
ing semantics for autoepistemic logic in terms of only knowing (see also [14]).

As in the case of default logic and circumscription, autoepistemic logic is
unable to automatically account for preferences among defaults and resolve their
interactions in a satisfactory manner. As we shall see, this problem is solved in
this dissertation by interpretating default rules as preference constraints on the
set of possible situations. The basis for this interpretation is a norm of consistency
to be introduced next in Chapter 2.
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CHAPTER 2

The Consistency of Conditional Knowledge
Bases

2.1 Introduction

There is a sharp difference between exceptions and outright contradictions. The
two statements “typically penguins do not fly” and “red penguins fly” can be
accepted as a description of a world in which redness defines an abnormal or
exceptional type of penguin. However, the statements s;:“typically birds fly”
and sy:“typically birds do not fly” stand in outright contradiction to each other.
Whatever interpretation we give to “typically”, it is hard to imagine a world
containing birds in which both s; and s would make sense simultaneously. Curi-
ously, such conflicting pairs of sentences can coexist perfectly in most nonmono-
tonic formalisms directed at capturing and characterizing our everyday reasoning
by including such expressions about what is normally the case. For example,
using the ab predicate advocated by McCarthy [88], a straightforward way to
represent such statements in the context of circumscription would be

sy Va.bird(z) A —ab(z) D fly(z) 5 s5: Va.bird(z) A —ab(z) D ~fly(z), (2.1)

which is logically equivalent to Va.bird(z) D ab(z). Similarly, if s; and sy are
expressed as the default rules!
,  bird(z) : M fly(x) ,  bird(z) : M = fly(z)
s : ;o Sy )
fiy(z) ~fiy(e)

(2.2)

Reiter’s default logic [108] will produce two consistent sets of beliefs, one in which
“birds fly” and one in which “birds do not fly”.

Normally, a pair such as s; and s would not be used to encode the information
that “all birds are exzceptional (or abnormal)” as in the case of circumscription
or to express an ambiguous property? of birds as in the case of default logic.

y(x)
to assume that x can fly, then infer that 2 can fly” (see [108]).
2A property f is ambiguous if neither f nor —f can be verified from the knowledge base.

!The default rule is informally interpreted as “if z is a bird and it is consistent
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Rather, this kind of contradictory information is more likely to originate from
an unintentional mistake. Remarkably, although humans readily recognize the
distinction between exceptions, ambiguities, and contradictions, current work on
defeasible knowledge bases presents no comprehensive analysis of such utterances,
which could alert the user to the existence of contradictory, possibly unintended
statements. As a first step in formulating a framework for representing and
reasoning with if-then rules admitting exceptions, this chapter proposes a se-
mantically sound norm for consistency, accompanied by effective procedures for
testing inconsistencies and isolating their origins.

It is tempting to assume that pairs such as sy and s3 constitute the only source
of inconsistency and that once we eliminate such contradictory pairs, the remain-
ing knowledge base would be consistent, that is, all conflicts could be rationalized
as conveying exceptions or ambiguities. Touretzky [122] has shown that this is in-
deed the case in the domain of acyclic and purely defeasible inheritance networks.
However, once the language becomes more expressive, allowing hard rules as well
as arbitrary formulas in the antecedents and consequents of the rules, the crite-
rion for consistency becomes more involved. Consider the knowledge base A =
{“all birds fly”, “typically penguins are birds”, “typically penguins do not fly”}.
This set of rules, although without contradictory pairs, also strikes us as incon-
sistent: If all birds fly, there cannot be a nonempty class of objects (penguins)
that are “typically birds” and yet “typically do not fly”. We cannot accept this
knowledge base as merely depicting exceptions; it looks more like a program-
ming “bug” or “glitch” than a genuine description of some state of affairs. If we
now change the first sentence to read “typically birds fly” (instead of “all birds
fly”), consistency is restored; we are willing to accept penguins as exceptional
birds. This interpretation would remain satisfactory even if we made the second
rule strict (to read “all penguins are birds”). Yet, if we add to A the sentence
“typically birds are penguins”, we again face intuitive inconsistency.

In this chapter we propose a probability-based formalism that captures these
intuitions. We will interpret a defeasible rule “typically, if ¢ then ¢” (written
@ — 1) as the conditional probability statement P(¢|p) > 1 —¢ , where ¢ > 0 is
an infinitesimal quantity. Intuitively, this amounts to according the consequence
1 a very high likelihood whenever the antecedent ¢ is all that we know. The strict
rule “if ¢ then definitely o” (written ¢ = o) will be interpreted as an extreme
conditional probability statement P(o|¢) = 1. Our criterion for testing consis-
tency translates to determining whether there exists a probability distribution
P that satisfies all these conditional probabilities for every ¢ > 0. Furthermore,
to match our intuition that conditional rules neither refer to empty classes nor
are confirmed by merely “falsifying” their antecedents, we also require that P be



proper, that is, it does not render any antecedent as totally impossible. These
two requirements constitute the essence of our proposal.

In the language of ranked models (see Secs. 3.2, and 4.2, and also [72]), our
proposal assumes a particularly simple form. A defeasible rule ¢ — ¥ imposes
the constraints that 1 holds in all minimally ranked models of ¢ and that there
will be at least one such model. A strict rule ¢ = ¢ imposes the constraint that
no possible world satisfies ¢ A =0 and that at least one possible world satisfies ¢.
Consistency amounts to requiring the existence of a ranking (a mapping of models
to integers) that simultaneously satisfies all these constraints. The idea of attach-
ing probabilistic semantics to conditional rules goes back to Adams [1, 2], who
developed a logic of indicative conditionals based on infinitesimal probabilities.?
More recently, infinitesimal probabilities were mentioned by McCarthy [88] as a
possible interpretation of circumscription and were used by Pearl [95] to develop
a graphical consistency test for inheritance networks, extending that of Touret-
zky [122]. The proposals in [97, 102, 35, 37] have extended Adams’ logic to default
schemata, and Lehmann and Magidor [74] have shown the equivalence between
Adams’ logic and a semantics based on ranked models.

Unfortunately, the notion of consistency treated in [2] and [95] was restricted
to systems involving purely defeasible rules. This chapter extends Adams’ consis-
tency results to mixed systems containing both defeasible and strict information,
and, as we shall see, the extension is by no means trivial, since a strict rule b = f
must be given a semantics totally different from its material counterpart b O f.
For example, whereas the set of rules {b D f, b D = f} is logically consistent,
our semantics must now render the set {b = f, b = —f} inconsistent. The
need to distinguish between b = f and b O f, where the former is used to ex-
press generic knowledge and the latter as an item of evidence is also advocated
in [35, 37, 23, 104] (see Sec. 2.7). The implications of this distinction will become
more apparent in Chapter 5, where causality is introduced in the interpretation
of the conditional rules.

In addition to extending the consistency criterion to include mixed systems,
we also present an effective syntactic procedure for testing this criterion and iden-
tifying the set of rules responsible for the inconsistency. Finally, we analyze a
notion of entailment based on consistency considerations. Intuitively, a conclu-
sion is entailed by a knowledge base if it is guaranteed an arbitrarily high prob-
ability whenever the premises are assigned sufficiently high probabilities. This
weak notion of entailment was named p-entailment in [2], e-entailment in [97],

3A formal treatment of infinitesimal probabilities using nonstandard analysis is given in [74]
and also mentioned in [120].
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and preferential entailment in [69], and it yields (semimonotonically) the most
conservative “core” of plausible conclusions that one would wish to draw from a
conditional knowledge base [98].

The definition for probabilistic entailment can be partially extended to knowl-
edge bases containing strict information using a device suggested by Adams [1]
whereby, by definition, conditional rules whose antecedents have probability zero
are assigned probability one. Thus, a strict rule such as ¢ = ¢ one could con-
ceivably be encoded as the defeasible rule (¢ A =) — False. Another proposal
was made in the preférential-models analysis of [69]. There, Kraus, Lehmann,
and Magidor write (p. 172):

We reserve to ourselves the right to consider universes of reference
that are strict subsets of the sets of all models of L. In this way, we
shall be able to model strict constraints, such as penguins are birds,
in a simple and natural way, by restricting & to the set of all worlds
that satisfy the material implication penguin O bird.

Both of these proposals suffer from two weaknesses. First, they do not capture the
common understanding that the opposing pair “all birds fly” and “all birds don’t
fly” is inconsistent, but instead permit the conclusion that birds do not exist,
together with other strange consequences such as “typically birds have property
P” where P stands for any imaginable property. Our semantics reflects the view,
also expressed in [23], that one of the previous rules must be invalid and that
no admissible model would support both rules. Second, these proposals do not
permit us to entail new strict rules in a more meaningful way, according to our
commonsense interpretation of conditional sentences, than logical entailment. For
example, —a should not entail ¢ = b, in the same way that “I am poor” should
not entail “if I were rich, it should rain tomorrow”. Thus, the special semantics
we give to conditional rules, defeasible as well as strict, avoids such paradoxes
of material implication [4] and, hence, brings mechanical and plausible reasoning
closer together.

This chapter is organized as follows: Section 2.2 introduces notation and some
preliminary definitions. Consistency and entailment are explored in Section 2.3.
An effective procedure for testing consistency and entailment is presented in Sec-
tion 2.4, while Section 2.5 contains illustrative examples. Section 2.6 deals with
entailment in inconsistent knowledge bases, and the main results are summarized
in Section 2.7. All proofs appear in Appendix A.
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2.2 Notation and Preliminary Definitions

The basic language is a finite set £ of atomic propositions augmented with two
propositional constants 7' and F', which are (informally) regarded as expressing
a logical truth and a logical falsehood, respectively. Let Lp be a closed set of
propositional well-formed formulas (wffs) generated as usual from the atomic
propositions in £ and the connectives V and —=. We define a world w as a truth
assignment for the atomic propositions in £. The set of possible worlds is denoted
by €1, and if there are n atomic propositions in L, the size of Q will be 2". The
satisfaction of a wif ¢ € Lp by a world w is defined as usual and denoted by
w . If w satisfies p, we say that w is a model for .

A defeasible rule is the formula ¢ — 1, where ¢ and ¢ are wifs in Lp and
— 18 a new binary connective. Informally, each ¢ — ) represents an if~then rule
that admits exceptions and each may be read as “if ¢ then typically ¢b” or “if ¢
then normally 1. Similarly, given ¢, o in Lp, the new binary connective = will
be used to form a strict rule ¢ = o. A strict rule ¢ = o is interpreted as “if
then definitely o”. A formal interpretation of both strict and defeasible rules is
given in the definition of consistency (Def. 2.2). Both — and = can occur only
as the main connective in a rule. We will use conditional rules or simply rules
when referring to a formula that can be either a defeasible or a strict rule. The
antecedent of a rule is the wif to the left of the main connective (single or double
arrow) and its consequent is the wif to the right. If » denotes a conditional rule
with antecedent ¢ and consequent ¥, then the negation of r, denoted by ~r, is
defined as a conditional with antecedent ¢ and consequent —t. The material
counterpart of a conditional rule with antecedent ¢ and consequent 1 is defined
as ¢ D ¢ (where D denotes material implication), and the material counterpart
of a set A of conditional rules (denoted by A) is defined as the conjunction of
the material counterparts of the rules in A.

A default ¢ — 1 is verified by a world w iff w = A, o — o is falsified by
wiff w = o A =1, Finally, ¢ — 1 is satisfied by w iff w = ¢ D 1. Strict rules are
verified, falsified, and satisfied in the same way.

Definition 2.1 (Probability assignment) Let P be a probability function on
the space of possible worlds €, such that P(w) > 0 and ) ,cq Plw) = 1. We
define a probability assignment P on a formula o € L as

Ply) = }; P(w). (2.3)

Let A = DUS be a set of conditional rules such that D = {¢; — ¢} (1 <@ < |D))
and S = {¢; = o;} (1 <5 <|S]). A probability assignment on a defeasible rule
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@ — 1 € D is defined as

Eerd) — plaple) if P 0
Pl — o) = P(2) (o) () > (2.4)

1 otherwise

We assign probabilities to the rules in § in exactly the same fashion. P will be
considered proper for a conditional rule r with antecedent ¢ if P(¢) > 0, and it
will be proper for A if it is proper for every conditional in A.

0

The probability assignment above attaches a conditional probability interpreta-
tion to the rules in a given A. Eq. 2.4 states that the probability of a conditional
rule r with antecedent ¢ and consequent 1 is equal to the probability of r being
verified (i.e., w = ¢ A ) divided by the probability of its being either verified or
falsified (i.e., w | ¢).

Up to this point the only difference between defeasible and strict rules is
syntactic. They are assigned probabilities in the same fashion and are verified
and falsified under the same truth assignments. Their differences will become
clear in the next section, where we formally introduce the notion of consistency.

2.3 Probabilistic Consistency and Entailment

Throughout the rest of the chapter, A denotes a knowledge base of conditional
rules. A = DUS, where D = {¢; — ¢;} (1 <7< |D|) and S = {¢; = 0}
(1<) <I8).

Definition 2.2 (Probabilistic consistency) We say that A = D U S is prob-
abilistically consistent (p-consistent) if for every ¢ > 0, there is a probability
assignment P that is proper for A such that P(y]p) > 1 — ¢ for all defeasible
rules ¢ — ¢ in D and P(o|¢) = 1 for all strict rules ¢ = o in S.

O

Intuitively, consistency means that it is possible for all defeasible rules to come
as close to certainty as desired, while all strict rules hold with absolute certainty.
Another way of formulating consistency is as follows: Consider a constant £ > 0
and let Pa . stand for the set of proper probability assignments for A such that
if P € Pa. then P(¢|p) > 1 — ¢ for every ¢ — 9 € D and P(o|é) = 1 for every
¢ = o € S. Consistency insists on Pa . being nonempty for every ¢ > 0.
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Before developing a syntactical test for consistency (Thm. 2.4), we need to
define the concept of toleration.

Definition 2.3 (Toleration) Let r be a rule (either defeasible or strict) with
antecedent a and consequent 3. We say that r is tolerated by a set A if there
exists a world w such that

i=|D] i=19]

w‘f:a/\ﬁ/\ﬁpi:)lpi/\q/)jDUj. (2.5)
1=1 7=1
8

Thus, r is tolerated by a set of conditional rules A if there is a world w that
verifies « and satisfies every rule in A (i.e., no rule in A is falsified by w).

Theorem 2.4 Let A = DU S be a nonempty set of defeasible and strict rules.
A is p-consistent iff every nonempty subset A' = D" US" of A complies with one
of the following:

1. If D' is not emply, then there must be at least one defeasible rule in D’
tolerated by A'.

2. If D' is empty (i.e., N = 5'), each strict rule in S" must be tolerated by S'.

The following corollary ensures that, in order to determine p-consistency, it is
not necessary to check literally every nonempty subset of A.

Corollary 2.5 A = DU S is p-consistent iff we can build an ordered partition
of D =Dy, D, ..., D,] where

1. For all 1 <1 < n, each rule in D; is tolerated by S U?;ﬁl D;.

2. Fvery rule in S is tolerated by S.

Corollary 2.5 reflects the following considerations (see proof in Appendix A): If
A is p-consistent, Theorem 2.4 ensures the construction of the ordered partition.
On the other hand, if this partition can be built, the proof of Theorem 2.4 shows
that a probability assignment can be constructed to comply with the require-
ments of Def. 2.2. Corollary 2.5 yields a simple and effective decision procedure
for determining p-consistency and identifying the inconsistent subset in A (see
Sec. 2.4).

Before turning to the task of entailing new rules, we need to make explicit a
particular form of inconsistency.
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Definition 2.6 (Substantive inconsistency) Let A be a p-consistent set of
conditional rules, and let v’ be a conditional rule with antecedent ¢. We will
say that ' is substantively inconsistent with respect to A if AU {¢ — True} is
p-consistent but A U {r’} is p-inconsistent.

g

Nonsubstantive inconsistency occurs whenever the antecedent of a conditional
rule is logically incompatible with the strict rules of a consistent set A. It will
become apparent from the theorems to follow that a rule r is nonsubstantively
inconsistent with respect to a consistent A iff both AU {r} and AU {~r} are
inconsistent.

The concept of entailment introduced below is based on the same probabilistic
interpretation as the one used in the definition of p-consistency. Intuitively, we
want p-entailed conclusions to receive arbitrarily high probability in every proper
probability distribution in which the defeasible premises have sufficiently high
probability and in which the strict premises have probability equal to one.

Definition 2.7 (p-Entailment) Given a p-consistent set A of conditional rules,
A p-entails ¢' — ' (written A |, ¢’ — ') if for all € > 0 there exists § > 0
such that

1. There exists at least one P € Pa s 4 such that P is proper for ¢/ — 3.

2. Every P’ € Py s satisfies P/(¢'|¢') > 1 — e.

Theorem 2.8 relates the notions of entailment and consistency.

Theorem 2.8 If A is p-consistent, A p-entails @' — ' iff ¢ — b’ is substan-
tively inconsistent with respect to A.

Def. 2.9 and Theorem 2.10 characterize the conditions under which condi-
tional conclusions are guaranteed not only very high likelihood but also absolute
certainty. We call this form of entailment strict p-entailment.

“Recall that given a consistent A = DUS, Py s stands for the set of probability assignments
proper for A, such that if P € Pa . then P(vjp) > 1 — 6 for every ¢ — ¢ € D and P(ol¢) =1
for every ¢ = o € S (see Def. 2.2).
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Definition 2.9 (Strict p-entailment) Given a p-consistent set A of condi-
tional rules, A strictly p-entails ¢' = o' (written A E, ¢ = o) if for all
e>0

1. There exists at least one P € Pp . such that P is proper for ¢’ = o'.
2. Every P’ € Pa . satisfies P'(o'|¢') = 1.

0

Theorem 2.10 [f A = D U S is p-consistent, A strictly p-entails ¢' = o' iff
S U {¢ — True} is p-consistent and there exists a subset S' of S such that
¢ = =’ is not tolerated by S'.

Examples of strict p-entailment are contraposition, {¢ = ¥} =, ¢ = —¢,}°
and chaining {¢ = 0,0 = ¥} =, ¢ = 1. Note that strict p-entailment subsumes
p-entailment, that is, if a conditional rule is strictly p-entailed, then it is also p-
entailed. Also, to test whether a conditional rule is strictly p-entailed, we need
to check its status only with respect to the strict set in A. This confirms the
intuition that we cannot deduce “hard” rules from “soft” ones.

Note that the requirements of substantive consistency in Theorem 2.10 and
properness for the probability distributions in Definition 2.2 distinguish strict
rules from their material counterparts and establish a difference between strict
p-entailment and logical entailment. For example, consider the knowledge base
A = S = {¢ = —a}, which is clearly p-consistent. While A = {¢ D —a} logically
entails ¢ Aa D b, A does not strictly p-entail ¢ A a = b, since the antecedent cAa
is always falsified.

Theorems 2.11 and 2.12 present additional results relating consistency and
entailment. They follow immediately from previous theorems and definitions.
Versions of these theorems, for the case of knowledge bases containing only de-
feasible rules first appeared in [2].

Theorem 2.11 If A does not p-entail ' — ', and ¢ — ' is substantively
inconsistent with respect to A\, then for all € > 0 there exists a probabilily assign-
ment P' € Pa,. which is proper for A and ¢' — ' such that P'(¢'|¢’) <e.

Theorem 2.12 If A = D U S is p-consistent, then it cannot be the case that

1. Both ¢ — % and ¢ — =) are substantively inconsistent with respect to A.

2. Both ¢ = o and ¢ = —o are substantively inconsistent with respect to S.

SWhenever —f is satisfiable.
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Procedure Test_Consistency
Input: A setof rules A =DUS.
Output: Yes/No depending on whether R is consistent.

1. Let D' :=D.
2. While D" is not empty, do:
2.1 Find a rule d : ¢ — % € D' such that d is tolerated by S U D'; let
D' =D —d.

2.2 If d is not found, abort: Return(No), A is inconsistent.
3. Let §':= 5.
4. While S" is not empty, do:

4.1 Pick any rule s : ¢ = o € 5 if s is tolerated by S, then let §' := 5’ — s.
4.2 Else abort: Return(No), A is inconsistent.

5. Return(Yes), A is consistent.

End Procedure

Figure 2.1: An effective procedure for testing consistency in O(|D|* 4 |S]) propo-
sitional satisfiability tests.

2.4 An Effective Procedure for Testing Consistency

In accordance with Theorem 2.4 and following Corollary 2.5, the consistency of
A = D US can be tested in two phases. In the first phase, until D is empty
we repeatedly remove from D a defeasible rule that is tolerated by the rest of
the rules in D U S. In the second phase, we test whether every strict rule in S
is tolerated by the rest of S (without removing any rule). If both phases can
be successfully completed, A is consistent; if not, A is inconsistent. Procedure
Test_Consistency is formally presented in Figure 2.1.

The same procedure can be used for entailment, since to determine whether a
defeasible rule d' is entailed by A we need only test the consistency of AU {~d'}
and AU {d'} (to make sure that the former is substantively inconsistent). Given
that the procedure in Figure 2.1 is a sound and complete test for deciding p-
consistency, the next theorem establishes an upper bound for the problem of
deciding p-consistency (and p-entailment). Theorem 2.13 and the correctness of
the procedure Test_Consistency are proven in Appendix A.
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Theorem 2.13 The worst case complezity of testing consistency (or entailment)
is bounded by [PS x ('22—;—2— +[S))], where |D| and |S| are the number of defeasible
and strict rules, respectively, and PS is the complexity of testing propositional
satisfiability for the material counterpart of the rules in the database.

Thus, the complexity of deciding p-consistency and p-entailment is no worse
than that of propositional satisfiability. Although the general satisfiability prob-
lem is NP-complete, useful sublanguages (e.g., Horn clauses) are known to admit
polynomial algorithms [25].

The order in which rules are removed in procedure Test_Consistency induces
natural priorities among defaults that have been used to great advantage in sev-
eral proposals for default reasoning, as is shown in Chapter 4 (see also [50, 100, 47,
36]). These priorities have an alternative epistemic interpretation in the theory of
belief revision described by Gérdenfors [33]. The fact that a conditional ¢ — ) is
tolerated by all those rules that were not previously removed from A means that
if ¢ holds, then ¢ can be asserted without violating any rule in A that is more
deeply entrenched than this conditional. In other words, adding the assertion
@ Ay would require a minimal revision of the set of beliefs supported by A. The
formal relation between the default priorities used in both system-Z [100] and
system-ZT [50] (see Sec. 4.6) and the postulates for epistemic entrenchment in
believe revision [33] is studied by Boutilier [13]. The origin of this priority order-
ing can be traced back to Adams [2], where it is used to build “nested sequences”
subsets of A that yield consistent, high probability models. Such “nested se-
quences” are used in the proof of Theorem 2.4 (see Appendix A). A similar
construction was also used in [72, Theorem 5] to prove the co-NP-completeness
of p-entailment in the case of knowledge bases containing only defeasible rules.

Once a set of rules is found to be p-inconsistent, it would be useful to iden-
tify the rules that are directly responsible for the contradiction. Unfortunately,
the toleration relation is not strong enough to accomplish this task since it is
incapable of distinguishing a rule “causing” the inconsistency from one that
is a “victim” of the inconsistency. For example, consider the inconsistent set
D;={¢ =, ¢ — -1, ¢ — o}. Since no rule in D; is tolerated, the consistency
test will immediately halt and declare D; inconsistent. Yet ¢ — o can hardly be
held responsible for the inconsistency; ¢ — ¢ is not tolerated because the mate-
rial counterpart of the pair {¢ — ¢, ¢ — —tb} renders ¢ impossible.® It would
be inappropriate to treat a rule as the source of inconsistency merely because it
is not tolerated in the context of an unconfirmable subset. Rather, we would like

®Note that {¢ D ¥, ¢ D ¥} k= —¢.
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to proclaim a rule inconsistent if its removal would improve the consistency of
the database. In other words, a conditional rule r is inconsistent with respect to
a set A iff there is an inconsistent subset of A that becomes consistent after r is
removed. Formally,

Definition 2.14 (Inconsistent rule) A rule r is inconsistent with respect to a
set A iff there exists a subset A’ of A such that A’U {r} is p-inconsistent but A’
in itself is p-consistent.

a

Deciding whether a given rule is inconsistent is difficult because, unlike the test for
set inconsistency, the search for the indicative subset A’ cannot be systematized
as in procedure Test_Consistency. All indications are that the search for such a
subset will require exponential time. Simple-minded procedures based on remov-
ing one rule at a time and testing for consistency in the remaining set do not yield
the desired results. In A’ = {a — b,a — =b,a — ¢,a = —c} every rule is incon-
sistent, yet it is necessary to remove at least two rules at a time in order to render
the remaining set consistent. Likewise, in A" = {a — b,a — =b,a — ¢,¢c = b}
every rule is inconsistent, yet only the removal of ¢ — b renders the remaining
set consistent (or confirmable). Approximate methods for identifying inconsis-
tent rules are discussed in Section 2.6 and in the proof of Theorem 2.24 (see

Appendix A).

2.5 Examples

The following examples depict some of the rule interactions commonly found in
everyday discourse which motivated the development of nonmonotonic logics and
formalisms for default reasoning. They represent benchmarks in nonmonotonic
reasoning and will be used throughout the thesis. As a common denominator,
Examples 2.1, 2.2, and 2.3 contain a pair of conflicting rules. Example 2.1 refers
to the case of one if-then rule denoting what is generally the case, “if  then ",
and another if-then rule representing an exception (¢ and ) to the first one, “if
@ and 7 then —%”. Example 2.2 is similar, except that the antecedents of the
conflicting rules “if ¢ then ¢¥” and “if v then —¢” are related through a third
rule, “if v then ¢”, which points out that v is a more specific context than «a.
Finally, the antecedents in the rules of Example 2.3 are unrelated. Thus, the
conflict cannot be resolved and the conclusion remains ambiguous (i.e., neither
¥ nor —p is sanctioned). In all the examples, the rules are modified slightly to
highlight the differences between exceptions, contradictions, and ambiguities.
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Example 2.1 (Dead battery) Consider the following rules:

1. t = ¢ (“if I turn the ignition key, definitely the car will start”).

2. t Ab — —c (“if I turn the key and the battery is dead, then normally the
car will not start”).

This knowledge base is p-inconsistent: Any world w = ¢ A b A —c (verifying
Rule 2, the only defeasible rule) will falsify Rule 1. Intuitively, if the car engine
will always start when the ignition key is turned, we cannot accept any faults
(e.g., a dead battery). By changing the first rule to be defeasible, we obtain a
p-consistent knowledge base A.:

I. t — ¢ (“if T turn the ignition key, then normally the car will start”).

2. t Ab— —c (“if T turn the key and the battery is dead, then normally the
car will not start”).

The first rule is tolerated by the second using any world w = t A =b A ¢ (and
once Rule 1 is removed, Rule 2 is trivially tolerated by the remaining empty set).
Among the p-entailed conclusions, we have

1. A. pt — ¢ (“if [ turn the ignition key, then normally the car will start”).

2. A, =p t A b — e (“if I turn the ignition key and the battery is dead, then
normally the car will not start”).

3. A. Ep t — —b (“normally, when I turn the ignition key the battery is not

dead”).

Example 2.2 (Penguins and birds) Consider the knowledge base presented
in the introduction:

1. b= f (“all birds fly”).
2. p — b (“typically penguins are birds”).

3. p— =f (“typically penguins don’t fly”).

Clearly, none of the defeasible rules in the example can be tolerated by the rest.
Consider a world w, such that w = p A b (testing whether Rule 2 is tolerated). If
w = f Rule 3 will be falsified, while if w = = f Rule 1 will be falsified. Thus, we

conclude that there is no world such that Rule 2 is tolerated. A similar situation



arises when we check whether Rule 3 can be tolerated. Thus, this knowledge base
is p-inconsistent. Making Rule 1 defeasible yields the so-called “penguin trian-
gle”, D, = {b— f,p — b,p — —f}, which is p-consistent: b — f is tolerated
by Rules 2 and 3 through the world «’, where ' | b A f and ' | —p, and,
once Rule 1 is removed, the remaining rules tolerate each other. D, becomes
p-inconsistent by adding the rule b — p (“typically birds are penguins”), in con-
formity with the graphical criterion of [95]. Note that, by Theorem 2.8, the rule
b — —p (“typically birds are not penguins”) is then p-entailed by D,. To demon-
strate an inconsistency that cannot be detected by such graphical criteria, con-
sider adding to D, the rule pAb — f. Again no rule will be tolerated and the set
will be proclaimed p-inconsistent, thus showing (by Thm. 2.8) that pAb — = f is
p-entailed by D, as expected (“typically penguin-birds don’t fly”). Interestingly,
all these conclusions remain valid upon changing Rule 2 into a strict conditional
p = b (which is the usual way of representing the penguin triangle), showing that
strict class subsumption is not really necessary for facilitating specificity-based
preferences in this example.

Example 2.3 (Quakers and Republicans) Consider the following set of rules:

1. n — r (“typically Nixonites” are Republicans”).
2. n — ¢ (“typically Nixonites are Quakers”).

3. ¢ = p (“all Quakers are pacifists”).

4. r = —p (“all Republicans are nonpacifists”).

5. p — ¢ (“typically pacifists are persecuted”).

Rule 5 is tolerated by all others, but the remaining rules are not confirmable,
hence inconsistent. The following modification renders the knowledge base con-
sistent:

1. n = r (“all Nixonites are Republicans”).
2. n = ¢ (“all Nixonites are Quakers”).
3. ¢ — p (“typically Quakers are pacifists”).

4. r — =p (“typically Republicans are nonpacifists”).

7“Nixonites” is shorthand for people who share aspects of Richard M. Nixon’s cultural
background.

27



5. p— c (“typically pacifists are persecuted”).

Indeed, there is a basic conceptual difference between the former case and this
one. If all Quakers are pacifists and all Republicans are nonpacifists, our intu-
ition immediately reacts against the idea of finding an individual who is both
a Quaker and a Republican. The modified knowledge base, on the other hand,
allows a Nixonite who is both a Quaker and a Republican to be either pacifist
or nonpacifist. Note that both n — p and n — —p are consistent when added
to the knowledge base, so neither one is p-entailed and we can assert that the
conclusion is ambiguous (i.e., we cannot decide whether a Nixonite is typically a
pacifist or not).

Finally, if we make Rules 2 and 4 the only strict rules, we get a knowledge
base similar in structure to the example depicted by network I'g in [58]:

1. n — r (“typically Nixonites are Republicans”).
2. n = ¢ (“all Nixonites are Quakers”).
3. ¢ — p (“typically Quakers are pacifists”).

4. v = —p (“all Republicans are nonpacifists”).

ot

. p— ¢ (“typically pacifists are persecuted”).

Not surprisingly, the criterion of Theorem 2.4 renders this knowledge base consis-
tent and n — —p is p-entailed in conformity with the intuition expressed in [58].

2.6 Reasoning with p-Inconsistent Knowledge Bases

The theory developed in previous sections presents desirable features from both
the semantic and computational standpoints. However, the entailment procedure
insists on starting with a p-consistent set of conditional rules. In this section, we
relax this requirement and explore two proposals for making entailment insen-
sitive to contradictory statements in unrelated portions of the knowledge base,
so that mistakes in the encoding of properties about penguins and birds would
not tamper with our ability to reason about politicians (e.g., Quakers and Re-
publicans). The first proposal amounts to accepting local p-inconsistencies as
deliberate albeit strange expressions, while the second treats them as program-
ming “bugs”.

In Def. 2.1 a conditional rule ¢ — 1 was assigned the conditional probability
P(|p) if P was proper for ¢ — ¢ (i.e., if P(p) > 0). In our first proposal for
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reasoning with p-inconsistent knowledge bases, we will regard improper proba-
bility assignments as admissible and define P(3|p) = 1 whenever P(p) = 0.8
With this approach, any set A, as long as A is logically satisfiable,’ can be rep-
resented by the trivial, high probability distribution in which some antecedents
receive zero probability. Also, strict rules such as ¢ = ¢ can be represented as
¢ A —o — False, since we can now use P(¢ A —o) = 0 to get P(o|¢) = 1. As
before, we say that a rule ¢ — ¢ is implied'® by a (possibly p-inconsistent) set
A if ¢ — 1) receives arbitrarily high probability in all probability assignments in
which rules in A receive arbitrarily high probability.

Definition 2.15 (p;-Implication) Given a set A and a rule ¢’ — ', A p;-
implies @' — o', written A =, ¢' — @', if for all ¢ > 0 there exists a § > 0 such
that for all probability assignments P, if P(y|p) > 1 — 6 for all ¢ — ¢» € A and
P(o|¢) =1for all ¢ = o € A, then P'(¢'|p) > 1 —¢.

0O

The only difference between Def. 2.15 and that of p-entailment (Def. 2.7) is that
none of the probability assignments in the definition above are constrained to be
proper.

Any p-inconsistent A will have a nonempty subset violating one of the condi-
tions of Theorem 2.4. Given that almost all properties stated in this section will
refer to such sets, we find it convenient to introduce the following definition:

Definition 2.16 (Unconfirmable set) A = DU S is said to be unconfirmable
if one of the following conditions is true:

1. If D is nonempty, then there cannot be a defeasible rule in D that is toler-

ated by A.

2. If D is empty (i.e., A = 5), then there must be a strict rule in S that is
not tolerated by A.

]

8Even though P(p — ) = 1 if P(p) = 0 in Def. 2.1, P(p — ) was not related to a
conditional probability in those cases.

9If A is not satisfiable this proposal cannot do better than propositional logic, that is, any
conditional rule will be trivially entailed.

10We will use the term “implication” instead of “entailment” to stress the fact that the set of
premises may constitute a p-inconsistent set. For simplicity, however, we will keep the symbol

E.
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Note that a set A, can be unconfirmable, while both a superset of A, or one
of its subsets can be confirmable. The problem of deciding whether a rule is
pi-implied is no worse than that of deciding p-entailment, as shown by the next
theorem (proven in [48]).

Theorem 2.17 A py-implies ¢ — ¢ iff ¢ — —1p belongs to an unconfirmable
subset of AU {¢ — -},

This unconfirmable subset can be identified using the p-consistency test discussed
in Section 2.4 (Fig. 2.1), and it follows that p;-implication also requires a poly-
nomial number of satisfiability tests. Moreover, p-entailment is equivalent to
pi-implication if A is p-consistent (see Thm. 2.23). For example, consider the
union of D, = {b — f,p — b,p — —f} of Example 2.2 (encoding the penguin
triangle) and the p-inconsistent set D; = {¢ — ¥, ¢ — =), ¢ — o}. Some of the
rules pi-implied by A; = D, U D; are pA b — —f (“typically, penguin-birds don’t
fly”), b — —p (“typically birds are not penguins”), and ¢ — o. Some of the rules
not py-implied by A; are pAb — f and p — . Thus, despite its p-inconsistency,
not all rules are py-implied by A;. However, this example also demonstrates a
disturbing feature of pi-implication: Not only ¢ — % and ¢ — =4 but also
¢ — —o and ¢ — p (where p is any predicate) are p;-implied. Thus, although
the natural properties of penguins remain unperturbed by the p-inconsistency of
D;, strange rules such as ¢ — p are deduced even though there is no argument
to support them (see [58] for similar considerations on inconsistent rules in the
context of inheritance networks).

To locate the source of this phenomenon, it is useful to declare a formula to
be inconsistent if the formula is Flalse by default.

Definition 2.18 (Inconsistent formula) Given a set A and a formula ¢, we
say that ¢ is an inconsistent formula with respect to A iff A py-implies ¢ — False.
a

The next theorem relates p;-implication to Definition. 2.18 and provides an al-
ternative definition of inconsistent formulas in terms of propositional entailment.
It is an easy consequence of Theorem 2.17.

Theorem 2.19 Consider a set A of conditional rules and the formulas o and 1 :

1. A=y 0 — ¢ iff o is an inconsistent formula with respect to AU{o — —p}.

2. If o ts an inconsistent formula with respect to A, any conditional rule with
o as antecedent will be py-implied by A.
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3. A formula o is inconsistent with respect to a set A ifl there exists an un-
confirmable subset A" of A such that A’ = —¢ 1! where o is the antecedent
of a rule in A'.

Theorem 2.19.2 explains why a rule such as ¢ — p is py-implied by A;: ¢ is an
inconsistent formula with respect to A;, hence any rule with ¢ as antecedent will
be trivially py-implied by A;.

This deficiency of pi-implication is removed in py-implication, our second pro-
posal for reasoning with p-inconsistent knowledge bases. The intuition behind po-
implication is that a rule is considered “implied” only if its negation would intro-
duce a new p-inconsistency into the knowledge base. Previous p-inconsistencies
are thus considered as programming glitches and are simply ignored.

Definition 2.20 (p,-Implication) Given a set A, we say that ¢ — ¥ is po-
implied by A, written A =, ¢ — 1, iff ¢ — 9 is not an inconsistent rule with
respect to A (see Def 2.14) but its negation ¢ — =) is.

0

The requirement that not both ¢ — ¥ and ¢ — = be inconsistent serves two
purposes. First, as with p-entailment, it constitutes a safequard against rules
being trivially implied by virtue of their antecedents being false. Second, if both
rules are inconsistent, the contradiction that originates when either is added to
A must previously have been embedded in A and therefore cannot be new. In
our previous example, the rules p A b — =f b — =p, and ¢ — o are pz-implied
by A;; however, contrary to p;-implication, the rules ¢ — ¥, ¢ — —p, ¢ — -0,
and ¢ — p are not. As stated in Theorem 2.23, po-implication is strictly stronger
than pi-implication and is equivalent to p-entailment if the set A is p-consistent.

Since the notion of ps-implication is based on the concept of an inconsis-
tent rule (Def. 2.14), there is strong evidence that any procedure for deciding
pe-implication will be exponential (see Sec. 2.4). To obtain a more efficient de-
cision procedure, we propose to weaken the definition of an inconsistent rule.
Instead of testing whether a given rule is responsible for a p-inconsistency, we
will test whether the rule is responsible for creating an inconsistent formula (see

Thm. 2.19).

Definition 2.21 (Weakly inconsistent rule) The rule r is weakly inconsis-
tent with respect to a set A, iff there exists an unconfirmable subset A, of

Recall that A denotes the conjunction of the material counterparts of the conditional rules

mn A.
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A U {r}, such that A, | =¢ but A? & —¢, where A/ = A, — {r} and 4 is
the antecedent of some rule in A,.
a

This leads naturally to the notion of weak ps-implication.

Definition 2.22 (wpe-Implication) Given a set A, a rule ¢ — ) is wps-
implied by A, written A =y, ¢ — ¥, iff & — =t is weakly inconsistent with
respect to A.

O

As in both p;- and pe-implication, the set A; = D, U D; wpe-implies the rules
pANb— —=f b— =p and ¢ — o. More importantly, contrary to p;-implication
(but similar to pp-implication), the undesirable rules ¢ — = and ¢ — p are
not wpe-implied by A; and, in general, wps-implication will not sanction a rule
merely because its antecedent is inconsistent. However, unlike p,-implication,
wpe-implication will sanction any rule whose consequence is the negation of an
inconsistent formula (for example, p — =¢).

The notion of wpy-implication is situated somewhere between p;-implication
and pp-implication, as the next two theorems indicate. It rests semantically on
both, since it requires the concepts of inconsistent formulas and inconsistent rules.
It also preserves some of the computational advantages of pi-implication.

Theorem 2.23 /. Gliven a p-consistent set A, the notions of p-entailment,
pr-tmplication, wpg-implication, and py-implication are equivalent.

2. Given a p-inconsistent set A, po-implication is strictly stronger than wp;-
implication, and wps-implication is strictly stronger than pi-tmplication.

Theorem 2.24 [f the set A is acyclic and of Horn form, wpy-implication can be
decided in polynomial time.

The need to search for a suitable unconfirmable subset A, (see Def. 2.22) results
in wpo-implication being computationally harder than pj-implication.

2.7 Discussion
We have formalized a norm of consistency for mixed sets of conditionals, ensur-

ing that every group of rules is satisfiable in a non-trivial way, one in which the
antecedent and the consequent of at least one rule are both true. We showed that
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any group of rules not satisfiable this way must contain conflicts that cannot be
reconciled by appealing to exceptions or ambiguities and is thus normally con-
sidered contradictory (i.e., unfit to represent world knowledge). Using this norm,
we devised an effective procedure to test for inconsistencies and established a
tight relation between entailment and consistency, permitting entailment to be
decided by using consistency tests. These tests were shown to require polyno-
mial complexity relative to propositional satisfiability. We also discussed ways of
drawing conclusions from inconsistent knowledge bases and of uncovering sets of
rules directly responsible for such inconsistencies.

One of the key requirements in our definition of consistency is that no con-
ditional rule in A should have an impossible antecedent and, moreover, that
no antecedent should become absolutely impossible as exceptions (to defeasible
rules) become less likely (i.e., as ¢ becomes smaller). This requirement reflects
our understanding that it is fruitless to build knowledge bases for nonexisting
classes and counterintuitive to deduce (even defeasibly) conditional rules hav-
ing impossible antecedents. Consequently, pairs such as {¢ — ¢, ¢ — —¢p} or
{¢ = ¢, ¢ = 1)} are labeled inconsistent and treated as unintentional mistakes.
The main application of the procedures proposed in this chapter is to alert users
and knowledge providers of such glitches, in order to prevent undesirable infer-
ences.

This chapter also presents a new formalization for strict conditional rules,
within the analysis of probabilistic consistency, that is totally distinct from their
material counterparts. The importance of this distinction has been recognized
by several researchers (see [104, 23, 35, 37] and others) and has both theoretical
and practical implications.

In ordinary discourse, conditionals are recognized by universally quantified
subsumptions such as “all penguins are birds” or, in the case of ground rules,
by the use of the English word “if” (e.g., “if Tweety is a penguin, then she is a
bird”). The function of these indicators is to alert the listener that the assertion
made 1s not based on evidence pertaining to the specific individual, but rather
on generic background knowledge pertaining to the individual’s class (e.g., being
a penguin). It is this pointer to the background information that is lost if a
conditional rule is encoded as a Boolean expression, and it is this information
that is crucial for adequately processing specificity preferences.

Intuitively, background knowledge encodes the general tendency of things to
happen (i.e., relations that hold true in all worlds) while evidential knowledge
describes that which actually happened (i.e., relations in our particular world).
Thus, conditional rules, both defeasible and indefeasible, play a role similar to
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that of meta-inference rules: They tell us how to draw conclusions from specific
observations about a particular situation or a particular individual, but do not
themselves convey such observations. It is for this reason that we chose to use
a separate connective, =, to denote strict conditionals, as is done in [58] in the
context of inheritance networks. Strict conditionals, by virtue of pointing to
generic background knowledge, are treated as part of the knowledge base, while
propositional formulas, including material implications, are used to formulate
queries but are excluded from the knowledge base itself. As a result, the rule
p = bis treated as a constraint over the set of admissible probability assignments,
while the propositional formula p D b is treated as specific evidence or a specific
observation on which these probability assignments are to be conditioned.

It does indeed make a profound difference whether our knowledge of Tweety’s
birdness comes from generic background knowledge about penguins or from spe-
cific observations conducted on Tweety. In natural language, the latter case
would normally be phrased by nonconditional rules such as “it is not true that
Tweety is both a penguin and a non-bird”, which is equivalent to the material
implication penguin(Tweety) D bird(Tweety).

The practical aspects of this distinction can best be demonstrated using the
penguin example (Ex. 2.2).12 Assume we know that “typically birds fly” and
“typically penguins do not fly”. If we are told “Tweety is a penguin” and “all
penguins are birds”, we would like to conclude that Tweety does not fly. By the
same token, if we are told “T'weety is a bird” and “all birds are penguins”, we
would have to conclude that Tweety does fly. However, note that both {p,p D b}
and {b,b D p} are logically equivalent to {p, b}, which totally ignores the relation
between penguins and birds and should yield identical conclusions regardless of
whether penguins are subclass of birds or the other way around. Thus, when
treated as material implications, information about class subsumption is permit-
ted to combine with properties attributed to individuals and therefore this crucial
information gets lost.

This distinction was encoded in [37] by placing strict conditionals together
with defaults in a background context, separate from the evidential set which was
reserved for observations made on a particular state of affairs. In [72, p. 212] it
is stated that “dealing with hard constraints, in addition to soft ones, involves
relativizing to some given set of tautologies”. Here, again, strict conditionals and
ground formulas would receive different treatment; only the former are permit-
ted to influence rankings among worlds. The separate connective = used in this
chapter treatment makes this distinction clear and natural, and the uniform prob-

12Taken from [37].
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abilistic semantics given to both strict and defeasible rules adequately captures
the notion of consistency in systems containing such mixtures.

In Chapter 5, the distinction between D and = is crucial since rules are used
to impose a Markovian condition of independence among the atomic propositions
in the language, in order to induce causal interpretations, while wifs are used to
provide the context of a query.

The notion of p-entailment is known to yield a rather conservative set of con-
clusions. For example, let A’ = {a — b}, and let a,b, ¢ be atomic propositions
in L. It seems reasonable to expect A’ =, ¢ A @ — b simply because ¢ repre-
sents an ¢rrelevant proposition, one with no relation to our knowledge base A’.
Yet, the rule ¢ A ¢ — b is not p-entailed by A. The reason is that the notion
of p-entailment requires P(bla A ¢) to attain arbitrarily high probability in all
those probability distributions in which P(bla) attains arbitrarily high probabil-
ity. A probability distribution P’ where P'(bla) > 1 — e (for every ¢ > 0) and
yet P'(bla A ¢) = 0 can be easily built.!®> For this reason, p-entailment is not
proposed as a complete characterization of defeasible reasoning. It nevertheless
yields a core of plausible consequences that should be maintained in every system
that reasons defeasibly [97, 98]. Similar problems with irrelevance are shared by
all other proposals for nonmonotonic reasoning based on a conditional interpre-
tation of the rules (see, for example, [23, 69, 14, 36]). Extensions of p-entailment
presenting solutions to these problems will be explored in Chapters 3, 4, and 5.14
Nonprobabilistic extensions can be found in [72, 36, 14]. All these formalisms,
as well as circumscription [88], default logic [108], and argument-based systems
[84, 58], could benefit from a preliminary test of consistency such as the one
proposed in this Chapter./

13This is not surprising since a — b does not say much about the worlds for ¢ or —e.
Chapters 3 and 4 are independent of each other and can be read in any order.
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CHAPTER 3

Plausibility I: A Maximum Entropy Approach

3.1 Introduction

This chapter proposes an approach to nonmonotonic reasoning that combines the
principle of infinitesimal probabilities (described in Chap. 2) with the principle
of maximum entropy in order to extend the inferential power of the probabilistic
interpretation of defaults. As pointed out in Sections 1.1 and 1.2, conditional
based approaches (such as p-entailment) fail to sanction some desirable patterns
which are readily sanctioned in common discourse. Their main weakness stems
from the failure to properly handle irrelevant information (see Sec. 2.7 and [101,
38]). Recent extensions (Delgrande’s proposal [23], rational closure [72], and
system-Z [100]) to the conditional based approaches were successful in capturing
some aspects of irrelevance, but still suffer from the ills of conservativism, namely,
they fail to sanction property inheritance from classes to exceptional subclasses.
For example, given that “birds fly”, “birds have beaks”, and “penguin-birds don’t
fly”, these extensions fail to conclude that penguin-birds have beaks (despite
their being exceptional relative to flying). The maximum entropy formalism
described in this chapter is proposed as a well-disciplined approach to extracting
implicit (probabilistic based) independencies from fragments of knowledge, so
as to overcome those ills. In this respect, the resulting formalism combines the
virtues of both the extensional and the conditional based approaches (see Sec. 1.2
for a review of both approaches to default reasoning).

The connection between maximizing entropy and minimizing dependencies
has been recognized by several workers [63, 123] and was proposed for default
reasoning by Pearl [97, p. 491]. The origin of this connection lies in statistical
mechanics, where the entropy approximates the (logarithm of ) the number of dis-
tinct configurations (assignments of properties to individuals) that comply with
certain constraints [12]. For example, if we observe that in a certain population
the proportion of tall individuals is p and the proportion of smart individuals is ¢,
then out of all configurations that comply with these observations, those in which
the proportion of smart-and-tall individuals is pg (as dictated by the assumption
of independence) constitute the greatest majority; any other proportion of smart-
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and-tall individuals would permit the realization of fewer configurations, and will
correspond to a lower entropy value.

In physics, a configuration stands for the assignment of each particle to a par-
ticular cell in position-momentum space, and all distinguishable configurations
can be assumed to have equal a priori probabilities. Therefore, the maximum
entropy distribution also represents the most likely distribution, that is, the dis-
tribution most likely to be found in nature. Indeed, the celebrated distributions
of Maxwell-Boltzman and Fermi-Dirac, both maximizing the entropy under the
appropriate assumptions, have been observed to hold with remarkable accuracy
and stability.

A similar argument can be invoked to justify the use of maximum entropy
in reasoning applications where possible worlds play the role of configurations,
and the constraints are given by observed statistical proportions, for example,
“90% of all birds fly” (see Bacchus et al. [7]). Likewise, if we assume that default
expressions are qualitative abstractions of probabilities, and that probabilities
are degrees of belief that reflect proportions in an agent’s experience, then it
is also reasonable to assume that our interpretation of defaults, as manifested
in discourse conventions, is governed by principles similar to that of maximum
entropy. In view of the “most likely” status of the maximum entropy distribution,
it is quite possible that discourse conventions have evolved to conform with the
maximum entropy principle for pragmatic reasons; conformity with this principles
assures conformity with the highest number of experiences consistent with the
available defaults.

The chapter is organized as follows: Section 3.2 recasts the notions behind
p-entailment in terms of consequence relations and parameterized probability dis-
tributions (PPD).* This reformulation has the advantages of conceptual simplicity
and expressiveness. Each PPD will induce a consequence relation ¢ b o on wils.
A query such as “is ¢ plausible in the context of ¢, given the knowledge base
A” will be then evaluated in terms of the set of consequence relations induced
by the PPDs admissible with the constraints in A. In this manner, each prob-
ability model for a given knowledge base can be characterized and compared in
terms of the plausible conclusions it sanctions. By the same token, comparisons
with other formalisms are also facilitated. It is shown that this reformulation
preserves all the properties of p-entailment (see, for example, Thm. 3.10), and
that consequence relations are enhanced with a desirable property called Rational

1This special set of distributions present a smoothness property necessary for the computa-
tion of the maximum entropy distribution (see Def. 3.1).
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Monotony.? Section 3.3 is concerned with the symbolic machinery necessary to
compute the consequence relation associated with the maximum entropy distribu-
tion, and develops such machinery for a class of default rules called minimal-core
sets. Section 3.4 gives examples illustrating the behavior of the consequence
relations that results from maximizing entropy. Section 3.5 discusses issues re-
lated to non-minimal-core sets, and Section 3.6 summarizes the main results.
A step-by-step application of the Lagrange multipliers technique can be found
in Appendix B, while Appendix A contains proofs of the main theorems and
propositions.

3.2 Parameterized Probability Distributions

The definition below restricts the set of acceptable probability distributions to
those that present an analytic property around ¢ = 0. This restriction is con-
venient for computing maximum entropy and for introducing the concepts of
consequence relations (see Def. 3.4) and rankings (see Def. 3.7). As is demon-
strated in Theorems 3.3 and 3.10, this restriction does not affect the notions of
p-consistency and p-entailment introduced in Chapter 2.

Definition 3.1 (Parameterized probability distribuion) A parameterized prob-
ability distribution (PPD) is a collection {P.} of probability measures over the

set {) of possible worlds, indexed by a parameter . {P.} assigns to each possible
world w a function of €, P.(w), such that:

1. P(w) >0 forall e > 0, and

Y P(w)=1 foralle>0. (3.1)
weR

2. For every w, P.(w) is analytic at ¢ = 0. In other words, PPD’s can be
expanded as a Taylor series about zero.

For each formula ¢ € £, P.(¢) is defined as

Pe(p) = ) Pe(w), (3:2)
wkep

*Ginsberg [44] however, argues against Rational Monotony.
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and for each 1) and ¢ in £, the conditional probability P.(1|p) is defined as

1 it P.(¢)=0
P(hlp) = (3.3)
fs_])(%%’l otherwise

For simplicity P. will be used when referring to the PPD (strictly, {P.}) in the
remainder of the chapter, wherever the distinction is clear from the context.

Definition 3.2 (Consistency) A given P, is admissible with respect to a set
D iff for each ¢; — ; € D,

lty P, (bu]p0) = 1 (3.4

and P.(p;) > 0. D is said to be consistent iff there exists at least one admissible
P. with respect to D.?
a

Theorem 3.3 A set D is consistent iff D is p-consistent.

It follows that procedure Test_Consistency outlined in Figure 2.1 can be used to
check consistency as defined in Definition 3.2. The definitions above provide
a semantical interpretation for each default rule in D in terms of infinitesimal
conditional probabilities, where 1 accrues an arbitrarily high likelihood whenever
@ is all that is known.

As Theorem 3.10 will show, Defs. 3.1 and 3.4 recast the notions of p-entailment
in terms of consequence relations. The study of nonmonotonic and default rea-
soning in terms of consequence relations was first proposed by Gabbay [32] and
further explored in [85, 69, 72].

Definition 3.4 (Consequence relations) Every P. induces a unique conse-
quence relation P on formulas, defined as follows:

dp o iff 1131(1) P.(olp)=1 (3.5)

@ is properin P if P.(p) > 0 for all . The set of proper ¢ v ¢ will be
called the proper consequence relation of P,.
0

3Note that we are only dealing with defeasible rules. The generalization to strict rules
follows immediately from the concepts introduced in Chapter 2. We just need to augment the
conditions for admissibility in Def. 3.2 to include the requirement that for each ¢; = o; € S,

Pe(ojl|¢;) = 1.
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Note that a given P, is admissible with respect to a set D iff for each ¢; — ; € D,
@i b 1; belongs to the proper consequence relation of P..

Among the general rules of inference that a commonsense consequence rela-
tion might be expected to obey, the following have been proposed [37, 69, 85]:*

(Logic) If ¢ 1, then ¢ |~ .
(Cumulativity) If ¢ |~ ¢, then @ v v iff @ A2 v .
(Cases) If ¢ |~ ¢ and v p~ o, then ¢ V v |~ 3.

Kraus et al. [69] introduce a class of preferential models and show that each
preferential model satisfies the three laws given above. Moreover, they show
that every consequence relation satisfying those laws can be represented as a
preferential model.® Analogous results were shown in [72] with respect to the
class of ranked preferential models and the set of rules above augmented by the
rule of rational monotony:

If ¢ |~ and @ £ =y, then o Ay |~ 9. (3.6)

Theorems 3.5 and 3.6 formalize the relation between a consequence relation in-
duced by a PPD and a consequence relation satisfying the rules of inference above.
In particular, Theorem 3.6, which follows from the results in [74], constitutes a
representation theorem stating that any finite consequence relation that satisfies
logic, cumulativity, cases, and rational monotony can be represented by a PPD.®

Theorem 3.5 A PPD consequence relation satisfies the logic, camulativity, cases,
and rational monotony rules of inference.

Theorem 3.6 Every PPD consequence relation can be represented as a ranked
preferential model, and every ranked preferential model with a finite non-empty
state space can be represented as a PPD consequence relation.

We remark that e-semantics, as defined in [37, 97] does not comply in general
with the rule of rational monotony. This is because e-entailment was defined
as the intersection of the consequence relations induced by all admissible P.,

*Geffner [37] proposes an additional rule of inference: If ¢ — % € D, then ¢ . This
rule establishes a connection between the defaults in the knowledge base and the consequence
relation pv. Semantically, this connection is established in this dissertation by interpretating
defaults in D as constraints over rankings (see Defs. 3.2 and 3.4).

SThey actually use a slightly different set of inference rules which can be shown to be
equivalent to those above.

®Similar results have been obtained independently by Satoh [113].
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and P. was not restricted to analytic functions. Thus, the set of admissible
P.’s included discontinuous functions, for which the lim._¢ in Eq. 3.5 does not
exist. By restricting the probability distributions to be analytic at ¢ = 0, we
can guarantee that each one of their consequence relations satisfies the rule of
rational monotony.

As € approaches zero, the Taylor series expansion of P. is dominated by the
first term whose coefficient is non-zero. Thus, we can define a ranking function
on possible worlds using the exponent of this dominant term as follows.

Definition 3.7 (Ranking) Given a P., the ranking function xp, (w) is defined
as

{ min{n such that lim._, Pe(w) # 0} if Pw) >0 ‘
hp, () = s . (3.7)
00 if Po(w) =10

O

Moreover, according to Eq. 3.2, P, also induces a ranking on formulas ¢:
k() = min p, () (3.8)
wh=p

Proposition 3.8 The following are consequences of Defs. 3.1, 3.4, and 3.7.
Given P.:

1. There is at least one possible world w such that kp,(w) = 0.
2. ¢ b o holds in P. iff either kp (¢ Ao) < kp, (¢ A —o) or kp,(¢) = 0.

3. We will say that kp, is admissible with respect to D if for each ©; — 1b; € D

k(@i A i) < kP (i A i) (3.9)

D is consistent iff there exists at least one admissible ranking kp, with
respect to D.

Expressed in terms of ranking functions, the consequence relation induced by
a PPD echoes the preferential interpretation for defeasible sentences advocated
in [117] according to which v should hold in all minimal (preferred, more normal)
models for ¢. This can be seen more clearly by writing Eq. 3.9 as k() < &(pA=9))
and recalling that, in our case, minimality (preference or normality) is reflected
in having the lowest possible ranking (i.e., the highest possible likelihood).
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The rankings induced by P. will prove useful in the maximum entropy com-
putation process. Rather than computing the PPD of maximum entropy, P*,
we will calculate its corresponding ranking xp« (denoted £*), from which we can
compute the consequence relation associated with P*.

3.3 Plausible Conclusions and Maximum Entropy

Given that ¢ is true, a formula o will be probabilistically entailed by D if
1imdpg(aiqb) =1
in all P, that are admissible with respect to D.

Definition 3.9 (Probabilistic entailment) Given a consistent D, a formula
o is probabilistically entailed by D given ¢, written ¢ |y o, iff ¢ v o is in the
proper consequence relation of all P. admissible with D.

]

As is expected there is a close relation between p-entailment (Def. 2.7 and prob-
abilistic entailment:

Theorem 3.10 Given a consistent D, ¢ [y o iff D |=, ¢ — 0.

It follows that we can use the decision procedure for p-entailment (based on
procedure Test_Consistency in Figure 2.1) for deciding probabilistic entailment.”
Probabilistic entailment yields (semimonotonically) the most conservative “core”
of plausible conclusions that one would wish to draw from a conditional database
if one is committed to avoiding inconsistencies [101]. In particular, it does not
permit chaining (from ¢ — b and b — ¢ conclude a |~ ¢), or contraposition (from
a — b conclude =b p =a), hence it is too weak to be proposed as a complete char-
acterization of defeasible reasoning. As was mentioned in Sections 1.1 and 2.7,
the reason for this conservative behavior lies in our insistence that any conclusion
must attain high probability in «ll probability distributions admissible with D.
Thus, given D = {p — ~f} (“typically penguins don’t fly”) and the proposition
bl (for “blue”), the conclusion bl A p v =f (“blue penguins don’t fly”) will not
be sanctioned by probabilistic entailment, since one admissible distribution re-
flects a world in which blue penguins do fly. Clearly, if we want the system to

"This notion of entailment is also equivalent to the notion of preferential entailment in [69],
even though preferential entailment was motivated by considering desirable features of the
consequence relations and not by probabilistic considerations. The relation between these two
notions was reported by Kraus et al. [69].



respect the communication convention that, unless stated explicitly, properties
are presumed to be irrelevant to each other, we need to restrict the family of
probability distributions relative to which a given query is evaluated. In other
words, we should consider only distributions that minimize dependencies, that
is, they should contain the dependencies that are absolutely implied by D, but
no others.

Since the maximum entropy distribution exhibits this minimal commitment
to dependencies, it well be the focal point of the inference procedure. The entropy
associated with a distribution P. is defined as

Z P.(w)log P.(w). (3.10)

Given a set D = {¢; — 1}, the objective is to compute the PPD among those
satisfying the constraints imposed by D that maximizes the entropy;® P* denotes
this maximum entropy distribution. The formulas in the consequence relation
of P* (denoted by |») are then taken as plausible conclusions of D those . In
Eq. 3.5, the default ¢; — 1; is interpreted as a constraint on the limit of P.(v;|¢;)
as ¢ approaches zero. To facilitate the maximization of H[P.], these constraints
are replaced by equivalent constraints that assign a specific bound to P.(t;|¢;:)
for every ¢ > 0. The (unique) maximum entropy distribution for each value of
e > 0 1s then derived, and finally, its asymptotic solution as ¢ approaches zero is
examined.

A PPD F., satisfies a rule r; : ¢; — o; iff

1
14+ Cie’

Pe(tili) 2 (3.11)

where C; is an arbitrary positive coefficient independent of . Accordingly, the
admissibility constraints (Eq. 3.5) are re-written as:

C; xex PE(?/)Z’ A @i) > PE(—WM A L,QZ'). (312)

As we shall see, the equations governing the ranking approximation will be inde-
pendent of C;. (1} denotes the set of possible worlds verifying the rule r; and 1
denotes the set of possible worlds falsifying the rule r;, the constraint of Eq. 3.12
can be written

Y Pw)—[Cixex > Plw)]<0. (3.13)

wefy, MeQf,

8The PPD of maximum entropy must also satisfy the normalization constraint >, Pe(w) =
1.
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The problem is to maximize Eq. 3.10 subject to the constraints given in
Eq. 3.13; one constraint for each rule in . The most powerful method for solving
such optimization problems is the Lagrange multipliers technique [5]. This tech-
nique associates a factor a with each constraint (rule) and yields a distribution
P~ that is expressible as a product of these factors [18]. We will see that, under
the infinitesimal approximation (i.e., when ¢ is close to 0), P*(w) will be pro-
portional to the product of the factors («) associated only with those sentences
falsified in w.

At the point of maximum entropy, the status of a constraint such as Eq. 3.13
can be one of two types: active, when the constraint is satisfied as an equality,
and passive, when the constraint is satisfied as a strict inequality. Passive con-
straints do not affect the point of maximum entropy and can be ignored (see [5]).
Unfortunately, the task of identifying the set of active constraints is in itself a
hard combinatorial problem. The analysis will begin by assuming a set of active
constraints, then we will provide a characterization of knowledge bases called
minimal-core sets (Def. 3.11) which are guaranteed to impose only active con-
straints, and postpone the discussion of inactive constraints till Section 3.5.

An application of the Lagrange multiplier technique on a set of n active con-
straints yields the following expression for each term P.(w) (see Appendix B for
a step by step derivation):’

P(w)=apx J] anx J] ol7%9 (3.14)

ri€Dg r; €D

where D denotes the set of rules falsified in w and D7} denotes the set of rules
verified in w. Motivated by Def. 3.4, we look for an asymptotic solution where

each o, is proportional to ") for some non-negative integer Z(r;),'® and thus
-Cje
GO
is a normalization constant that will be present in each term of the distribution

each term of the form « ) will tend to one as ¢ tends to zero. The term Qo

and thus can be safely ignored. Using P! to denote the unnormalized probability
function, and taking the limit as € goes to zero, Eq. 3.14 yields:

Piw) = (3.15)
[, ep- @ otherwise
°In Eq. 3.14, ag = e~ and a,, = e**, where A\g and A; are the actual Lagrange
multipliers.

10We take a “bootstrapping” approach: if this assumption yields a solution, then the unique-
ness of P* will justify this assumption. Note that the assumption will be satisfied for analytic
functions (see Def. 3.1) which eliminate exponential dependencies on ¢.
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Thus, the probability of a given possible world w depends only on the rules that
are falsified by that possible world. In other words, any two possible worlds
that falsify the same set of rules are (asymptotically) equiprobable. Once the
a-factors are computed, we can construct an asymptotic approximation of the
desired probability distribution (using the ranking functions of Def. 3.7) and
determine the consequence relation | of D, according to maximum entropy.

To compute the a-factors we substitute the expression for each P/(w) (Eq. 3.15)
in each of the active constraint equations (Eq. 3.13), obtaining;:

ST and=Ciex >[I o] (3.16)

meQ;, r€Dy MeQt reDg

A few observations are in order. First, Eq. 3.16 constitutes a system of n equations
(one for each active rule) with n unknowns (the a-factors; one for each active
rule). Second, since P. is analytic at ¢ = 0, we can extract the dominant term
in the Taylor expansion of each element in the products of Eq. 3.16 and write
o, = a;e?(") where Z(r;) is a non-negative integer. Our task reduces to that
of computing the Z’s.'' Third, we can replace each summation by its dominant
term, namely, the term where ¢ has the minimal exponent. Thus, taking log on

both sides of Eq. 3.16 and writing log o, & loga; + Z(r;)loge = Z(r;)log ¢ yields

min[ Y Z(r)] = 1+mJirn[ > Z(r;)] 1<i<n, (3.17)
TorreDS i ry€Dg

where the minimization is understood to range over all possible worlds in €2 and

Ot

Ti?

interact only with the a; coefficients which will be adjusted accordingly to match

respectively. Note that the constants C; do not appear in Eq. 3.17; they

the constraints in Eq. 3.12.

Since rule r; is falsified in each possible world on the left-hand side of Eq. 3.17,
Z(r;) will appear in each one of the Y -terms inside the min operation and can
be isolated:

Z(r) + I?li]l{ ST Z(m)] =1+ 1113{11{ ST Z(ry). (3.18)
& ‘fkkié).uj "orjeDg

Although Eq. 3.18 offers a significant simplification over Eq. 3.16, it is still
not clear how to compute the values for the Z’s in the most general case. We now
introduce a class of rule sets D for which a simple greedy strategy (see procedure
Z* order in Figure 3.1) can be used to solve the set of equations above.

HFach probability term P!/(w) is asymptotically determined once the values of the Z’s are
computed (see Eq. 3.15).

45



Definition 3.11 (Minimal-Core set) D is a minimal-core (MC) set iff for
each rule r; 1 ¢; — t; € D, its negation ¢; — —); is tolerated by D — {p; — ¢;}.
Equivalently, for each rule r; there is a possible world that falsifies r; and no other
rule in D.

0

For example, the set D, of Example 2.2 is MC: w; = p A b A [ falsifies p — =f,
wy E p AbA~f falsifies b — f, and w3 | p A =b A ~f falsifies p — b. On
the other hand, changing p — —f to p — f renders D, no longer MC. Clearly,
deciding whether a set D is MC takes | D] satisfiability tests. The MC property
excludes sets D that contain redundant rules, that is, rules r that are entailed by
the P* computed for D — {r}. It follows that all default rules in an MC set are
active.

Proposition 3.12 If D is an MC set, then, for all defaults v : ¢ — 3 € D,
@ 1P is not in the consequence relation induced by D — {o — v }.

The MC property guarantees that, for each rule r; € D, there is a possible world
w; in which only that rule is falsified. Thus, since the min operation on the left-
hand side of Eq. 3.18 ranges over all possible worlds w in which r; is falsified, the
minimum of such possible worlds is w;, and the constraint equations for an MC

set can be further simplified to
Z(r;) = 1+mJirn[ Y Z(ry)] 1<i<n. (3.19)

"orjeDg

Note that since the expression E’/‘J'EDJ Z(r;) is equal to the exponent of the
most significant e-term in P*(w), from Definition. 3.7 we have that it is actually

equal to kp+(w), which we denote by «*. Thus, Eq. 3.19 can be rewritten as a
pair of coupled equations; the first,

fi*(u}) = Z Z*(TZ‘>, (320)
ri€Dy
assigns a ranking x*(w) to each possible world w once we know the Z*-values on

the rules. The second,

Z7(ri) = pin A (w) + 1, (3.21)

assigns a value Z*(r;) to each rule r; : ¢; — t; once we know the possible world
ranking £*. We have reduced the computation of the maximum entropy distri-
bution to finding a Z* function that is consistent with both Eqgs. 3.20 and 3.21.
Moreover, given the x*-ranking, we can decide entailment | by the criterion

ek M K A) <K (P Ap). (3.22)
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Procedure Z*_order
Input: A consistent MC set D. Output: Z*-ranking on rules.

1. Let Dy be the set of rules tolerated by D.
2. For each rule r; : ¢o; — 1p; € Dy, set Z(r;) =1 and RZ+ = D,.
3. While RZ* # D, do:

(a) Let © be the set of possible worlds w, such that w falsifies rules only in
RZ* and verifies at least one rule outside of RZ™; let RZ denote the
set of rules in RZ™* falsified by w.

(b) For each w, compute

(c) Let w™ be the possible world in € with minimum «; for each rule r; : ; —
v; € RZT that w* verifies, compute

Z(r) = k(W) +1 (3.24)
and set RZ* = RZ*T U {r;}.
End Procedure

Figure 3.1: Procedure for computing the Z*-ordering on rules.

The apparent circularity between £* and Z* (Eqgs. 3.20 and 3.21) is benign.
Both functions can be computed recursively in an interleaved fashion, as shown
in procedure Z*_order (Fig. 3.1).

Theorem 3.13 Giwen an MC set D, procedure Z*_order computes the function
Z* defined by Fqs. 3.20 and 3.21.

Corollary 3.14 Given an MC set D, the function Z* is unique.

The function Z* provides an economical way of storing the ranking «*, the space
requirement is linear in the number of default rules. Still, in order to decide
whether ¢ | ¢, we must check whether

min | Z(ry)] < mln Z(r; 3.25
wl:gi}\z,l/uzj:)‘ k w (p/\""lf! Z J ( )
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holds, and the minimization required by Eq. 3.25 is NP-hard even for Horn ex-
pressions (see [9]).

3.4 Examples

Example 3.1 (Blue penguins) Consider the set D, = {p — =f,p — b,b —
f} of Example 2.2. An application of procedure Z*_order will yield the ranking

z*:

Z*(b-—-)f) =
Z*(p—b)
Z*p—~f) =

Let bl be a new proposition denoting the color “blue”. Note that since &*(¢)
depends solely on the Z~ of the rules violated in the preferred models of ¢, and bl
is a proposition that does not appear in any of the defaults in D,, it follows that
the defaults violated in the preferred models of bl Ap A = f (“blue penguins don’t
fly”) are the same as those violated in the preferred possible worlds of p A = f.

We have:

wOIApA=f) = min Z_ ZX(ri) = r"(pA=f) =1
h‘erM
#IApAf) = min EZD_ Zr(ri) = k" (pAf) =2
T oM

Thus, £*(bl Ap A —f) < &*(bl A p A f), which ratifies the conclusion bl A p = f
(“blue-penguins don’t fly”). This conclusion follows directly from the rule of ra-
tional monotony (Eq. 3.6): Given that p — —f € D,, p | —f by the requirement
of admissibility. Now, since any model w |= p A bl falsifies exactly the same rules
as any model ' = p A =bl, &*(p A bl) = k*(p A -bl) and p [£* =bl. Thus, by
rational monotony p A bl [ —f. In general, we have the following proposition:

Proposition 3.15 Let D be a set of defaults, and let p be a proposition not
appearing in any of the defaults in D; then

pAdo il ¢p o

Example 3.2 (Inheritance) In this example, we consider whether penguins,
despite being an exceptional class of birds (with respect to flying), can inherit
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other properties typical of birds. Consider the set D, = D, U {b — w}.!?
The ranking Z* remains identical to the one in Ex. 3.1 except for the new rule
Z*(b — w) = 1. Note that since £*(p A w) = 1 (in the most preferred model for
p A w, the default b — f is violated), while x*(p A ~w) = 2 (either both b — f
and b — w or only p — b are violated in the most preferred models for p A —w),
we conclude p  w (i.e., “penguins have wings”).

he behavior of the ra-

It is instructive to compare the behavior of | with t
tional closure of Lehmann [72] or, equivalently, system-Z [100]. System-Z selects
the probability function P (among those admissible with D) that assigns to each
world the highest possible probability (i.e., lowest rank) consistent with D.'* En-
tailment is then defined in terms of the consequence relation induced by P*. A
parallel can be drawn with the rational closure in terms of ranked-models. Ratio-
nal closure also attempts to correct the conservative behavior of the preferential
entailment [69] (which is essentially equivalent to probabilistic entailment) by
restricting the set of consequence relations that define entailment. The resulting
ranked-model and notion of entailment present the same properties that P and
its consequence relation (this equivalence is formally shown in [48]). Given D,
(Ex. 3.2), p b w will not follow from the rational closure of D,: Once penguins
are found to be exceptional birds with respect to flying, the consequence relation
in the rational closure will regard penguins exceptional with respect to any other
property of birds. The source of this counterintuitive behavior can be traced to
the ranking function «* (associated with PY) that sanctions this consequence

£

relation defined by a pair of equations similar to Eqs. 3.20 and 3.21 [48, 100, 50]:

k*(w) = max Z7(r;) (3.26)
ri€Dg
where
7t () — : +
Z () = pin s (w) (3.27)

Whereas the maximum entropy approach uses “Y.” and tries to minimize the
weighted sum of default violations, system-7Z uses “max” and considers only the
most significant default violated. Thus, a world in which a penguin has no wings
(W' = pA—w) is no more surprising than one in which a penguin has wings; once
the rule b — f 1s violated, the additional rule b — w violated in w' does not alter
kT,

The preference for worlds which violate less rules is a general property of the
maximum entropy approach, and is made precise by the following proposition:

1276 read “typically birds have wings”.
13A summary of this strategy is presented in Chap. 4.
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Proposition 3.16 Let D be an MC set, Dy, denote the set of defaults violated
by model w, and Dy, denote the set of defaults violated by model w'. If Dy C
Dy then, *(w) < k*(w').

In other words, if the set of defaults violated by a model w is a proper subset
of those violated by another model ', then w is strictly preferable to w’. This
coherence property seems natural, intuitive, and useful in applications such as
fault diagnosis (see [110]). Suppose we know that “typically component p is not
faulty” (T'rue — —p) and “typically component ¢ is not faulty” (True — —g¢).
Given the observation that pV ¢ (either p or ¢ are faulty), a reasonable conclusion
to expect is that either p or ¢ is faulty but not both. Indeed, since any model
satisfying [p V ¢] A [p A ¢] must violate a superset of the defaults violated by
[pV gl A=[pAgq], we conclude (p V ¢q)  (-p V —q), as expected.*

Example 3.3 (Independent properties) Consider D, = {s — w,s — t}
standing for “typically Swedes are well-mannered” and “typically Swedes are
tall”. Since there is no explicit dependency between being well-mannered and
being tall in D;, a desirable default conclusion from Dy is =t A s | w (i.e. “short-
Swedes are well-mannered”). Again, this conclusion is sanctioned by |» but not
by the rational closure (or system-Z).

The |k consequence relation is sensitive to the way in which the default rules
are expressed. For example, had we encoded the information in D, (Ex. 3.3)
slightly differently, using D, = {s — (w A t)} (“typically Swedes are well-
mannered and tall”), we would no longer be able to conclude s A =t > w (“typi-
cally Swedes who are not tall are well-mannered”). This sensitivity to the format
in which rules are expressed seems at odds with one of the basic conventions
of traditional logic, in which a — (b A ¢) is regarded as shorthand for ¢ — b
and a — ¢, and also stands in contrast with most other proposals for default
reasoning (e.g. circumscription). However, this sensitivity might be useful for
distinguishing fine nuances in natural discourse, treating w and t as two inde-
pendent properties if expressed by two rules (i.e., “typically Swedes are tall”
and “typically Swedes are well-mannered”) and as related properties if expressed
together (i.e., “typically Swedes are tall and well-mannered”).

14This example is taken from [83], where the following question is posed: “Can the fact that
we derive —p V —¢ from p V ¢ when p,¢ are jointly circumscribed be explained in terms of
probabilities close to 0 or 177.
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3.5 Non-Minimal-Core Sets

In the maximum entropy distribution, the constraint imposed by a default rule in
D (see Eqs. 3.12 and 3.13) can be satisfied as either an equality (active constraint)
or a strict inequality (passive constraint). The MC condition on D (Def. 3.11)
guarantees that all these constraints are active. Once we relax this condition,
not only does the process of finding a solution for the set of Egs. 3.18 become
more complex, but the resulting ranking may no longer represent a solution to
the entropy maximization problem. This is because Eqgs. 3.18 are the result
of applying the Lagrange multipliers technique on the constraints represented
by Eq. 3.12. This technique finds maxima on the boundaries defined by these
constraints, blindly assuming that all constraints are satisfied as equalities (i.e.,
are active, see Appendix B), whereas all we are required to do is to satisfy the
constraints of Eq. 3.12 with inequalities.

Another problem with using non MC sets D is that of redundant rules, that
is, rules r that are already satisfied by the consequence relation | induced by
D — {r} (see Prop. 3.12). It may be thought that these rules can be safely
ignored and removed from the original knowledge base; however, in specifying a
particular D, the user often intends for all rules in D to play an active role in
shaping the consequence relation |. Overlooking this intention may lead to to
counterintuitive results, as the following example demonstrates.*®

Example 3.4 (Active set.) Consider the sets D, = {a — 0,b — ¢} and D,y =
D, U {a — c}. Note that D, is not an MC set. If we run procedure Z*_order
on D,, we find that the values Z*(a — b) and Z*(b — ¢) are both equal to 1,
and that a | cis in the consequence relation induced by D, since Z*(a — b) and
Z*(b — c¢) satisfy

min[ > Z(rg)] =1+ n&in[ > Z(ry). (3.28)

Qe re€DI a-rc T]ED;

Thus, since the constraint imposed by the rule ¢« — ¢ in D, is satisfied by the
maximum entropy solution to D,, the two sets will have the same maximum
entropy solution and the same consequence relation. Yet these two sets, D,
and D,y, are not equivalent: While we do not expect a A =b | ¢ to hold in D,
(the only possible “inference path” to ¢ in D, goes through b), we would like
a A =b b ¢ to be in any reasonable consequence relation induced by D,y (where
the rule ¢ — ¢ provides an alternative “path” to c).

15This example is a modified version of one originally suggested by Andrew Baker (personal
communication).
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The problem rests with using the equality P.(cla) = 1 — C x ¢ as a constraint

to the maximization process,'®

where in fact the constraint intended by the user
is stronger, requiring a faster convergence of Pf(c|a) towards 1. The use of
the Lagrange multipliers technique requires a commitment to a particular rate of
convergence for each rule. Had we started with the insight that lim._o P(cla) =1
should be represented by P(cla) = 1 — C x £? instead, the problem could have

been solved using Eq. 3.18; all constraints in D, will be active, yielding

Z({a—c)+ g}in[ > Z(r)l =2+ rriin[ > Z(ry)], (3.29)
a—C 'I‘keDJ [ g TJGD;
rEFa—C

and the consequence relation  induced by D, will satisfy a A =b |» c.

In general we could write Eq. 3.18 in terms of slack variables n; for each

constraint,
Z(ri) +minl 3 Z(ry)] = ni+min[ 3 Z(r;)] (3.30)
K m»ke;J i reDg

and seek the correct values of n; that would render every rule active. Computa-
tionally, however, guessing the n;’s is not easier than guessing the set of active
constraints.

We see that the advantages of MC sets are twofold: They guarantee conver-
gence of procedure Z*_order to a solution of Eq. 3.18, and this solution represents
a solution to the entropy maximization problem. Unfortunately, to ensure these
guarantees the expressiveness of the knowledge bases must be limited to MC,
which may prevent us from specifying certain rule sets in the most natural way.
It turns out that the class of knowledge bases where these guarantees hold is in
fact wider than MC, since Egs. 3.16 and 3.17 are valid as long as all rules are
active. Consider the set D, of Example 2.2,'" augmented with the rule p — a
(“typically penguins live in the Antarctic”). This set is not MC since any model
falsifying p — « must falsify at least one other default in D,. Nevertheless, all
rules in D, U {p — a} are active. Notice that p — « is insensitive to the Z-values
associated with each of the rules in D,, and vice versa. In other words, any
change on the value of the Z associated with a rule in D, will not affect the Z
assoclated with p — a.'® Thus, we can compute the Z-values for D, and p — a

16Note that P.(cla) > 1 — ' x ¢ is equivalent to C’ x ¢ x P.(c¢Aa) > P.(=cAa) for expressing
lime g P(cla) = 1 as a constraint for the maximization process.

"Recall that D, = {p — ~f,p — b,b— f}.

8The instance of Eq. 3.18 for p — a shows that the min-terms on both sides are identical
and therefore can be canceled.
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separately using two independent applications of procedure Z*_order, one on D,
and the other on p — «, and then combine the resulting Z’s. We see that cer-
tain topological features of D) permit its decomposition into a set of components
belonging to MC, hence every rule will be active. The full characterization of
databases in which all rules are active remains an open problem.

3.6 Discussion

Maximum entropy can be viewed as an extension of both p-entailment and the ra-
tional closure. Like p-entailment, it is based on infinitesimal probability analysis;
and like rational closure, it is based on a unique ranking of possible worlds sub-
ject to constraints. In the rational closure, however, possible worlds are given the
lowest rank that is consistently possible, and hence the rank of a model is equal
to the rank of the most crucial rule violated by that model.!® In contrast, maxi-
mum entropy ranks models according to the weighted sum of rule violations, and
it is this difference that enables maximum entropy to sanction inheritance across
exceptional subclasses, concluding that “penguins have wings” in Example 3.2
and that “short Swedes are well-mannered” in Example 3.3.

The ranking of rules in maximum entropy is reminiscent of abnormality pref-
erences in prioritized circumscription [88], with the difference that the priorities
assigned by maximum entropy are extracted automatically from the knowledge
base and do not need the intervention of the user. This property is shared by
Geffner’s [36] conditional entailment, which also combines the virtues of the exten-
sional and the conditional approaches. Conditional entailment maintains partial
orders among rule priorities and among models, and it produces more acceptable
inferences than maximum entropy in certain cases (see [36]), at the expense of
a greater computational complexity and the loss of the underlying probabilistic
semantics.

A weakness of the maximum entropy approach is that it stands at odds with
the principle of causation.?® If we first compute the maximum entropy distri-
bution P*(Xi,...,X,) on a set of variables X,,..., X,, and then consider one
of their consequences Y, we may find that the maximum entropy distribution
P*(Xy,...,X,,Y) constrained by the conditional probability P(Y|Xy,...,X,)
changes the probabilities of the X variables. For example, specifying the biases

19This ranking is called Z-rank in [100].

20This weakness, shared by many proposals for nonmonotonic reasoning [67], has required
the introduction of special causal operators [116, 36]. Chapter 5 proposes a different approach
to causality based on probabilistic considerations of independence.
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of two coins yields a maximum entropy distribution in which the two coins are
mutually independent. However, further specifying the probability with which
an observer would respond to each of the four outcomes of these coins might
yield a maximum entropy distribution in which the two coins are no longer inde-
pendent of each other (see [97, pp. 463, 519], and [60]).2! This stands contrary
to our conception of causality in which the forecasting of future events does not
alter beliefs about past events. This behavior prevents the maximum entropy
approach from properly handling tasks such as the Yale shooting problem [57],
where rules of causal character are given priority over other rules. Such priorities
can be introduced in the s-ranking system using a device called stratification (see
Chap. 5), which forces x to obey the so-called Markov condition: Knowing the
present renders the future independent of the past. The role of maximum entropy
in stratified rankings could then be to define preferred rankings under incomplete
specification of causal influences: Out of all admissible rankings that conform to
the stratification condition, choose those with the maximum entropy.

The maximum entropy formalism can be extended to admit defaults with
variable strengths; each default in D can be annotated with a parameter &;, that
indicates the firmness with which the default is believed.?? Probabilistically, &;
represents the slowest rate at which P(1;|¢;) should be allowed to approach one as
e approaches zero. The constraints to the maximization process can be modified
accordingly; thus, Eq. 3.12 will now read

C,' X 5& X Ps(gf)z A (,9,') Z PE(“’W,/).; N 992'), (331)
and, given an MC set D, Eqgs. 3.20 and 3.21 translate to

Kw) = > Z%(ry) (3.32)
ri€Dg
7)) = w;gmﬁ*(w)ﬂwi (3.33)

where the Z*-order for each rule can be computed using procedure Z*_order.

This feature is very useful in domains such as circuit diagnosis where the
analyst may feel strongly that failures are more likely to occur in one group of
devices (e.g., multipiers) than in another (e.g., adders). For example, suppose
that in addition to the information “typically component p is not faulty” and
“typically component ¢ is not faulty”, we also know that component p is much

2 Pearl attributes the discovery of this phenomenon to Norm Dalkey [97].
22An extension to system-Z [100] along these lines can be found in Chapter 4 (see also

[50, 53]).
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more likely to fail than component g. We can encode this information by spec-
ifying D = {T'rue &, -p, T'rue REN —q} where §; < 8,. Thus, given that p V ¢
(either p or g are faulty) holds, we conclude that p is the faulty component with
the failure ((p V ¢) » (p A —¢)). If entailment is defined as the intersection of
the | consequence relations induced by all sets of values §;, then the resulting
entailment relation will be supported by partial orders among rules and models,
as in Geffner’s [36] conditional entailment.

Chapter 4 studies such an extension to Pearl’s system-Z [100], in which each
@ — 1 is annotated with a positive integer é denoting the degree of strength or
firmness of the rule.
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CHAPTER 4

Plausibility II: System-Z+

4.1 Rankings as an Order-of-Magnitude Abstraction of
Probabilities

Regardless of how we choose to interpret default statements, it is generally ac-
knowledged that some defaults are stated with greater firmness than others. For
example, the action-response defaults of the type “if Fred is shot with a loaded
gun, Fred is dead” are issued with a greater conviction than persistence defaults
of the type “if Fred is alive at time £, he is alive at ¢t +1”. Moreover, the degree
of conviction in this last statement should clearly depend on whether ¢ is mea-
sured in years or seconds. In diagnosis applications, likewise, the analyst may
feel strongly that failures are more likely to occur in one type of device (e.g.,
multipliers) than in another (e.g., adders). A language must be devised for ex-
pressing this valuable knowledge. Numerical probabilities or degrees of certainty
have been suggested for this purpose, but if the full precision provided by numer-
ical calculi is not necessary, an intermediate qualitative language might be more
suitable.

This chapter proposes such a language in terms of the ranking functions in-
troduced in Chapter 3 (Def. 3.7). This method of approximation gives rise to a
semiqualitative calculus of uncertainty: Degrees of (dis)belief are ranked by non-
negative integers (corresponding perhaps to linguistic quantifiers such as “believ-
able”, “unlikely”, “very rare”, etc); retraction and restoration of beliefs conforms
to Bayesian conditionalization.

One way of motivating ranking systems is to consider a probability distribu-
tion P defined over a set §) of possible worlds and to imagine that an agent wishes
to retain an order-of-magnitute approximate of P. The traditional engineering
method of approximating P would be to express each numerical parameter (spec-
ifying P) in a base b representation, where b depends on the precision needed, and
1

then omit all but the most significant figure from each expression.” All arithmetic

!Thus, given a number n and a basis b, its approximate would be the polynomial expression
ag* (5)° +ay * () +az«(0)* + . ...
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operations would then be performed on these approximate, single digit quanti-
ties, in lieu of the original parameters. The abstraction we advocate goes one
step further. Instead of retaining the numerical value of the most significant fig-
ure, we retain only its position. The mechanics of this exercise is equivalent to,
and can best be described by, a limit process where quantities are reqresented
as polynomials in an infinitesimal number €. These polynomials are added and
multiplied precisely, but at the end we calculate the limit of the final results as €
goes to zero.

Imagine that the probability P(w) is a polynomial function of some infinites-
imal parameter ¢, arbitrarily close to, yet larger than zero; for example, P(w) =
1—cje or e2—coe*.? Accordingly, the probabilities assigned to any subset of §2 rep-
resented by a logical formula ¢, as well as all conditional probabilities P(1|p),
will be rational functions of . We define the ranking function x(|p) as the
power of the most significant e-term in the expansion of P(¥|p). In other words,
k(Y]p) = n iff P(¢|p) has the same order of magnitude as " (see Def. 3.7).3
Thus, instead of measuring probabilities on a scale from zero to one, we can
imagine projecting probability measures onto a quantized logarithmic scale and
then treating beliefs that map onto two different quanta as being of different
orders of magnitude.

The following properties of ranking functions (left-hand side below) reflect,
on a logarithmic scale, the usual properties of probability functions (right-hand
side), with men replacing addition, and addition replacing multiplication:

w(e) = mink(w) : Ple) =2 Plw) (4.1)

wke
k() =0o0rk(=p)=0 : Plp)+ P(-p)=1 (4.2)
w( Aw) = r(¥le) + () Pl Ap) = P(plp)P(p) (4.3)

Parameterizing a probability measure by ¢ and extracting the lowest exponent
of ¢ as the measure of (dis)belief was proposed in [98] as a model of the process by
which people abstract qualitative beliefs from numerical probabilities and accept
them as tentative truths. For example, we can make the correspondence between

7

linguistic quantifiers and " depicted in Table 4.1 These approximations yield

?Probability functions parameterized on € were called PPD’s in Chapter 3. They are formally
introduced in Definition 3.1, where the e-functions were restricted to be analytical in ¢ = 0.
The probability functions described above can also be viewed as the Taylor approximation of
these PPD’s.

3Spohn [120] was the first to study such ranking functions, which he named (non-
probabilistic) ordinal condition function (OCF). His main motivation was to account for the
dynamics of plain beliefs.



P(¢) =&Y ¢ and —¢ are believable k(¢) =0
P(¢) = ¢! —1¢ is believed K(¢) =1
P(¢) = &? - is strongly believed K($) =2
P(¢) = ¢® | —¢ is very strongly believed | x(4) = 3

Table 4.1: Linguistic quantifiers and e”.

a probabilistically sound calculus, employing integer addition, for manipulating
the orders of magnitude of disbelief. The resulting formalism is governed by the
following principles:

1. Each world is ranked by a non-negative integer s representing the degree
of surprise associated with finding such a world.

2. Each wif is given the rank of the world with the lowest « (most normal
world) that satisfies that formula.

3. Given a collection of facts ¢, we say that o follows from ¢ with strength
6 if k(o|¢) > 6, or, equivalently, if the x rank of ¢ A —o is at least § + 1
degrees above that of ¢.

Principles 1 and 2 follow immediately from the semantics described above. Prin-
ciple 3 says that o is plausible given ¢ iff P(o|¢) > 1 — ce®*, where P is the
e-parametrized probability associated with that particular ranking . This ab-
straction of probabilities matches the notion of plain beliefin that it is deductively
closed;* the drawback of this abstraction is that many small probabilities do not
accumulate into a strong argument (as in the lottery paradox).

Reasoning using Principles 1 to 3 requires the specification of a complete
ranking function. In other words, the knowledge base must be sufficiently rich
to define the & associated with every world w.” Unfortunately, in practice, such
specification is not readily available. We are usually given information in the form

“If A is believed and B is believed then, AA B is believed because k(=(AAb)) > 0 whenever
k(—A) > 0 and k(—B) > 0. This deviates from the threshold conception of belief: if both P(A)
and P(B) are above a certain threshold, P(A A B) may still be below that threshold.

This is also the case with the OCF described in Spohn [120].
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of statements such as “birds normally fly” which we interpret as P(f]0) > 1 —¢
or, equivalently, (= f[b) > 0, and no information whatsoever about the flying
habits of red birds or non-birds. In this case, we still would like to conclude “red
birds normally fly”, even though the information given merely constraints & to
satisfy £(f A D) < w(=f A D) (“it is less surprising to find a flying bird than a
non-flying one”), and is not sufficient for defining a complete ranking function.
Drawing plausible conclusions from such fragmentary pieces of information, re-
quires additional inferential machinery to accomplish two functions: It should
enrich the specification of the ranking function with the needed information, and
it should operate directly on the specification sentences in the knowledge base,
rather than on the rankings of worlds (which are too numerous to list). Such ma-
chinery is provided by a formalism called system-Z7, described in this chapter,
which accepts knowledge in the form of graded if-then rules and computes the
plausibility of any given query by syntactic manipulation of these rules.

To accomplish these functions, system-Z* incorporates two principles in ad-
dition to those given above:

97

4. Each input rule “if ¢ then ¢ (with strength §)”, written ¢ ER P, 1s in-
terpreted as a constraint on the ranking «, forcing every world in ¢ A =%
to rank at least 6 + 1 degrees above the most normal world in ¢, that is,

K(Plp) > 6.

5. Out of all rankings satisfying the constraints above, we adopt the rank-
ing ¥ that assigns each world the lowest possible (most normal) rank.
Remarkably, this ranking will turn out to be unique.

Principle 4 is a straightforward generalization of the probabilistic reading of the
rules, P(1|p) > 1 — ce®T'. The parameter § is an optional feature for the rule
encoder that augments the expressiveness of the knowledge base by assigning
strength to the rules. It ¢ is unspecified, it is assumed to be equal to zero, and
rules are interpreted as P(¢|¢o) > 1 — ce. A knowledge base with all § = 0
will be called a flat knowledge base. Remarkably, the addition of the §’s does
not increase the computational complexity of query-answering and consistency
testing.® Moreover, we shall see that even a flat knowledge base induces a natural
priority on rules in order to respect specificity considerations (see Thm. 4.14).

Principle 5 reflects the assumption of maximal ignorance; unless compelled
otherwise, assume every situation to be as normal as possible (or equivalently, no
situation is more surprising than necessary). In contrast, the approach based on

5Both will require a polynomial number of propositional satisfiability tests.



maximum entropy (Chap. 3 selects the ranking x* that minimizes dependencies
among propositions, to reflect only those implied by the rules in the knowledge
base. As will be seen, the advantage of system-Z* is that the algorithm necessary
for computing plausible conclusions is more efficient than the one for maximum
entropy (Sec. 3.3). Asin the case of maximum entropy, a key step in the procedure
is the computation of a priority ordering Z* on the rules in the knowledge base.”
Section 4.3 (after some preliminary definitions in Sec. 4.2), introduces a procedure
that computes Z* in a polynomial number of propositional satisfiability tests and
hence is tractable in applications permitting restricted languages, such as Horn
expressions, network theories, or acyclic databases. Once the ordering Z% is
known, the degree to which a given query is denied or confirmed can be computed
in O(log|A|) satisfiability tests (where |A] is the number of rules in the knowledge
base A). On the other hand, as shown in Section 4.7 and partially discussed in
Sections 3.4 and 3.6, this computational advantage of system-Z* over maximum
entropy, results in weakening the set of conclusions ratified by the system.

In Section 4.5, system-Z7 is equipped with the capability to reason with soft
evidence or imprecise observations. Such a capability is important when we wish
to assess the plausibility of o (using Prin. 3 above) but the context ¢ is not
given with absolute certainty; all that can be ascertained is “¢ is supported to
a degree n”. We propose two different strategies for computing a new ranking
&’ from an initial one «, given soft evidential report supporting a wif ¢. The
first strategy, named J-conditionalization, is based on Jeffrey’s rule of condition-
ing [99]. It interprets the report as specifying that “all things considered”, the
new degree of disbelief for =¢ should be &'(—¢) = n. The second strategy, named
L-conditionalization, is based on the wirtual evidence proposal described in [97,
Chap. 2]. It interprets the report as specifying the desired shift in the degree of
belief in ¢, as warranted by that report alone and “nothing else considered”. We
show that both J and L-conditionalization have roughly the same complexity as
ordinary conditionalization. Section 4.6 relates and compares system-Z* to the
theory of belief revision in [3]. Finally, Section 4.7 summarizes the main results.

4.2 Preliminary Definitions: Rankings Revisited

. 5 .
Consider a set A = {r; | r; = ¢; = ¥;;1 < i < n}, where ; and ; are

bM

propositional formulas, “—" denotes a default connective as before, and ¢; is

“This priorities should be distinguished from the strengths 6’s that are assigned to the rules
by their author; priorities represent the interactions among the rules and reflect considerations
such as specificity and relevance which are applicable to systems with flat knowledge bases.
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a non-negative integer representing the degree of strength of rule r;.® Ranking
functions are defined as follows:

Definition 4.1 (Ranking) A ranking function x is an assignment of non-negative
integers to the elements in €, such that x(w) = 0 for at least one w € .
O

We extend this definition to induce rankings on wifs in accordance with the
probabilistic interpretation of Eq. 4.1:

mingp, £(w) if ¢ is satisfiable ,
rp) = (4.4)

00 otherwise

Similarly, following Eq. 4.3, we define the conditional ranking &(|p) for a pair
of wifs ¢ and ¥ as

& Np)— & if & o0
(o) = (¥ A ) — k(p) () # (5)

o0 otherwise

Preferences are associated with lower &, and surprise or abnormality with higher
k. Thus, k(¢) < &(p) if ¢ is preferred to ¢ in & or, equivalently, if ¢ is more
abnormal (surprising) than . Intuitively, «(1|p) stands for the degree of incre-
mental surprise or abnormality associated with finding ¢ to be true, given that
we already know ¢. The inequality (=% |p) > é means that given ¢ it would be
surprising (i.e., abnormal) by at least §+1 additional ranks to find =>. Note that
k(—lp) > & is equivalent to k() + 6 < k(= Ap) or k(PP Ap)+6 < k(- Ap),

which is precisely the constraint on worlds we attribute to ¢ 2 .
Definition 4.2 (Consistency) A ranking « is said to be admissible relative to
a given A, iff

k(i Npy) + 6 < k(i A=) (4.6)
(equivalently &(—;|pi) > &;) for every rule ¢; N ¥; € A. A knowledge base A

is consistent iff there exists an admissible ranking « relative to A.?
O

8For simplicity we skip the treatment of strict rules. The only necessary change required
is in the conditions for admissibility in Def. 4.2. A strict rule ¢ = o imposes the following
admissibility constraint: x(o A ¢) < k(-0 A ¢) and k($) < oo (see Sec. 5.3, Eq. 5.8).

9Definition 4.2 represents the ranking equivalent of consistency and admissibility in Defini-
tion 3.2 (and Prp. 3.8) with a slight generatlization due to the new parameter §. For reasons
of simplicity I chose not to introduce a new term such as “k-consistency”. Also, as shown in
Theorem 4.3 both notions are tested using the same procedure: Procedure Test.Consistency.
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Figure 4.1: Consistency and rankings.

As expressed in Section 3.2 (when rankings were first introduced, see Def. 3.7
and Prop. 3.8), Eq. 4.6 echoes the usual interpretation of default rules [117],
according to which % holds in all minimal models for ¢. In our case, minimality
is reflected in having the lowest rank, that is, the highest possible likelihood.
Consistency guarantees that in every admissible ranking, each time we find a
world w™ violating a rule ¢; &, 1;, there must be a world wt verifying ; A
¥; such that s(w%) must be at least § + 1 units less surprising than x(w™)
(see Fig. 4.1). In probabilistic terms, consistency guarantees that for every ¢ >
0, there exists a probability distribution P such that if ¢; &, P, € A, then
P(lﬂ,l(pz) Z 1-— CE‘S"H.

Let A denote a set of rules identical to A except that all the strengths &; are
removed. Then,

Theorem 4.3 A sel A is consistent iff A is p-consistent (Def. 2.2).

Thus, consistency is independent of the §; strengths and we can use procedure
Test_Consistency (Fig. 2.1) to test for consistency in a polynomial number of
satisfiability tests. It is reassuring that once a knowledge base is consistent for
one set of §-assignments, it will be consistent with respect to any such assignment,
which means that the rule author has the freedom to modify the 8’s without fear
of forming an inconsistent knowledge base.
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4.3 Plausible Conclusions: The Z*-Rank

Given a set A, each admissible ranking « induces a consequence relation b:,,
where ¢t o iff k(0 A @) < &(=0 A 8). A straightforward way to declare o as a
plausible conclusion of A given ¢ would be to require ¢ ko in all x admissible
with A. However, this will result in an entailment relation equivalent to p-
entailment which was shown to be too conservative (Chap. 3). Thus, similar to
the approach taken in Chapter 3, we select a distinguished admissible ranking,
k¥, and declare ¢ as a plausible conclusion of A given ¢, written ¢ K v, iff
kY (PAo) < kT(dA o). 0

The ranking &% assigns to each world the lowest possible rank permitted
by the admissibility constraints of Eq. 4.6. We will first introduce a syntactic
definition of % and then show that it satisfies the desired minimality condition.

Definition 4.4 (The ranking «*) Let A = {r; | r; = ¢ LN ¥} be a consistent
set of rules. kT is defined as follows:

0 if w does not falsify any rule in A
£ (w) = (4.7)
MaX, k- [ £ (ri)] + 1 otherwise

where Z7(r;) is a priority ordering on rules, defined by
Z¥(r)) = mi + 8;. 4.8
(ri) = min [s7(w)] + (4.8)

O

Eqgs. 4.7 and 4.8 can be viewed as two coupled equations; one defines «* in terms
of Z*, the second defines Z% in terms of «*. Figure 4.2 presents an effective
procedure, procedure Z% _order, for computing Z* from A. The significance of
Eq. 4.8 is that the priorities function Z* constitute an economical way of encoding
the ranking x*, linear in the size of A, from which the &% of any world w can be
computed by searching the highest Z* rule violated by w in a logarithmic number
(on the number of rules in A) of satisfiability tests. The resulting consequence
relation |y and its associated reasoning procedures are called system-Z+.

We next show (Thm. 4.7 and Cor. 4.8) that Eqgs. 4.7 and 4.8 define a unique
admissible ranking function «* that is minimal in the following sense: Any other
admissible ranking function must assign a higher ranking to at least one world and

107f we are concerned with the strength § with which the conclusion is endorsed, then ¢ I’fr ¥
iff & is the lowest (positive) integer I satisfying k¥ (¢ A o) + I < k1 (¢ A =0).
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a lower ranking to none. To make the result formal, we introduce the following
definitions:

Definition 4.5 (Minimal ranking) A ranking function  is said to be minimal
if every other admissible ranking &’ satisfies £’(w) > k(w) for at least one possible
world w.

O

Definition 4.6 (Compact rankings) An admissible ranking s is said to be
compact if, for every w’ any ranking &’ satisfying

Kw) = klw) w#d
K'w) < kw) w=uo

is not admissible.
0

Theorem 4.7 Every consistent A has a unique compact ranking given by x+.
Corollary 4.8 Every consistent A has a unique minimal ranking given by x*.

Note the similarity between k% (Eq. 4.7) and the ranking k* associated with
the maximum entropy approach (reproduced below)

0 if w does not falsify any rule in A,
K*(w) = (4.9)

Ywkein-g [ Z7(ri)] + 1 otherwise.

While ¥ (w) is defined by the maximum-priority rule violated in w, x*(w) depends
on the summation of these priorities. This difference will have implications for
both the computational complexity and the quality of conclusions that these two
proposals sanction.

The computation of the Z* priorities and the query-answering procedures
for the maximum entropy approach has been proven to be NP-hard even for
Horn clauses (see [9]). In contrast, the computation of Z* using Procedure
Z* _order can be accomplished O(JA|* x log |A|) satisfiability tests (Thm 4.12).
The procedure for computing Z* is presented in Figure 4.2, and is very similar
to the one in Figure 3.1. Some of the steps in procedure Z¥_order invoke a test
of toleration (Def. 2.3). A rule ¢ 2, o is tolerated by A if the wif ¢ Ao A, i D s
is satisflable (where ¢ ranges over all rules in A).

Theorem 4.9 establishes the correctness of procedure Z*_order, while Lem-
mas 4.10 and 4.11 and Theorem 4.12 determine its (polynomial) complexity.
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Procedure Z*_order
Input: A consistent knowledge base A. Output: Z*-ranking on rules.

1. Let Ag be the set of rules tolerated by A, and let RZ" be an empty set.
2. For each rule r; = ¢; 5 Y € A, set Z(r;) =6, and RZT = RZT U {r;}.
3. While RZ* # A, do:

(a) Let AY be the set of rulesin A’ = A — RZ" tolerated by A’.

(b) Foreachr:¢ Soe A™, let ), denote the set of models for ¢ A o that
do not violate any rule in A’; compute

Z(r) = wrrgg [k(w)] + 6 (4.10)
where k(w,) =
max {2(rs) Ler =05 A=t} 41 (4.11)

and r; 1 o; B o € RZT,
(c) Let r* be a rule in A% having the lowest Z; set RZT = RZ+ U {r*}.
End Procedure

Figure 4.2: Procedure for computing the Z*-ordering on rules.
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Theorem 4.9 The function Z computed by procedure Z* _order satisfies Def. 4.4,
that is Z = Z+.11

Lemma 4.10 Let A = {r; | r; = ; &, ¥;} be a consistent knowledge base in
which rules are sorted according a priority function Z(r;). Let £(w) be defined as
in Bg. 4.7:

0 if w does not falsify any rule in A, ‘
k(w) = (4.12)

MaXykpia- [ Z(1:)] + 1 otherwise.

Then, for any wif ¢, k(¢) can be computed in O(log |A|) propositional satisfiability
tests.

The idea is to perform a binary search on A to find the lowest Z(r) such that there
is a model for ¢ that does not violate any rule r’ with priority Z(r') > Z(r). This
is done by dividing A into two roughly equal sections: top-half (74 to 71y ) and
bottom-half (rip, to ). A satisfiability test on the wif a = ¢/\§§ZM w; DYy
decides whether the search should continue (in a recursive fashion) on the bottom-
half or top-half.

Lemma 4.11 The value of Z(¢ ER o) in Eq. 4.10 can be computed in O(log |RZ7T|)
satisfiability tests.

Let A’in Step 3(a) of procedure Z*_order be equal to {¢; A ¥; }; the computation
of Eq. 4.10 is equivalent to computing the x of the wif ¢ A ¢ A, v; D +; where 1
ranges over all the rules in A’ by performing the binary search on the set RZ*.

Theorem 4.12 Given a consistent A, the computation of the ranking Z* re-
quires O(]A* x log |A]) satisfiability tests.

Computing Eq. 4.10 in Step 3(b) can be done in O(log [RZ*|) satisfiability tests
according to Lemma 4.11,'* and, since it will be executed at most O(]A|) times,
it requires a total of O(JA| x log|Al). Loop 3 is performed at most |A] — |Ag|

" Note that Eqs. 4.10 and 4.11 correspond to Egs. 4.8 and 4.7 in Def. 4.4,

12Note that we need RZ% to be sorted, nondecreasingly, with respect to the priorities Z.
This requires that the initial values inserted in RZ% in Step 2 of procedure Z% _order be sorted
taking O(]Ao|?) data comparisons and that the new Z-value in Step 3(c) be inserted in the
right place taking O(|RZ7*|) data comparisons. We are assuming that the cost of each of these
operations is much less than that of a satisfiability test.
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times, hence the whole computation of the priorities Z* on rules requires a total
of O(JA|* x log|Al) satisfiability tests.!3

Once Z% is known, determining the strength § with which an arbitrary query o
is confirmed, given the information ¢, requires O(log |A|) satisfiability tests: First
kT (¢Ac) and kT (¢ A—0o) are computed, using a binary search as in Lemma 4.10.
Then, these two values are compared and the difference is equated with the
strength 6. Clearly, if the rules in A are of Horn form, computing the prior-
ity ranking Z* and deciding the plausibility of queries (¢ ['fy o) can be done in
polynomial time [25].

In the special case of a flat A, that is, all §’s = 0, the procedure reduces to the
following steps: First, identify all rules r; : ¢; — ; in A for which the formula

i N @i Dy (4.13)
JEir €A
is satisfiable. Next, assign to these defaults priority Z* = 0, remove them from A,
and repeat the process, assigning to the next set of defaults the priority Z+ =1,
then Zt = 2, and so on. Once Z7 is known, the rank &% of any wif ¢ is given
by £7(¢) = minimum 7, such that

¢ N @D (4.14)

J: 2% (rj)2i

is satisfiable. This special case of a flat A constitutes system-Z as introduced by
Pearl [100].

An important result implied by Eqgs. 4.13 and 4.14 gives a method of con-
structing a propositional theory T'h(¢) that implies all the conclusions o that
plausibly follow from a given evidence ¢, that is, ¢ |y o. Such a theory is given
by the formula

Th(¢) = A 0 D ;. (4.15)

wZt (ri)>rt($)

This is somewhat reminiscence of Brewka’s [16] and Poole’s [104] idea of con-
structing preferred subtheories that are maximally consistent with the context ¢.
Here , the construction is more cautious; it stops as soon as all rules of priority
Z*t > kT(4) are included in the theory. Ways of completing the construction
were proposed by Boutilier [15] (see discussion in Sec. 4.7). Note, however, that
in contrast to Brewka’s and Poole’s proposals, our priorities are computed auto-
matically from the knowledge base.

13The complexity of the rest of the steps in the procedure is bounded by O(|A|) satisfiability
tests.
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4.4 Examples

The following examples illustrate properties of the k*-ranking and the use of § to
impose priorities among defaults. Example 4.1 shows how the specificity-based
preferences in Example 2.2 are established and maintained by the x*-ranking,
freeing the rule encoder from such considerations.'* In Example 4.2, the strengths
6 are used to establish preferences when specificity relations are not available.

Example 4.1 (Irrelevance and specificity) Consider the following set of rules
taken from Example 2.2:

T b—a—ﬁf
To: pgb

r3: P‘é—3> ~f

74 f&a

standing for ry:“birds fly”, ro:“penguins are birds”, r3:“penguins don’t fly”, and
rq:“flying things are airborne”. The Z7*-ordering is computed as follows: Since
both 7 and r4 are tolerated by all the rules in the knowledge base, Z*(r) = &
and Z*(ry) = &. Any rt-minimal world verifying 7y or rs must violate ry;
therefore, following procedure Z* order, Zt(ry) = é6; + §o + 1 and Z¥(r3) =
81 + 03 + 1. The first column of Table 4.2 contains some queries, the second
contains p-entailed conclusions, and the last contains conclusions entailed by
system-Z*. The reason system-Z+ concludes that “red birds fly” (r A by f is

Queries p-entailment | system-Z7T
(pAb, f)— “Do penguin-birds fly?” NO NO
(rAb, f)— “Do red birds fly?” Possibly YES
(b,a) — “Are birds airborne?” Possibly YES

Table 4.2: Plausible conclusions in Example 3.1.

as follows: Since r is a proposition that does not appear in the knowledge base,

1A general formalization of this behavior is Theorem 4.14.
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any rule violated by a world w = b A f is also violated by a world w’ = b A A f.
Thus, conclusions in system-Z* are unperturbed by irrelevant propositions. In

general, we have:1®

Proposition 4.13 Let A be a consistent set of defaults, and let p be a proposition
not appearing in any of the defaults in A; then pA ¢y o iff ¢ [y 0.

Another interesting conclusion sanctioned by [ that is not p-entailed is “birds
are normally airborne”. Note that this inference reflects a limited form of rule
chaining (not present in p-entailment).

Finally, as in p-entailment, the priorities Z* recognize that rs is more specific
than ry and sanctions “a penguin-bird does not fly”. Note that the preference for
r3 over 7y is established independently of the initial §’s assigned to these rules.
In the knowledge base above, the priority of r3 (“typically penguins do not fly”)
was adjusted from 03 to 61 + 63 + 1, so as to supersede &1, the priority of the
conflicting rule “typically birds fly”. As a result of such adjustments, the relative
importance of rules is maintained throughout the system, and compliance with
specificity-type constraints is automatically preserved. This is made precise in
the following theorem.

Theorem 4.14 Let ry : ¢ N Y and ry : @ % & be two rules in a consistent A
such that

1. ¢l ¢ (ie., ¢ is more specific than ¢).

2. There is no model satisfying ¢ N A Ao (ie., r conflicts with ry).
Then Z*(r1) > Z(ry) independent of the values of 6, and &,.

In other words, the Z*-ordering guarantees that features of more specific contexts
override conflicting features of less specific contexts.

Example 4.2 (Belief strength) Consider the following knowledge base (a sub-
set of Example 2.3):

L. 4
Ty g—p

82
ral T = TP

5Note that this proposition is system-Z*t counterpart to maximum entropy Prp. 3.15.
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standing for ri:“typically Quakers are pacifists” and ry:“typically Republicans
are not pacifists”. Since each rule is tolerated by the other, the Z* of each rule is
equal to its associated ¢6: Z%(ry) = & and Z*(ry) = 6;. Given an individual, say
Nixon, who is both a Republican and a Quaker, the decision of whether Nixon is
a pacifist will depend on whether é; is larger than, less than, or equal to §,. This
is because any model w,,, for Quakers, Republicans, and pacifists must violate ry,
and consequently & (w,y,) = 62, while any model w,4-, for Quakers, Republicans,
and non-pacifists must violate ry, that is, k™ (w,4-,) = ;. In this case the decision
to prefer one world over the other does not depend on specificity considerations
but rather on whether the rule encoder believes that religious convictions carry
more weight than political affiliations.

The main shortcomings of system-Z* are discussed in Sections 3.4 and 4.7.

4.5 Belief Change, Soft Evidence, and Imprecise Obser-
vations

So far, a query ¢ }% o was defined as a pair of Boolean formulas (¢, o), where
¢ (the context) stands for the set of observations at hand and o (the target)
stands for the conclusion whose belief we wish to confirm, deny, or assess. A
query (¢,o0) would be answered in the affirmative if ¢ was found to hold in all
minimally ranked models of ¢, and the degree of belief in o would be given by
k(o A @) — k(o A ).

In many cases, however, the queries we wish to answer cannot be cast in this
format, because our set of observations is not precise enough to be articulated as a
crisp Boolean formula. For example, assume that we are throwing a formal party
and our friends Mary and Bill are invited. However, judging from their previous
behavior, we believe “if Mary goes to the party, Bill will stay home (with strength
6)”, written M 2, =B. Now assume that we have a strong hunch (with degree
K) that Mary will go to the party (perhaps because she is extremely well dressed
and is not consulting the movie section in the Times) and we wish to inquire
whether Bill will stay home. It would be inappropriate to query the system
with the pair (M, —B), because the context M has not been established beyond
doubt. The difference could be critical if we have arguments against “Bill staying
home”, (e.g., he was seen renting a tuxedo). A flexible system should allow the
user to assign a degree of belief to each observational proposition in the context
¢ and proceed with analyzing their rational consequences. Thus, a query should
consist of a tuple like (¢1, Ki; ¢2, Ko ..., m, Kp : ), where each K; measures
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the degree to which the contextual proposition ¢; is supported by evidence.'®

At first glance it might seem that system-Z* would automatically provide
such a facility through the use of variable-strength rules. For example, to express
the fact that Mary is believed to be going to the party, we can perhaps use a
dummy rule Obs, KM (stating that if Mary meets the set of observations Obs;,
then Mary is believed to be going to the party) and then add the proposition
Obs; to the context part of the query, to indicate that Obs; has taken place.

This proposal has several shortcomings, however. First, in many systems it
is convenient to treat if-then rules as a stable part of our knowledge, unper-
turbed by observations made about a particular individual or in any specific set
of circumstances. This permits us to compile rules into a structure that allows
efficient processing over a long stream of queries. Adding query-induced rules to
the knowledge base will neutralize this facility.

Second, rules and observations combine differently: The latter should accu-
mulate, the former do not. For example, if we have two rules a % cand b 3 cand
we observe a and b, system-Z1 would believe ¢ to a degree max(§y, 8;). However,
if @ and b provide two independent reasons for believing ¢, the two observations
together should endow ¢ with a belief that is stronger than any one component
in isolation. To incorporate such cumulative pooling of evidence, we must encode
the assumption that @ and b are conditionally independent (given ¢), which is not
automatically embodied in system-Z7%.17

To avoid these complications, the method we propose treats imprecise obser-
vations by invoking specialized conditioning operators, unconstrained by a rule’s
semantics. We distinguish between two types of evidential reports:

1. Type-J: “All things considered,” our current belief in ¢ should become J.

2. Type-L: “Nothing else considered,” our current belief in ¢ should shift by
L.

15We remark that evidence in this dissertation is regarded as setting the context of a query
and not as a modifier of the knowledge in A. Statistical methods for accomplishing the latter
task are explored by Bacchus [6].

1"The assumptions of conditional independence among converging rules is embodied in the
formalism of maximum entropy (see Chapter 3 and [47]), as well as in the causal interpretation
of Chapter 5.
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4.5.1 Type-J: All Things Considered

Let ¢ be the wif representing the event whose belief we wish to update so that
'(=¢) = J (and, consequently, £'(¢) = 0).'® In order to compute (1)) for every
wif ¢, we rely upon Jeffrey’s rule of conditioning [99]. Jeffrey’s rule is based on the
assumption that when an agent reports that an observation changed her degree
of belief in ¢, such observation does not normally change the conditional degree of
belief in any propositions conditional on the evidence ¢ or on the evidence —¢ [99].
Thus, letting P and P’ denote the agent’s probability distribution before and after
the observation respectively, we have!?

P'(¢l¢) = P(¢|¢) and P'(|-¢) = P(y|~4), (4.16)

which leads to Jeffrey’s rule,
P() = P(b|¢)P'(¢) + P(1h|=4) P'(~9). (4.17)
Translated into the language of rankings (using Eqs. 4.1-4.3), Eq. 4.17 yields

k() = min[s(]8) + £'(¢); £(P|=9) + £'(4)], (4.18)

which offers a convenient way of computing «’(1) once we specify &'(¢) = 0 and
k'(—~¢) = J. Eq. 4.18 assumes an especially attractive form when computing the
& of a world w:

k{wld) + &’ if w
P LR O P -

K(w|=9) + £ (=¢) ifw = ¢

Eq. 4.19 corresponds exactly to the a-conditionalization proposed in Spohn [120]
(Def. 6, p. 117), with o = J. If £'(—=¢) = oo, this process is equivalent to ordinary
Bayesian conditionalization, since k'(w) = k{w|¢) if w = ¢ and £'(w) = oo other-
wise. Note, however, that in general this conditionalization is not commutative;
if ¢; and ¢, are mutually dependent (i.e., k(d2|d1) # £(¢2)),?° the order in which
we establish k(—¢1) = J; and &(—¢,) = J, might make a difference in our final

18This is an immediate consequence of the semantics for rankings and corresponds to the
normalization in probability theory (see Eq. 4.2).

19%q. 4.16 is known as the J-condition [99].

20This condition mirrors probabilistic dependence, namely, P(¢2|¢1) # P(é3).
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belief state.! This is not surprising since in the “all things considered interpre-
tation” the last report is presumed to summarize all previous observations.

4.5.2 'Type-L Reports: Nothing Else Considered

L-conditionalization is appropriate for evidential reports of the type “a new evi-
dence was obtained which, by its own merit, would support ¢ to degree L.” Unlike
J-conditionalization, the degree L now specifies changes in the belief of ¢, not
the absolute value of the final belief in ¢. As in the case of type-J reports, we
assume that in naming ¢ as the direct beneficiary of the evidence, the intent is
to convey the assumption of conditional independence, as formulated in Eq. 4.17.
Next, following the method of virtual conditionalization [97], we assume that the
degree of support L characterizes the likelihood-ratio A(¢) associated with some
undisclosed observation Obs:

_ P(Obs|e) .
M) = B0bs9)" (4.20)
which governs the updates via the product rule
P'(¢) _ A¢)P(9)
= : 4.21
Pl~g) ~ P(-) 2
Translated into the language of rankings, this assumption yields
K'(¢) = '(=¢) = £(¢) — K(~¢) — L (4.22)
and, since either £'(¢) or &'(—¢) must be zero, we obtain
£'(¢) = max|0;k(¢) — k(—=¢) — L], (4.23)
K'(=¢) = max[0;x(=¢) — x(¢) + L. (4.24)

We see that the effect of L-conditionalization is to shift the difference between
the degrees of disbelief in ¢ and —¢ by the specified amount L. Once «/'(¢) is
known, Jeffrey’s rule (Eq. 4.18) can be used to compute the (o) for an arbitrary

21Spohn ([120], p. 118) has acknowledged the desirability of commutativity in evidence pool-
ing but has not stressed that «-conditionalization commutes only in a very narrow set of
circumstances (partially specified by his Thm. 4). These circumstances require that successive
pieces of evidence support only propositions that are relatively independent — the truth of one
proposition should not imply a belief in another. Shenoy [114] has corrected this deficiency by
devising a commutative combination rule that behaves like to L-conditioning.
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wif o yielding

minfk(|¢) + £(¢) — £(=¢) — L; k(| -¢)]

K'(0) =1 minls(|g); 5($]=¢) + £(~6) + L — #(4)] (4.25)
mink(h]¢); 5 (1] ~¢)]

depending on whether £(—¢)+&(¢) is less than, greater than, or equal to L. This
expression takes the following form for &'(w):

k(wl¢) + max|0;k(¢) — k(—¢) — L] ifw ,
I R R S R EL

k(w|=¢) + max[0; k(=) — k() + L] ifw = —¢.

As in J-conditionalization, if L = oco then k'(w) = k(w|¢). For the general case,
we can see that the effect of L-conditionalization is to shift downward the & of
all worlds that are models of the supported proposition ¢ relative to the « of all
worlds that are not models for ¢. However, unlike J-conditionalization, the net
relative shift is constant and is equal to L, independent of the initial value of &(¢).
It is easy to verify that L-conditionalization is commutative (as is its probabilistic
counterpart, see Eq. 4.21), and hence it permits a recursive implementation in
the case of multiple evidence.

We can illustrate these updating schemes through the party example consist-
ing of the single rule r,, : M 4 =B (“if Mary goes to the party, then Bill will not
go”). A trivial application of procedure Z*_order yields Z*(r,,) = 4, and using
Eqgs. 4.4 and 4.7 we find «(z) = 0 for every proposition z, except = = B A M,
for which s*(M A B) = 5. This means that we have no reason to believe that
either Mary or Bill will go to the party, but we are pretty sure that both of
them will not show up. Now suppose we see that Mary is very well dressed, and
this observation makes our belief in M increase to 3, that is, k*'(=M) = 3. As
a consequence, our belief in Bill staying home also increases to 3 since, using
either J-conditionalization or L-conditionalization, #*'(B) = 3. Next, suppose
that someone tells us that he has a strong hunch that Bill plans to show up for
the party, but fails to tell us why. There are two ways in which this report can
influence our beliefs. The natural way would be to assume that our informer has
not seen Mary’s dress and even might not be aware of Bill and Mary’s relationship
— hence we assess the impact of his report in isolation and say that whatever
the value of our current belief in Bill going, it should increase by 3 increments,

or L = 3. Following Eq. 4.25, x*"(B) and &*"(=M) will both be equal to 0,
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and we are back to the initial uncertainty about Bill or Mary going to the party,
except that our disbelief in both Mary and Bill being at the party has decreased
to &7 (M A B) = 2. A second way would be to assume that our informer is
omniscient and already has taken into consideration all we know about Bill and
Mary. He means for us to revise our rankings so that the final belief in “Bill
going” will be fixed at x*"(=B) = 3. With this interpretation, we J-condition
x*' on the proposition ¢ = =B and obtain «t"(M) = 3, concluding that it is
Mary who will not show up to the party after all.

4.5.3 Complexity Analysis

From Eq. 4.18 we see that (1)) can be computed from x(|d) and r(p|=d),
which, assuming we have Z%* requires a logarithmic number of propositional
satisfiability tests (see Sec. 4.3). L-conditionalization can follow a similar route
(see Eq. 4.25).

Special precautions must be taken when simultaneous, multiple pieces of ev-
idence become available. First, J-conditionalization is not commutative, hence
we cannot simply compute &’ by J-conditioning on ¢; and then J-conditioning &’
on ¢ to get k”. We must J-condition simultaneously on ¢, and ¢, with their re-
spective J-levels, say J; and J;. Worse yet, an auxiliary effort must be expended
to compute the J-level of each combination of ¢’s, in our case ¢; A @9, @1 A =9,
etc. This is no doubt a hopeless computation when the number of observations
is large.

L-conditionalization, by virtue of its commutativity, enjoys the benefits of
recursive computations. Let e; and e; be two (undisclosed) pieces of evidence
supporting ¢; (with strength L,) and ¢, (with strength L;), respectively. We
first L-condition & on ¢y and calculate «'(¢y) and k'(¢2) using Eq. 4.24 and
Eq. 4.25, respectively. Applying Eq. 4.25 this time to &'(¢» A ¢2), we calculate
&'(t|¢2). Second, we L-condition &’ on ¢q, compute k”(¢q) using Eq. 4.24, and
finally, using &'(¥|¢2) and £"(¢2) in Eq. 4.25 obtain ”(1).?> Note that, although
each of these calculations requires only O(log |A|) satisfiability tests, this com-
putation is effective only when we have a well designated target hypothesis o
to estimate. The computation must be repeated each time we change the tar-
get hypothesis, even when the context remains unaltered. This is because we
no longer have a facility for economically encoding a complete description of &,
as we had for « (using the Z*t-function). Thus, the encoding for ' may not
be as economical as that for « (the number of worlds is astronomical), unless

22The generalization to more than two pieces of evidence is straightforward.
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we manage to find dummy rules that emulate the constraints imposed on ¢; by
the (undisclosed) observation. Such dummy rules must enforce the conditional
independence constraints embedded in Eq. 4.17, without violating the admissi-
bility constraints (Eq. 4.6) in A. These dummy rules can be encoded using the
stratification mechanism proposed in Chapter 5 (see also [54]).

4.6 Relation to the AGM Theory of Belief Revision

Alchourrén, Géardenfors, and Makinson (AGM) have advanced a set of postu-
lates that have become a standard against which proposals for belief revision are
tested [3]. The AGM postulates model epistemic states as deductively closed sets
of (believed) sentences and characterize how a rational agent should change its
epistemic states when new beliefs are added, subtracted, or changed. The central
result is that the postulates are equivalent to the existence of a complete preorder-
ing of all propositions according to their degree of epistemic entrenchment such
that belief revisions always retain more entrenched propositions in preference to
less entrenched ones. Although the AGM postulates do not provide a calculus
with which one can realize the revision process or even specify the content of an
epistemic state [14, 27, 92], they nevertheless imply that a rational revision must
behave as though propositions were ordered on some scale.

Spohn [120] has shown how belief revision conforming to the AGM postulates
can be embodied in the context of ranking functions. Once we specily a single
ranking function « on possible worlds, we can associate the set of beliefs with
those propositions 3 for which (=) > 0. It follows, then, that the models for
the theory v representing our beliefs (written Mods())) consist of those worlds
w for which £(w) = 0. To incorporate a new belief ¢, one can raise the s of all
models of —¢ relative to those of ¢, until k(—¢) becomes (at least) 1, at which
point the newly shifted ranking defines a new set of beliefs. This process of belief
revision, which Spohn named a-conditioning (with o = 1 for this particular case),
was shown to comply with the AGM postulates [33]. Tt follows then that the
process of revising beliefs in all three forms of conditioning also obeys the AGM
postulates: Ordinary conditioning amounts to setting o = oo, J-conditioning
amounts to « = J, while L-conditioning calls for shifting the models of ¢ relative
to those of —¢ by L units of surprise. If we denote by x4(w) the revised ranking
after conditioning (with o = 00), then the dynamics of belief is governed by the
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following equation:

Kw) — K ifw ,
() = (W) — #(¢) = ¢ 4.2m

00 otherwise.

Accordingly, testing whether a given sentence o is believed after revision amounts
to testing whether k4(—0) > 0 or, equivalently, whether x(—c|¢) > 0.

The unique feature of the system described in this chapter is that the above
test can be performed by purely syntactic means, involving only the rules in
A. These computations are demonstrated in the following example, where the
rankings in Tables. 4.3-4.5 are shown for illustrative purposes only.

Example 4.3 (Working students) The set A = {s — ~w,s — a,a — w}
stands for “typically students don’t work”, “typically students are adults”, and
“typically adults work”, respectively.?® The Z*-ordering on the rules (computed
according to Eq. 4.13) are: Z¥(a — w) =0 and Z%(s — ~w) = Z7(s — a) =1,
from which the initial £ ranking can be computed (Eq. 4.7), as depicted in
Table 4.3. The rankings in Tables 4.4 and 4.5 show the revised rankings after

KT Possible worlds

0 | (s, a,w), (0s,na,w, ), (=s, —a, ~w,)

1 (=s, a,~w), (s,a,-w,)

2 (s,a,w), (s,ma, ~w), (s, ~a, w)

Table 4.3: Initial ranking for the student triangle in Example 4.3.
observing an adult (x,) and a student (x,), respectively.

The beliefs associated with these rankings can be computed from the worlds
residing in % = 0. Thus, in &} “an adult works”, whereas in F “a student is an
adult that does not work”. These beliefs can be computed more conveniently by
syntactic analysis of the rules and their Z*-ordering, either by using Eq. 4.14, or
by extracting from A a propositional theory that is maximally consistent with the
observation using Eq. 4.15. For example, the beliefs associated with observing

ZNote that all §;’s are 0 for this example.
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KT Possible worlds

0 (—s,a,w)

1 | (=s,a,~w), (s,a,~w,)

2 (s,a,w)

Table 4.4: Revised ranking after observing an adult.

Ky Possible worlds

0 (s,a,~w,)

1] (s,a,w), (s,ma,~w), (s,—~a,w)

Table 4.5: Revised ranking after observing a student.

a student s are given by the theory {s,s D a,s D —w}. These two implications
mirror the rules s — —w and s — a which are the unique set of rules that are

maximally consistent with s.

There are several computational and epistemological advantages to basing the
revision process on a finite set of conditional rules, rather than on the beliefs or
on the rankings or the expectations that emanate from those rules. The number
of propositions in one’s belief set is astronomical, as is the number of worlds,
while the number of rules is usually manageable.

This computational necessity has been recognized by several researchers. For
example, Nebel [92] adapted the AGM theory so that finite sets of base proposi-
tions mediate revisions. The basic idea in this syntax-based system is to define a
(total) priority order on the set of base propositions and to select revisions to be
maximally consistent relative to that order, as exemplified in the nonmonotonic
systems of Brewka [16] and Poole [105] and in Example 4.3. Nebel has shown
that such a strategy can satisfy almost all the AGM postulates. Boutilier [14]
has further shown that, indeed, the priority function Z* corresponds naturally
to the epistemic entrenchment ordering of the AGM theory.?*

24The proof in [14] considers the priorities Z* resulting from a flat set of rules as in system-
Z [100]. Boutilier [15] also shows that an entrenchment ordering obeying the AGM framework
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Unfortunately, even Nebel’s theory does not completely succeed in formaliz-
ing the practice of belief revision, as it does not specify how the priority order
on the base propositions is to be determined. Although one can imagine, in
principle, that the knowledge encoder specify this priority order in advance, such
specification would be impractical, since the order might (and, as we have seen,
should) change whenever new rules are added to the knowledge base. By con-
trast, system-Z* extracts both beliefs and rankings of beliefs automatically from
the content of A; no outside specification of belief orderings is required.

Finally, and perhaps most significantly, system-Z7% is capable of responding
not merely to empirical observations but also to linguistically transmitted infor-
mation such as conditional sentences (i.e., if-then rules). For example, suppose
someone tells us that “typically, if a person works, that person is compensated”
(w — ¢); we add this new rule to our knowledge base (verifying first that the
addition is admissible), recompute Z*, and are prepared to respond to new ob-
servations or hearsay. In Spohn’s system, where revisions begin with a given
ranking function «, one cannot properly revise beliefs in response to new condi-
tional sentences, because, to maintain consistency and coherence, such revision
must depend not only on the initial ranking but also on the conditional rules
that brought about that initial ranking. Two knowledge bases A; and A, might
give rise to the same ranking function x* and, yet, the new conditional can be
consistent with Ay and inconsistent with A;. As an example, consider the sets
Ay = {a — b} and Ay = {a — b,—b — —a}. The ranking «* for these knowledge
bases is the same (see Table 4.6). The knowledge base A} = Ay U {=b — a} is
consistent, as shown on the right-hand side of Table 4.6. On the other hand, the
knowledge base A, = A,U{=b — a} is inconsistent. Clearly, these two situations
require different procedures for absorbing the new conditional.

Kt Ay, Ag Al =AU {-b— a}
0 | (a,b), (-a,b), (—a,-b) (a,b), (—a,b)

1 (a,=b,) (a,—b,)

2 Empty (—a,=b,)

Table 4.6: Ranking «* for Ay = {a — b}, Ay = {a — b,=b — —a}, and A.

The AGM postulates, likewise, are inadequate for characterizing the process of

obtains from the Z-priorities of the negation of the material counterparts of rules.

79



incorporating new conditionals, because they are formulated as transformations
on belief sets and are thus oblivious to the set of conditionals that shaped those
belief sets, and into which the new conditional is about to join.??

The ability to adopt new conditionals (as rules) also provides a simple seman-
tics for interpreting nested conditionals (e.g., “if you wear a helmet whenever you
ride a motorcycle, then you won’t get hurt badly if you fall”’?¢). Nested condi-
tionals cease to be a mystery once we permit explicit references to default rules.
The sentence “If (¢ — b) then (¢ — d)” is interpreted as

“If I add the default @ — b to A, then the conditional ¢ — d will be
satisfied by the consequence relation |y of the resulting knowledge

base A’ =AU {a — b}".

which is clearly a proposition that can be tested in the language of default-based
ranking systems. Note the essential distinction between having a conditional
sentence ¢ — bexplicitly in A versus having a conditional sentence a — b satisfied
by the consequence relation |y of A. In both cases the conditional ¢ — & would
meet the Ramsey test, but only the former case would resist the adoption of the
conditional ¢ — —b. This distinction gets lost in systems that do not acknowledge
defaults as the basis for ranking and beliefs.?”

4.7 Discussion

This chapter proposes a belief-revision system that reasons semi-tractably and
plausibly with linguistic quantification of both observational reports (e.g., “looks
like”) and domain rules (e.g., “typically”). The system is semi-tractable in the
sense that it is tractable for every sublanguage in which propositional satisfiability
is polynomial (Horn expressions, network theories, acyclic expressions, etc.). To
the best of my knowledge, this is the first system that reasons with approximate
probabilities which offers such broad guarantees of tractability. Whereas most
tractability results exploit the topological structure of the knowledge base [20,
71, 97} (hypertrees, or partial hypertrees), ours are topology-independent. These
results should carry over to the theory of possibility as formulated by Dubois
and Prade [28], which has similar features to Spohn’s system except that beliefs

¥ Girdenfors [33, pp. 156-160] attempts to devise postulates for conditional sentences, but
finds them incompatible with the Ramsey test.

26 Judea Pearl attributes this example to Philip Calabrese (personal communication).

*TBelief revision systems proposed in the database literature [31, 19] suffer from the same
shortcoming. In that context, defaults represent integrity constraints with exceptions.
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are measured on the real interval [0,1]. In addition, as Section 4.5 shows, the
system can also accommodate expressions of imprecise observations without loss
of tractability, thus providing a good model for weighing the impact of evidence
and counter-evidence on our beliefs. Also the enterprise of belief revision, as
formulated in the work presented in [3, 33], can find a tractable and natural em-
bodiment in system-Z*, unhindered by difficulties that plagued earlier systems.

From the perspective of defeasible reasoning, system-Z* provides the user
with the power to explicitly set priorities among default rules, and simultane-
ously maintains a proper account for specificity relations. However, it inherits
some of the deficiencies of system-Z [100]*® the main one being the inability to
sanction inheritance across exceptional subclasses (see Exm. 3.2). To illustrate
this problem consider adding a a fifth rule b 55 (“birds have legs”) to the set of
rules in Example 4.1:

$
ris b f

5
royr p b

ra. p é‘i ”‘f
re f 5, a

)
s b”‘??l

We would normally conclude from this set that “penguins have legs”, while
system-Z (with 6; = 0) will consider “penguins” exceptional “birds” with re-
spect to all properties, including “having legs”. The x*-ranking now allows the
rule author to partially bypass this obstacle by adjusting the §’s. If 5 is set to
be bigger than é; (to express perhaps the intuition that anatomic properties are
more typical than developmental facilities) then the system will conclude that
“typically penguins have legs”.%® This solution however, is not entirely satisfac-
tory. If we add to this new set of rules a class of “birds” which are “legless”,
system-Z7* will conclude that either “penguins have legs” or “legless birds fly”
but not both.?® In order to overcome this difficulty, a system must comply with
the preference condition in Proposition 3.16. As shown in Section 3.4, maximum

28 And the rational closure described in [72].

*Note that the fact that “penguins” are only exceptional with respect “flying” (and not
necessarily with respect to “having legs”) is automatically encoded in the Z* ranking by forcing
Z%(r3) to exceed Z+(ry) + 63 independently of 65 (and Z+(rs)).

30This counterexample is due to Kurt Konolige.
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entropy 1s one such system; two other systems that satisfy this result are Geffner’s
Conditional Entailment [36, 38], and the proposal by Boutilier [15].

In Geffner’s conditional entailment, rather than letting rule priorities dictate a
ranking function on models, a partial order on interpretations is induced instead.
To determine the preference between w and ', we examine the highest priority
rules that distinguish between the two, i.e., that are falsified by one and not by
the other. If all such rules remain unfalsified in one of the two possible worlds,
then this model is the preferred one. Formally, if F|w] and F[w'] stand for the set
of rules falsified by w and W’ respectively, then w is preferred to o’ iff Flw] # Flw']
and for every rule in Flw] — F[w'] there exists a rule r’ in F[w'] — F[w] such that
v’ has a higher priority than r (written r’ > r). Thus, a model w will always
be preferred to w’ if it falsifies a proper subset of the rules falsified by w’ (see
Prop. 3.16).

Priorities among rules in Geffner proposal differ also from both the proposals
in Chapter 3 and this chapter, in that the rule priority relation is a partial order
as well. This partial order is determined by the following interpretation of the
rule ¢ — 11 If ¢ is all we know, then, regardless of other rules that A may
contain, we are authorized to assert 1. This means that r : ¢ — i should get a
higher priority than any argument (a chain of rules) leading from ¢ to —¢) and,
more generally, if a set A" C A does not tolerate r, then at least one rule in A’
ought to have a lower priority than r. In the example above,®! r3 : p — —f is not
tolerated by the set {ry: p — b,r; : b — f}, hence we must have that ro < r3 or
ro < rp. Similarly, the rule ry : p — bis not tolerated by {rs : p — =f,r1 : b — f}
and hence we also have 7y < 1y or 73 < ry. This two conditions together with the
transitive properties of <, yield ry < r; and r3 < ry. Note that in this partial
order r4 cannot be compared to any of the other rules. In general, we say that a
proposition ¢ is conditionally entailed by ¢ (in the context of a set A) if o holds
in all the preferred models for ¢ induced by every priority ordering admissible for
A. Conditional entailment rectifies many of the shortcommings of system-Z, as
well as some weaknesses of the entailment relation induced by maximum entropy.
However, having been based on model minimization as well as on enumeration
of subsets of rules, its computational complexity might be overbearing. A proof
theory for conditional entailment can be found in [36].

Boutilier [15] proposed a system which combines the priority ordering of
system-Z (i.e. the flat version of system-Z*), with Brewka’s [16] notion of pre-
ferred subtheories. Thus, whereas system-Z* assigns equal rank to any two
worlds that violate a rule r with Z*(r) = z and no rule of higher Z*, the pro-

31 Assuming a flat version where all §’s are zero.
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posal in [15] will make further comparisons in terms of rules of lower priority
violated in these worlds. In the case above, since any minimal world satisfying
p Al must violate a proper subset of the rules violated by any minimal model for
pA—l, the desired conclusion is certified. These notion are formalized in terms of
the modal logic C'O* which is semantically related to the probabilistic interpre-
tation proposed in this dissertation [14]. Nevertheless, counterintuitive examples
to this notion of entailment can be found in [36, 48]. While Boutilier’s proposal
appears to be simpler than conditional entailment (as it does not require partial
orders), its computational effectiveness is yet to be analyzed.
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CHAPTER 5

Causality

5.1 Introduction

Independently of whether causality is a property of nature or a conceptual con-
venience, the organization of knowledge as cause—effect relations is fundamental
for tasks of prediction and explanation. This chapter introduces, within the basic
framework of ranking systems, a simple mechanism called stratification for the
representation of causal relationships, actions, and changes.

The lack of a mechanism for distinguishing causal relationships from other
kinds of associations has been a serious deficiency in most nonmonotonic sys-
tems [96], the classical illustration of which is given by the now-famous Yale
Shooting Problem (YSP) [57]. In its simplified version, the YSP builds the ex-
pectation that if a gun is loaded at time tg and Fred is shot with the gun at time
1y, Fred should be dead at time t5, despite the normal tendency of being alive to
persist. Many formulations — including circumscription [88], default logic [108],
maximum entropy (Chap. 3), system-Z* (Chap. 4), and conditional entailment
[36] — do not yield the expected conclusion. Instead they reveal an alternative,
perfectly symmetrical version of reality, whereby somehow the gun got unloaded
and Fred is alive at time 5.

The inclination to choose the scenario in which Fred dies is grounded in no-
tions of directionality and asymmetry that are particular to causal relationships.
This chapter shows that these notions can be derived from one fundamental prin-
ciple, Markov shielding, which can be embodied naturally in preferential model
semantics using the device of stratified rankings. Informally, the principle can be
stated as follows:

¢ Knowing the set of causes for a given effect renders the effect independent
of all prior events.

In the YSP, given the state of the gun at time ¢;, the effect of the shooting can
be predicted with total disregard for the gun’s previous history.

This chapter proposes a probabilistically motivated, ranked-model semantics
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for rules of the form “typically, if cause; and ... and cause,, then effect”, which
incorporates the above principle under the assumption that “causes” precede their
“effects”. As a by-product, our semantics exhibits another feature characteristic
of causal organizations: modularity. Informally,

o Adding rules that predict future events cannot invalidate beliefs concerning
previous events.

This is analogous to a phenomena we normally associate with causal mechanisms
such as logical gates in electrical circuits, where connecting the inputs of a new
gate to an existing circuit does not alter the circuit’s behavior [21].

Although several remedies were proposed for the YSP within conventional
nonmonotonic formalisms [118, 36, 121, 8, 79], the formalism explored in this
chapter seeks to uncover remedies systematically from basic probabilistic princi-
ples [97, pp. 509-516]. Incorporating such principles in the qualitative context
of world ranking yields useful results on several frontiers. In prediction tasks
(such as the YSP), our formalism prunes the undesirable scenarios, without the
strong commitment displayed by chronological minimization [118] and without
the addition of external causal operators to the conditional interpretation of the
rules [36] (see Section 5.3). In abduction tasks (such as when Fred is seen alive at
ty), our formalism yields plausible explanations for the facts observed (e.g., sim-
ilar to [121], the gun must have been unloaded sometime before the shooting at
t1). These suggests that the principle of Markov shielding, by being grounded in
probability theory (hence in empirical reality), can provide a coherent framework
for the many facets of causation found in commonsense reasoning. Moreover,
given the connection formed among causation, defaults, and probability, we can
now ask not merely how to reason with a given set of causal assertions but also
whether those assertions are compatible with a given stream of observations. A
framework for explanations is further discussed in Section 5.3.2.

Section 5.3.1 defines a notion of consistency in the context of causal rules,
and briefly compares it to the notion of p-consistency introduced in Chapter 2.
Section 5.4 demonstrates how rank-based systems can embody and unify the the-
ories of belief revision [3] and belief updating [65]. Whereas belief revision deals
with new information obtained through new observations in a static world, belief
update deals with tracing changes in an evolving world, such as that subjected
to the external influence of actions.

As shown in Section 4.6 system-Z* offers a natural embodiment of the prin-
ciples of belief revision as formulated by Alchourrén, Gardenfors and Makinson
(AGM) [3], with the additional features of enabling the absorption of new con-



ditional sentences and the verification of counterfactual sentences and nested
conditionals. The addition of stratification to system-Z*, by virtue of represent-
ing actions and causation, also provides the necessary machinery for embodying
belief updates consistent with the principles proposed by Katsuno and Mendelzon

(KM) [65).

5.2 Stratified Rankings

Let X = {2y,...,2,} be a finite set of atomic propositions. Let ¢i,..., ¢, and e
be literals over the elements of X'. A rule in this chapter is defined as the default
c1 A ... Aey — et where the conjunction “c; A ... A¢y” is called the antecedent

« 0
e

of the rule and its consequent.?

Given & and a set A of rules, the underlying characteristic graph for (X, A),
is the directed graph I y ay such that there is a node v; for each z; € X', and there
is a directed edge from v; to v; iff there is a rule r in A where z; (or —z;) is part
of the antecedent of r, and z; (or —z;) is the consequent of R. We say that A is
a causal network (or network for short) if I'ix ay is acyclic (i.e., I'x ay is a DAG).
If v,,..., v, are the parents of v; in I'(x ay, then the set {z,,...,z,} is called the
parent set of x; and the set {z,,...,z,} U {z;} is called a family. Intuitively,
the parent set of an event e represents all the known causes for e. A network A
induces a strict partial order “<” on the elements of X’ where z; < z; iff thereis a
directed path from v; to v; in 'y ). We will use O(X') to denote any total order
on the elements of A satisfying <. Intuitively, < represents a natural order on
events where causes precede their effects. As an example, Figure 5.1 depicts the
underlying graph for the following set of rules to be used in Example 5.1:

r1: th — cs (“typically, if I turn the ignition key the car starts”).

ro: th Abd — —es (“typically, if I turn the ignition key and the battery is dead,
the car will not start”).

IFor simplicity we will not introduce a new connective, e.g. —, and we will only consider
flat causal rules. Section 5.3.3 explores the use of variable strength rules in a causal context.

2The form ¢1 A ... A ¢y — € does not restrict the development of this chapter but it clarifies
the exposition. A causal rule may take on the general form a(ey,...,cm) — fler,...,en)
where « and § are any Boolean formulae. Any «(e1,...,cm) can be simulated by a set
of simpler rules, each containing a conjunction of atomic antecedents. Moreover, any rule
afcr,...,em) — Ble1, ..., en) can be represented by the following set of rules: a(cy, ..., cm) —
e/, Bler,...,en) = €, and —f(ey,...,e,) = —e’, where ¢’ is a dummy variable and = is a
strict conditional. The role of strict conditionals in a causal setting is introduced in Section 5.3.

3Note that, in particular, any ordering @(X’) induced by a topological sort on the nodes of
[(xay, where z; < z; if v; precedes v; in the topological sort, satisfies <.
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" bd

cs
Figure 5.1: Underlying graph for the causal rules in the battery example

rz: lo — bd (“typically, if I leave the headlights on all night the battery is
dead”).

In previous chapters, the interpretation of a rule ¢ — 9 was based on the
condition of admissibility of & (see Def. 4.2). A ranking « is admissible relative
to A iff for every ¢; — ¥; € At

k(=9ilei) > 0 (5.1)

We now extend this requirement and introduce a stratification constraint that
will endow the rules with a causal character.

Definition 5.1 (Stratified Rankings) Given a network A, an admissible rank-
ing « relative to A, and an ordering O(X'); let X; (1 < ¢ < n) denote a lit-
eral variable taking values from {z;, —z;}, and let Pary, denote the conjunction
X, A AX where {X,, ..., X} is the parent set of x;. We say that & is stratified
for A under O(X), if for 2 < ¢ < n, and for any instantiation of the variables
Xy,..., X;, we have

hC(/YZ‘]XZ'_l Ao A Xl) = K,(X,'IPCLT'Xi) (52)
0

Eq. 5.2 says that in a stratified ranking the incremental surprise of finding z;
in a full description of some past scenario, must be equal to the incremental
surprise of finding z; given just the state of Parx, in that same scenario. Thus,
the parent set of an event z; (Pary,) shields this event z; from all prior events
(see Fig. 5.2). This condition parallels the Markovian independence conditions

* Assuming all §;’s are equal to zero; otherwise admissibility would require that (=t |p;) >
4; in Eq.5.1.
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Figure 5.2: Stratification condition.

embodied in Bayes Networks (BN) [97].
A BN is a pair (I', P) where T" is a DAG and P is a probability distribution.

Each node v; in I’ corresponds to a variable X; in P, and P decomposes into the
product:

P(X,,...,X) = [] P(Xi|Pary,) (5.3)
i=1

which, similarly to Eq. 5.2, incorporates the assumption that the parent set of
any given variable X; renders X; probabilistically independent of all its prede-
cessors (in the given ordering). Causal networks can in fact be regarded as an
order-of-magnitude abstraction of BN’s, where exact numerical probabilities are
replaced by integer-valued levels of surprise (), addition is replaced by min,
and multiplication is replaced by addition (see [53, 120, 102]). Eq. 5.2 can be
re-written to mirror Eq. 5.3 as:®

(X, A ANXy) = Z k(Xi|Parx,) (5.4)

1=1

Note that Eq. 5.4 also constitutes an effective test for checking whether a given
ranking & is stratified for an arbitrary network A. The test can be made recursive
if we write Eq. 5.4 as

(X A AXD) =) k(Xi|Pary,), m=1,2,...,n (5.5)

which follows from Eq. 5.4 after marginalizing® over {Xn,...,Xm + 1}, m =
1,2,...,n. We shall show that the requirement of stratification augments ad-

®An even coarser abstraction of Eq. 5.3 in the context of relational databases can be found
in [21], where the stratification condition is imposed on relations and then used in finding
backtrack free solutions for constraint satisfaction problems.

In probability theory, we marginalize over {X,,..., X;n41} by summing over all instan-
tiations for these variables; thus, we have P(Xpm,...,X1) = J_x, P(Xpn,...,X1). It

follows from Eqs. 4.1-4.3 that k(Xm A...AX1) = 5 k(Xn A A XD,

----- X1
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missible rankings with the properties of Markov shielding and modularity (see
Theorems 5.6 and 5.7 below), that we normally attribute to causal organizations.

The following theorem states that the stratification criterion (Eq. 5.2) does
not depend on the specific ordering O(X). This implies that in order to test
whether a given ranking « is stratified relative to a network A, it is enough to
test Eq. 5.2 against any ordering O(X).

Theorem 5.2 Given a network A, let O1(X') and Oy(X') be two orderings of the
elements in X according to A. If k is stratified for A under O1(X), then & is
stratified for A under Oy(X).

To illustrate the nature of stratification, we will compare two admissible rank-
ings associate with the network A = {a — —¢,b — c}. A stratified ranking for
A is depicted on the left-hand side of Table 5.1 (k,), while the ranking on the
right-hand side represents the £ (system-Z%) ranking for A.” In order to show

K Ks: Stratified kt: System-Z+

0| (-a,b,c), (ma,~b,c),(-a,b,~¢) | (-a,b,c), (ma, b, c),(~a, =b,~¢), (a, =b, —c)

1| (a,=b,~c), (a,b,-c),(=a,b,~c) (a,b,¢), (a,b,~c),(~a,b,—c), (a,=b,c)

2 (a,b,c), (a,—b,c) no worlds in this rank

Table 5.1: Stratified, £*, and &% rankings for {a — —¢, b — c}.

that &'t is not stratified we select the order O = (A, B, ) (which agrees with
the characteristic DAG of A) and test whether &% (—c A b A @) satisfies Eq. 5.4.
From Table 5.1 kt(=cAa Ab) = 1, kT(=cla A b) = kt(a) = st (b) = 0, and
therefore kKt (=c A a Ab) # &t (—cla Ab) + kT (a) + kT (b) contrary to the require-
ments of Eq. 5.4. Alternatively, we can use the Markov shielding property (to be
proven in Thm. 5.6) according to which the parents of every variable render that
variable independent of all its other predecessors. Since B is a root node in the
characteristic DAG of A, it has no parents, and it must therefore be (marginally)
independent of all its predecessors, namely of A. In terms of ranking functions
this requirement of independence translates into

(AN B) = k(A) + &(B) (5.6)

“The maximum entropy ranking x* for this network A is identical to x+.
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for all instantiations of the literals A and B (taking values from {a,—a} and
{b, =b} respectively). As can be verified from Table 5.1, &, complies with Eq. 5.6.8

5.3 c-Entailment

Given a network A each stratified ranking « defines a consequence relation |k
where ¢ | o iff k(0 A ¢) < k(=0 A @) orif k(¢) = co. A consequence relation is
said to be properfor ¢ | o iff £(¢) # oo.

Definition 5.3 (c-Entailment) A network A c-entails o given ¢, written ¢ |k o,
iff ¢ |2 o in every « stratified for A, which is proper for ¢ | o.
a

In other words, given A, we can expect o from the evidence ¢, iff the preference
constraint conveyed by ¢ — o is satisfied by every stratified ranking for A.
Def. 5.3 parallels the definition of p (probabilistic entailment, Def. 3.9) with
the only difference being that the rankings for |fx must be stratified. We remark
that c-entailment is not to be interpreted as stating that ¢ is believed to cause
o. Rather, it expresses an expectation to find o true in the context of ¢, having
given a causal character to the rules in A.

Since the set of stratified rankings for a given A is a subset of the admissible
rankings for A, every stratified consequence relation must satisfy the rules of
inference of Logic, Cummulativity and Cases introduced in Section 3.2. It follows
then, that the rules of inference below are sound for c-entailment.

Theorem 5.4 Let ¢,9,7v,0, and their conjunction be satisfiable wffs. The fol-
lowing are sound rules of inference for |-

b~

. (Defaults) If ¢ — 1 (or o =) € A then o | .
. (Logic) If o D¢ then iz ¢.

. (Augmentation) If ¢ | o and @ Jig 7 then o A~ |k .
- (Cut) If ol and o Ny lix ¥ then ¢ ik Y.

. (Cases) If ¢ tx ¢ and v [fx ¥ then ¢ Vv ik ¢,

= ) IS}

e

The first rule (Default) follows immediately from the requirement of admissibility.
Rules 2 and 5 correspond to the rules of Logic and Cases of Section 3.2, and rules 3

8Eq. 5.6 can be also obtained from 5.5 by setting m = 2.
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and 4 simple rewrite the Cumulativity rule of Section 3.2 by breaking the iff into
two cases.

The following are derived rules of inference and further illustrate the logical
properties of c-entailment and will be used in Examples. 5.1 and 5.2.°

Theorem 5.5 Derived rules of inference:

1. (Deductive closure) If o [k ¥ and ok v and = @ AP Ay D o then

plxo
2. (Presuppositions) If ¢ [ty ¥ and o Ay |l ¢ then ¢ lx —.
3. (And) If ¢ lix ¥ and ¢ [fx v then @ ik P A y.

These rules of inference are also sound with respect to p-entailment (and
probabilistic entailment) and, therefore, as discussed in previous chapters, are
too weak to constitute a full account of plausible reasoning. The next two the-
orems provide additional inference power (reflecting the stratification condition)
which emanates from the causal structure of A. They establish conditions under
which these inference rules can be applied modularly to subsets A’ C A with the
guarantee that the resulting inferences will hold in A.

Theorem 5.6 Let A be a network, and let {p,,...,ps} be a set of literals cor-
responding to the parent set {x,,...,xs} of x; (each p;, r < i < s, is either z;
or —x;). Let ey, denote a literal built on x4, and let Y = {y1,...,ym} be a set
of atomic propositions such thal no y; € ) is a descendant of x¢ in I'\x ay. Let
oy be any wff built only with elements from Y such that ¢y Ap. A ... A p, is
satisfiable. If p, Ao A ps IX €x, then ¢y Ap, Ao Aps i €,

Theorem 5.7 Let X' C X and A" C A such that all rules in A’ are built with
atomic propositions in X', and if ' € X' then all the rules in A with either x'
or ma’ as their consequent are also in A’. Let ¢ and ¢ be two wffs built with

elements from X' If ¢ |, then o |fx .

These theorems confirm that stratified rankings exhibit the properties of Markov
shielding and modularity. As a corollary to Theorem 5.7 it is easy to see that
c-entailment is insensitive to irrelevant propositions, and moreover, given two net-
works with no causal interaction, their respective sets of plausible conclusions will

9They are taken from [36] where a formal derivation in terms of the rules of inference in
Theorem 5.4 can be found.
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be independent of each other. To obtain a complete proof theory for c-entailment
the four axioms of graphoids [97, Chapter 3] need to be invoked.'® Theorems 5.6
and 5.7 cover the essence of these axioms and are sufficiently powerful to illustrate
the main features of c-entailment. Consider the following example:!!

Example 5.1 (Dead battery) The network A = {tk — cs,tkAbd — —cs,lo —
bd} encodes the information that “typically if T turn the ignition key the car
starts”, “typically if I turn the ignition key and the battery is dead the car will
not start”, and “typically if I leave the head lights on all night the battery is
dead”. The underlying graph for this network is depicted in Figure 5.1. Given
A, and the fact the we left the head lights on all night, we don’t expect the car
engine to start once we turn the ignition key (i.e., lo A tk |ix —cs). As in the case
of YSP, an unintended scenario exists, in which the car engine actually starts and
the battery is not dead after all. In both maximum entropy and system-Z*, for
example, kT (loAtkAes) = kT (loAtkA=cs) and &*(loAtkAcs) = k*(loAtk A=cs),
and consequently neither lo A tk jy —cs nor lo Atk | —cs. The reason for this
behavior is that the x(w) in these approaches depends on the priorities of rules
violated in w and the priorities assigned to rules do not properly reflect their
relative position in the causal structure. Given that the key is turned and the
lights were left on, we know that either the rule tk — cs or the rule lo — bd must
be violated.'? In both these approaches, these rules receive the same priority,

and therefore the unintended scenario is as normal as the intended one.!®

Table 5.2 contains an example of a stratified ranking for A, showing the
inequality k(loAtkA—cs < k(loAtkAcs). Note that the surprise k = 1 associated
with the world w = loAbdAtkA—cs is not caused by any rule violation, but rather,
by the abnormality of event lo (as well as bd), whose & is indeed 1. Although the
rule tk — cs is violated in w, it does not contribute any additional surprise to
(w) over and above k(lo). Note also that the abnormality of the event lo was
not explicitly indicated by the rule author. Rather, it is was deduced from the
stratified structure of A which must render lo and tk independent, hence, if lo is
abnormal when tk is true (because one of the two rules must be violated) it must

1°The conditional independence defined by &(X3|X2, X1) = x(X3]|X2) is clearly a graphoid
since k represents infinitesimal probabilities (See [120, 62]).

1This example is isomorphic to the YSP [36].

127 third possibility is that tk A bd — —cs is violated; but since this is a more specific rule
than tk — c¢s its Z-priority will be higher (in both maximum entropy and system-Z*, and
therefore no minimal model for either lo Atk A cs or lo Atk A —cs will violate this rule.

13We could force the desired conclusion by setting the strengths & of the rules to the appropri-
ate values. This, however, would require advanced knowledge of all the rules in the knowledge
base (and their interactions). The objective in this chapter is a formalism able to extract the
necessary information automatically.
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also be abnormal when t£ is false — refraining from turning the key cannot make us
believe that the lights were left on or that the battery is dead. This ability to infer
that lo (as well as bd) is an abnormal eventuality, a rather compelling inference
intuitively, is what distinguishes stratified ranking from maximum entropy and
system-Z*.'* Proposition 5.8 presents a formal derivation of lo A tk | —es:

K worlds

0 | (—lo,-bd, tk,cs), (—lo,—bd, ~tk, =es)

1 (lo,bd, tk, —cs), (lo,bd, —tk, —cs),

(—lo,bd, tk,=es), (=lo,bd, —tk, —cs)

2| (lo,—bd,tk,cs), (lo,~bd,~tk,-cs)

3 Rest of the w’s

Table 5.2: Stratified ranking for {tk — cs,tk A bd — —cs,lo — bd}.

Proposition 5.8 lo Atk |ty —cs
Proof: Let X' = {lo,bd,tk} and let A" = {lo — bd}.

1. lolk,bd ; by the Defaults rule.

2. th Alo|ty,bd ; by 1 and Theorem 5.6.

3. tk Alo |ty bd ; by 2 and Theorem 5.7.

4. th A bd |)x —es 5 by the Defaults rule.

5. th ANbd Alo |ty —es 5 by 4 and Theorem 5.6.

6. thk Alollx —es ; by 3, 5 and the Cut rule.

The key intermediate steps in this derivation rely on Theorems 5.6 and 5.7,
which embody the principles of markov shielding and modularity:

YIf the rule True — —bd is added to A, system-Z+ would yield the expected conclusion.
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e tkAlojty bd. This follows from the proposition tk and applying Theo-
rem 5.7 to the sub-network A’ built from the language X’ = {lo.bd.tk} and
containing only the rule {0 — bd.

o tkAbd kg —cs and th A bd A lo kg —cs. The former follows directly from p-
entailment, and the latter from applying Theorem 5.6 to the rule tk A bd —
—¢s, and the proposition lo.

The next example presents a simple abduction (or backward projection) prob-
lem, and permits us to compare the behavior of c-entailment with that of chrono-
logical minimization [118].

Example 5.2 (Unloading the gun.) Consider
A= {ZO - Zlall — lg,...,ln_l - ln}

standing for the various instances of “typically, if a gun is loaded at time ¢;, then
it is expected to remain loaded at time ¢;1,” (0 < ¢ < n). We say that a rule
l; = liy1 s falsified by w iff w |= [; A =l;41; a stratified ranking & relative to A
can be constructed as follows:

#(w) = number of rules in A falsified by w (5.7)

Given that the gun is loaded at #; and that it is found unloaded at time
t, (i-e., lo A =, is true), the scheme of chronological minimization will favor the
somewhat counterintuitive inference that the gun remained loaded until ¢, (i.e.,
Iy Ao A lyoy is true). c-entailment on the other hand, only yields the weaker
conclusion that the gun must have been unloaded any time within ¢; and ¢,_4
(ie., =(Iy A ... A Ly)), but the exact instant where the “unloading” of the gun
occurs remains uncertain.

Proposition 5.9 [g Al | =(lLA ... A L)

Proof: Follows trivially from the Deduction rule. The fact that we cannot point
out the exact moment in which the gun is unloaded follows from the ranking built
by Eq. 5.7, since all formulas representing these situations have equal ranking. O

c-entailment and chronological minimization are expected to yield the same
conclusions in problems of pure prediction, since enforcing ignorance of future
events is paramount to the principle of modularity, which was shown to be inher-
ent to c-entailment. They differ however in tasks of abduction, as demonstrated
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in Example 5.2. In this respect, c-entailment is closer to both motivated ac-
tion theory [121] and causal entailment [36]. However, contrary to the motivated
action theory, c-entailment automatically enforces specificity-based preferences,
which are natural consequences of the conditional interpretation of rules.!®

We end this section by discussing the strict version of a causal rule denoted
by =, which will be useful in representing non-defeasible causal influences in
Sections 5.3.2 and 5.4. Semantically, strict rules impose the following constraints
on the admissibility conditions of a ranking « (Eq. 5.1): for each ¢ = v in the
knowledge base,

k() A ) < k(=) Ap) =00, and k(@) < oco. (5.8)

Intuitively, a strict conditional voids interpretations that render its antecedent
true and its consequent false by assigning them the lowest possible preference; a
rank x equal to infinity.'® The following are two properties of strict rules:

Proposition 5.10 Let C1A...AC,, = FE € A

1. (Contraposition) If there exists a stratified ranking for A where k(- E) <
oo then = E | =(Cy AL ACY)

2. (Transitivity) If ¢ | ¢ and ¢ = (C1 A ... AC) then ¢ |k E

These properties mirror the behavior of the material implication “>”, but the
resemblance is in fact only superficial. As discussed in Sections 2.1 and 2.7, the
semantic difference between a strict rule ¢ = e and the wif ¢ D e is that the for-
mer expresses necessary hence permanent constraints while the latter expresses
information bound to the current situation. Thus, the former participates in
constraining the admissible rankings while the latter is treated as an “observa-
tion” formula ~c¢ Ve, and can affect conclusions only by entering the antecedents
of queries. This difference is greatly accentuated when strict conditionals are
treated as causal rules, because stratified rankings are more sensitive to the rule
format. Indeed, contraposing the rule ¢ = b into =b = —a changes the causal
relationship between a and b and this change should reflect on the resulting rank.
Compare, for example, A; = {¢ — =b,a = b} and Ay = ¢ — —b,~b = —a. Any
stratified ranking for A; must render a and ¢ totally independent of each other,
as two unrelated causes of the variable B.

15We remark that the formalism in [121] deals with a much richer time ontology than the
formalism presented here, and with a first-order language.
Y5This is equivalent to requiring that P(¥|p) = 1 and P(p) > 0 (see 2.2).
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5.3.1 c¢-Consistency

Chapter 2 proposed a norm of consistency, called p-consistency for rules convey-
ing prototypical information. This norm and its associated decision procedure
(Sec. 2.4) were shown to be sufficient when rules were augmented with degrees
of strength (Thm. 4.3). The semantical requirements of stratification induce a
new notion of consistency, specific to the causal interpretation of rules, which is
radically different from p-consistency.

Definition 5.11 (c-Consistency) A network A is c-consistent iff there exists
at least one stratified ranking « for A.
0

An example of a c-inconsistent network is A = {tk — ¢s,thk A bd — —es, th —
z,x — bd}.'" To show that A is inconsistent note that by Presupposition
(Thm. 5.5) we have tk |ty —bd, which implies that in all stratified rankings x(—bdA
tk) < k(bd Atk). A simple application of Theorem 5.6 on = — bd (and the propo-
sition tk) yields tk Az |ix bd. By the Defaults rule tk |ty  which together with
tk Az |ty bd and the Cut rule yields tk ) bd, which in turn implies the contra-
dictory inequality &(bd A tk) < x(—=bd A tk). The lack of an appropriate causal
interpretation for this set of rules is not surprising. If we accept that tk causes
¢s, we should expect —bd to hold by default when ¢k is true. On the other hand,
if there is a causal path from tk to bd, we should expect bd to hold in the context
of tk. Note that this set is p-consistent.

We can find an admissible but not stratified ranking for A (see Table 5.3).'®
This ranking depicts a situation in which the act of predicting the consequences
of turning the key seems to protect the battery against the damage inflicted by
z, and such a flow of events is indeed contrary to the common understanding of
causation. In fact, if we do not ascribe a causal character to the rules, we cannot
apply Theorem 5.6 and thus tk ”X bd is not in the consequence relation of all
admissible rankings.

Another c-inconsistent set is A = {a = ¢,b = —¢}, which might arise when
we physically connect the outputs of two logic gates with conflicting functions.
Since neither a nor b have parents in Iy a), every stratified ranking (for A) must
yield

k(a A b) = k(a) + &(b), (5.9)

17This is the network used in Example 5.1 augmented with the two rules tk — = and 2 — bd.
18This ranking is not stratified for A since k(bdAzAtk) = 2, but k(bd|z)+r(z|th)+r(tk) = 1,
which contradicts Eqs. 5.2 and 5.4,
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K worlds

0| (~tk,z,bd, —cs)

1| (tk,z,~bd,cs)

2| (th,z,bd,—cs)

3 | Rest of the w’s

Table 5.3: Admissible ranking for {tk — cs,tk A bd — —es,tk — z,2 — bd}.

implying that ¢ and b are independent events. However, if each time we observe
a we should expect ¢ and, each time we observe b we should expect —¢, then a
and b must be mutually exclusive, hence negatively correlated events. Indeed,
since k(a ANbAc) = k(a ANbA=c) = oo, we have rk(a Ab) = oo, and Eq. 5.9 cannot
be satisfied unless either a or b is permanently false, thus defying the “possible
antecedent” requirement for strict rules (Eq. 5.8). Note that this A is again
p-consistent since, if it were not for the requirement of Eq. 5.9, an admissible
ranking can be constructed by simply excluding (by setting £ = 0o) any w such
that w = a A b, which would still permit us to assign x(a) = x(b) < oo.

5.3.2 Accountability: A Framework For Explanations

Causality is a worthy abstraction of complex interactions in as much as it proves
itself useful for formulating predictions and explanations for modeling these in-
teractions. The bulk of the effort in previous sections was spent in incorporating
into ranking representations properties associated with causality and showing
how these properties can be used to facilitate prediction. In this section we
concentrate on producing plausible explanations for a given set of observations.

For example, once we are told that “turning the ignition key causes the car
engine to start” we would like to explain a car-engine running by conjecturing
that somebody must have turned the ignition key. However, cs |fx tk is not a
c-entailed conclusion from the network A = {tk — c¢s}. The problem is that we
haven’t provided any information in A that establishes the starting of the car as
a phenomena that in itself needs to be explained. The rule tk — cs only imposes
two constraints on the rankings of possible worlds: First, ¢s should hold in all
the most preferred models for ¢tk and, second, once tk is known to be true we can
expect ¢s to hold independently of any event prior to tk. But this says little about
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the models of —¢s and, in particular, whether the car will start without turning
the ignition key. In normal discourse, when given a set of rules “C; causes E” we
usually subscribe (by convention) to additional assumptions that help complete
this information.!® Three of the most common assumptions are:

¢ Accountability: An effect F is presumed false if all the conditions listed
as causes of F are also false.?®

e Exception Independence: The rules representing the “cause-effect” re-
lations may admit exceptions which inhibit the occurrence of the effect even
in prescence of the cause. However, unless explicitly stated or logically im-
plied, these exceptions are presumed independent. In the car example, a
dead-battery and an empty gas tank can be considered as such exceptions to
tk — cs. Both will prevent the car engine from starting, and are presumed
to be independent of each other.

e Disjunctive Interaction: The likelihood of an event does not diminish
when several of its causes prevail simultaneously. For example, if rain and
sprinkler-on are each a cause for the grass being wet, the grass will be only
more likely to be wet if both the sprinkler is turned on and it is raining.?!

A probabilistic model that captures these assumptions, called noisy-or gate, is
described in [97] where it is proposed as a canonical model of disjunctive interac-
tion among causes Cy,...,C, that predict the same effect £/. The noisy-or gate
is depicted schematically in Fig. 5.3. The set {Iy,...,[,} represents inhibitors,
where each I; stands for an abnormality that would interfere with the causal
connection between C; and E. Every pair C; and I; constitutes the inputs to an
and-gate so that if C; is “active” (or true) and I; is not known to be active, then
the output s; will provide support for the effect E. Each s; is then an input to
the final or-gate. If one or more of these s;’s is active then E is expected to be
true, and if all s; are false, then F is expected to be false.

Both and-gates and or-gates impose functional constraints on propositions;
thus, in order to represent their behavior strict rules are necessary. The rules in
Eqs. 5.10-5.13 formalize the intended behavior of an and-gate:

Cz‘ A "'[,' = S; (510)

19Gee [68] for a discussion on the relation between completing the information and abduction
reasoning for tasks of producing explanations from observations.

20This may require that we lump together all unknown causes of E under the heading “all
other causes”.

21This assumption actually follows from that of exception independence.
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Figure 5.3: The noisy-or interaction model: Cy,...,C, are the set of causes for
L, and each [; represents an inhibitor or abnormality for C; — E
“If C; is true and I; is not active, then there is support s; for £”,%2

-=C = -y (5.11)
“if the cause C; is not active there is no support s; for £.”

I; = —s;. (5.12)
“If I; is active there is no support s; for E.”

True — —I; (5.13)

“I; is an abnormality, so it is false by default”.

The or-gate represents the interaction between the set of causal rules for the
effect F, with propositions si,...,s, as inputs and the literal constant F as
output. The behavior of this gate is governed by a pair of strict rules: 23

$1V...Vs, = FE, (514)
and a closure rule
(s V.. Vs, = nF (5.15)

This last rule incorporates the assumption of accountability: If there is no causal
support for E, then F must be false. Strict rules are necessary to simulate
the disjunctive nature of the or-gate since s A s’ [fx e is not c-entailed from A =
{sVs — el

*2This rule is reminiscent of the proposed encoding of defaults under circumsecription using
the ab predicate suggested by McCarthy [88].

ZNote that we could have equivalently encoded Eq. 5.14 as a set of rules s; = E, 1 <:i<mn,
since n applications of the Disjunction rule of inference (Thm 5.4) on s; = E will in fact yield
s1V...Vs, = F.
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cSs

Figure 5.4: A Schematic view of the car example.

Proposition 5.12 Given a network A such that s;V ...V s, = E € A, then
( jj?s,) Itk £, where 1 < j <k <n.

Thus, given a set of causal relations “C; causes F”, 1 <17 < n, we can use the
rules in Egs. 5.14 and 5.15 for modeling the or-gate and the rules in Eqs.5.10-5.13
for modeling the and-gates.

In many cases we have explicit knowledge of the identity of the mechanisms
capable of inhibiting the normal causal connection between C; and E. Their
interactions can be modeled in the same fashion, using and-gates and or-gates
as building blocks. For example, given that “turning the key (k) causes the car
engine to start (¢s)” and two mechanisms that might inhibit this relation, namely
a dead battery (db) and an empty gas tank (et), we would require a noisy-or for
the tk — c¢s causal relation:?*

th A —=ly, = cs ; True— —Iy (5.16)
Iy, = —es ; —tk = —es (5.17)

and another noisy-or to model the interaction between the two causes bd and et
for the inhibitor [;;. Lets assume, for simplicity, that these causal relations are
strict and void of any inhibitors themselves. Thus, we can simplify this noisy-or
to a standard or-gate:

bdVet = Iy ; —(bdVet)= Iy (5.18)

Fig 5.4 presents a schematic view of this example and Table 5.4 contains a strat-
ified ranking. Some c-consequences of the rules in Eqs. 5.16-5.18 are:

tklx es 5 cs

fetk 5 th Abd by —es (5.19)

24Gince in this case there is only one cause for cs, we simplify the encoding and skip the final
or-gate.
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K worlds w

0 | (tk,~1,~bd,—et,cs), (—th,~1,~bd, —et, ~es)

1 (th,I,bd,—et,~cs), (tk,I,-bd, et,~cs),

(—tk, I,-bd, et,~cs), (~tk, I,bd, ~et, cs)

2 (th,1,bd,et,~cs), (=tk,I,bd, et,—es),

Table 5.4: A stratified ranking for the car example.

Given the independence constraints embedded in our formalism, any stratified
ranking for the rules in Eqs. 5.16-5.18 will comply with x(bd A et) = £(bd) + £(et)
making a world where both bd and et are true more abnormal than one in which
only one of them holds. Thus, in the situation in which we turn the key and the
car engine does not start, c-entailment conclude that either the battery is dead
or the gas-tank is empty, but not both:

th A —cs i ((bd A =et) V (=bd A et)). (5.20)

In Section 5.3.3 we explore mechanisms to add degrees of strength to the rules
using the formalism described in [53], so that the degrees of support for each
hypothesis can be used to manipulate the focus of the diagnosis process. To
complete the encoding of the causal relations in Example 5.1 we add an and-gate
representing the causal relation between “head lights on all night” (lo) and the

dead battery (bd):

loN—=1, = bd ; True— —I, (5.21)
I, = —bd ; —lo=> —bd (5.22)

This proposal of model completion requires that the set of causes for a given
effect be both identifiable and separable from the set of causes that prevent the
effect, i.e. the inhibitors. One way of establishing this difference is by eliciting the
information directly from the rule encoder: For each effect E we would ask for a
list of causes C},...C, and a list of events (causes or effects) that might prevent
E from occurring. Another way is to allow the input of the causal relations to
be specified in the same language of networks. Then the system would compile
this network into a target network containing rules in Eqgs. 5.16-5.18 filling in
the assumptions of the noisy-or model using and-gates and or-gates as building
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blocks. This process would examine the rules family by family*® following the
stratified order imposed by the underlying graph of A. In case of conflicting
relations, i.e. a set of literal supporting an effect e and another set supporting
—e, the system will try to uncover the inhibitor from the causes by using the rule
of Presupposition in Theorem 5.5. This rule of inference says that if C; |ty E and
Ci AN |ix ~F then C; ) =1;. Thus, in the car example we would have the set
A = {tk — ¢s,bd A tk = —cs,et Atk = —cs} as input, and a simple application
of the rule of Presupposition will mark both bd and et as inhibitors with respect
to tk. Note that cases of ambiguous families like {a — ¢,b — —¢} would require
further information about the relation between a and b, since first we cannot
distinguish between causes and inhibitors, and second, an encoding of both these
rules as and-gates will result in a c-inconsistent network similar to the example of
conflicting strict arrows in Section 5.3.1. The problem is that the assumption of
exception independence is no longer valid: The cause for ¢ (i.e., a) is the inhibitor
for the cause of —c¢ (i.e., b) and vice-versa.

5.3.3 The most normal stratified ranking

In Section 5.3.2 we saw that in order to reap the full benefits of Bayesian Net-
works, we needed to supplement the constraints of A with additional informa-
tion that further shapes the conditional rankings of each family in the underlying
DAG. Another approach of supplementing the missing information is to establish
a preference relation among stratified rankings and rule out those rankings that
are less preferred than others. Since a lower ranking is associated with greater
normality, it is natural that out of the set of all admissible stratified rankings
we prefer those that assign to interpretations the lowest possible ranks, and then
define the entailment relation with respect to this set of privileged rankings.

Such a strategy was adopted in Chapter 4 (without the requirement of strat-
ification) and led to system-Z*. The incorporation of the most-normal strategy
in the context of stratified rankings, will result in a substantial increase of ex-
pressiveness. Ior example, in the noisy-or encoding of causal relations, assuming
independence among the inhibitors, the most-normal (minimal) stratified ranking
kT is given by the following function:

+

kT (w) = number of inhibitors that are true in w (5.23)

Thus, in the car example (with dead battery and empty tank as inhibitors) in
Eqgs. 5.16-5.18, the minimal ranking ¥ (w) will be 0, 1 or 2 depending on whether

Z5A family is the set of propositions composed by the parent set of an effect and the effect
itself (Section 5.2).
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w | 2bd A —et, w k= (bd A =et) V (—bd A et) or w = bd A et respectively (this
minimal ranking is depicted in Table 5.4).

The incorporation of variable-strength rules in this context is especially useful:
From knowing that we turned the key but the car did not start, it follows that ei-
ther the battery is dead or that the tank is empty (tk A —es |y ((bd A —et) V (=bd A et))).
However, if we knew that an empty tank is more likely than a dead battery, we
could encode this information as True 25 —et and True %3 —bd with b1 < 65. The
minimal ranking £} (w) in this case will be 0, §; +1, 8 +1, or 6;+6;+1 depending
on whether w |= ~bd A —et, w |= (—bd Aet), w = (bd A —et) or w = bd A et respec-
tively. Now given the context that we turn the key and the car does not start, our
primary suspect would be the lack of gasoline tk A —es |fx* et, where |f* denotes
the consequence relation of the most-normal stratified ranking (which is unique
for this example).

Note, as shown in Table 5.5, that the most-normal stratified ranking may not
be unique for the network A = {a — ¢,b — —¢}. Therefore, we need to define
entailment in minimal rankings, denoted by |f*, with respect to the consequence
relations of all most-normal stratified rankings.

K Rank 1

0| (ma,b,=c), (na, b, ), (ma, =b, =c)

1 (—~a,b,c), (a,b,c), (a,—b,c)
2 (a,b,-e), (a,—b,=c)
K Rank 2

0| (a,=b,c), (ma,=b,¢), (—a,=b,=c)

1| (=a,b,~c), (a,b,=c), (a,=b,—c)

2 (a,b,¢), (na,b,c)

Table 5.5: Two minimal rankings for {a — ¢,b — —c¢}

It is not clear at this point whether this loss of uniqueness will result in
substantial increase in computational complexity. Although we may lose the
semi-tractability of system-Z*  we can still exploit the topological properties
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of the characteristic DAG (I'(x,a)) to render practical reasoning feasible. It is
well known that the local propagation techniques of Bayesian Networks can be
extended to sparse networks by embedding the network in a hypertree (or acyclic
database) [115]. Thus, it is quite feasible that similar techniques could be applied
to the computation of consequences in systems governed by the “most-normal”
completion of stratified rankings.

5.4 Belief Update

Section 4.6 demonstrated how the semantics of model ranking, together with
the syntactic machinery developed for system-Z*, can be applied to manage the
tasks of belief revision, in conformity with the AGM postulates. The introduction
of stratified ranking adds the capability for implementing a new type of belief
changes, named update by Katsuno and Mendelzon (KM) [65]. In both tasks (be-
lief revision and belief update) we seek to incorporate a new piece of information
¢ into an existing set of beliefs 1. Yet, in belief revision ¢ is assumed to be a
piece of evidence while in update ¢ is treated as a change occurring by external
intervention. Katsuno and Mendelzon [65] have shown that the AGM postulates
are inadequate for describing changes caused by updates, for which they have
proposed new sets of postulates. The basic difference between revision and up-
date is that the latter permits changes in each possible world independently, as

was proposed by Winslett [127].2¢

Belief update can be embodied in a stratified ranking system using the fol-
lowing device: For each instruction to “update the knowledge base by ¢” we add
a set of rules that simulates the action “do(¢), leaving everything else constant
(whenever possible)”, and then condition « on the truth of do(¢). The following
set of causal rules embody the intent of this action, where ¢ and ¢’ stand for “¢
holds at ¢” and “¢ holds at ¢ > t”, respectively:*”

b — ¢ (5.24)
=g - =g (5.25)
do(¢) = ¢ (5.26)

The following example (adapted from Winslett [127]) demonstrates how this de-
vice differentiates between update and revision.

26In the language of Bayesian networks, the difference between updates and revisions parallels
the distinction between causal and evidential information [96].

2"The two persistence rules, Eqgs. 5.24 and 5.25, are presumed to apply between any two
atomic propositions at two successive times. ‘
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Example 5.3 (XOR-gate) A XOR Boolean gate ¢ = XOR(a,b) is examined
at two different times. At time ¢, we observe the output ¢ = true and conclude
that one of the inputs a or b must be true, but not both. At a later time ¥ we
learn that b is true (primed letters denote propositions at time ¢'), and we wish
to change our beliefs (in @ and «') accordingly. Naturally, this change should
depend on how the truth of ¢’ is learned. If we learn &' by measuring the voltage
on the b terminal of the gate, then we have a belief revision process on our hands,
and we expect a’ to be false. On the other hand, if we learn that &' is true as a
result of physically connecting the b terminal to a voltage source, we no longer
expect a’ to be false, since we have no reason to believe that the output ¢ has
retained its truth value in the process.

In the stratified ranking formulation, the knowledge base corresponding to this
example will consist of three components:

1. The functional description of the XOR gate at times ¢ and t/,

aNb=—c ; —aAh-b= —c (5.27)
aN-b=c ; =aAb=c, (5.28)

and an equivalent set of rules for o', ¥, ¢'.

2. The persistence rules: TFor every z in {a, b, c},

=z —r— . (5.29)

3. The action do(b), which represents the external influence on ¥':

do(b) = V. (5.30)

The underlying graph for the network A corresponding to this knowledge base
is depicted in Figure 5.5.

Initially, after observing ¢, our evidence consists only of ¢. The minimal
stratified ranking k. for a A consisting of rules in Eqgs. 5.27-5.30 is depicted in
Table 5.6. To represent belief revision, we add &' to our evidence set and query
whether ¢ AV |fx* —a’.?® In contrast, to represent belief update, we add do(b) to
our evidence set and query whether (¢ A 0’ A do(b)) |* —a'.

It is easy to show that the first query is answered in the affirmative, while
the second in the negative. The left-hand side of Table 5.7 shows the ranking

#Recall that |fx* denotes the consequence relation of the minimal stratified ranking for A
(see Sec. 5.3.3), which is unique for this example.
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Figure 5.5: Graph depicting the causal dependencies in Example 5.3

a

Y do(b)

=do(b)

do(b)

(ma,b,~ad’, V'), (a,—b,d’,—b")

1 | (=a,b,d,b), (a,—b,~d, =), (a,=b,a’, V)

(‘1&, b? a’/7 ﬁb/)? ((é, —.‘bv _'ala b/)a

models for ~¢

models for —¢

Table 5.6: Minimal stratified ranking for Example 4 after ¢ is observed

e

Revision k.(w|b’)

Update k.(w|do(b))

(—a, b, —a, 0"

(—a,b,—a’,b"), (a,=b, ', )

(ma,b,d, V'), (a,~b,d,b")

(=a,b,d' V), (a,=b,—a’, V)

(a,—b,~a', V'),

models for —b'

models for ~do(b)

Table 5.7: Rankings after observing b, and after “doing” b
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resulting from revising the ranking in Table 5.6 by &' (first query), while the
right-hand side shows the ranking after updating by do(b) (second query). Note
that in the revised ranking the only world in the zero rank is a model for —d’,
while the updated ranking shows an additional world which is a model for a’
(the state of the output ¢ in this world changed as a consequence of the action).
The action do(b) establishes the truth of ¥ but has no effect on what we believe
about the second input a’. Since neither a nor —a were believed at ¢, they remain
unbelieved at t'.

5.4.1 The dynamics of belief update

The example above demonstrates that, given a ranking x and a network A, it is
possible to predict how a system would respond to external interventions. For
example, if we wish to inquire whether event e will hold true after we force some
variable A to become true, we simply add to A the rule do(a) = a,? recompute
the resulting stratified ranking &’ on the augmented set of variables (including
do(a)), and then compute «'(¢|do(a)). There is a simple relation between x(e|a)
and x'(e|do(a)), which results in a direct transformation between two ranking

functions, x(w) and Kge(a)(w), the latter being an abbreviation of &'(w|do(a)).
From Eq. 5.4 we have that:

RXp AN NANON X)) = 3 k(X,|Parx,) (5.31)
1=1

R A ANANAXY) = S k(XalParx,) + v(AlPars) (5.32)
i=1,i%#7

where A is the j™ literal taking values from {a, —a}. Similarly, the stratification
of &' relative to AU {do(a) = a} dictates

KXo A NANAXTADO(a)) =

1=n

&'(Xo|Pary,) + £'(A|Par’y) + £'(DO(a)) (5.33)

=i

29We use lowercase to denote the instantiation of variable A to a truth value.
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Where DO(a) is a variable taking values from {do(a),~do(a)}, Par’y = Pars U
{Do(a)}, and

0 if A=a and DO(a) = do(a),
K'(AlParly) = w(A|Pary) it DO(a) = do(a), (5.34)
00 if A= -aand DO(a) = do(a).

Eq. 5.33 reflects the fact that the action variable DO(a) is a root node in Lix,a),
since it is under the sole control of the rule author, while Eq. 5.34 reflects the
constraint do(a) = a. Since the new rule do(a) = @ only affects the family
of A, we have that the summation term in Eq. 5.33 is equal to the summation
term in Eq. 5.32. Conditioning Eq. 5.33 on do(a) and making the appropriate
substitutions yields

Xy AN NAN AN X do(a)) = k(X A ANAN A X)) —
—k(A|Pary) 4+ k'(A|Para A do(a))  (5.35)

Where, according to Eq. 5.34, £'(A|ParsAdo(a)) = 0 when A = a, and £'(A|Par4A
do(a)) = oo when A = —a. Thus, making again the appropriate substitutions we
get

k(w) — k(a|Pars(w)) if w = a.
et () = (w) = k(alPar4(w)) l (5.36)

00 if w = —a.

In other words, the £ of each world w satisfying a is reduced by an amount equal
to the degree of surprise of finding A = true, given the realization of Pary in w
(denoted by Par4(w). The « of each world falsifying @ is of course oo.*®

Such independent movement from world to world is shown in Example 5.3,
where x(w) is depicted on the left-hand side of Table 5.6 and #g,(w) is depicted
on the right hand side of Table 5.7. If A has no parenis (direct causes), then
Kdo(a) 18 Obtained by shifting the x of each w |= a by a constant amount k(a),
as in ordinary conditioning, and #4,(,)(w) would be equal to x(wla), as expected.

However, when the manipulated variable has direct causes Pary, the amount of

39The reader might recognize Eq. 5.36 in its probabilistic form where, given a probability
function P{w) and a causal network I', the probability P/(w) obtained by manipulating variable
A to take on the value a is given by: P'(w) = P(w)/P(a]Pars(w)) (for w |= a). This can be
easily shown {rom the functional definition of causal relationships as used, for example, in Pearl
and Verma [103].
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shift would vary from world to world, depending on how surprising it would be
(in that world) to find a happening naturally (without external intervention). For
instance, if A is governed by persistence rules, a(t —1) — a(¢), 7a(t —1) — —a(t),
then worlds in which a(t — 1) hold will shift less than those in which a(t — 1) is
false, because a(t) is expected to hold in the former and not in the latter. Note
that the amount of shift subtracted from x(w) is equal precisely to the fraction of
surprise k(a|Par4(w)) that A = true contributes to k(w) and that now becomes
ezplained away (hence excusable) by the action do(a). The generalization of
Eq. 5.36 to the case where a conjunction of literals ¢ = a; A —ay ... are forced to
become true or false is straightforward:

Kdo(e) (W) = K(w) — [k(ay|Para, (w)) + k(—az|Para,(w)) +...] (5.37)

if w = ¢, and Kyp)(w) = co otherwise.
Note that any stratified ranking s has at least one variable A possessing a
remarkable invariant properties:

K if \
Edo(a)(w) = ) i (5.38)

00 otherwise.

Intuitively, every variable satisfying Eq. 5.38 corresponds to a sink in I'(y a), or a
“last” variable in the “temporal” ordering O. Indeed, for any such sink, Eq. 5.38
conveys the intuition that by manipulating the last variable in the temporal order,
we do not expect the past to change. It is comforting to see that the ramifications
of the Markov shielding principle coincide with an alternate reading of causation
as a specification of behavior under external interventions.

5.4.2 Relation to KM postulates

Katsuno and Mendelzon [65] have formulated belief update as a transformation
between two formulas, 1, representing our current set of beliefs, and ¢, the new
information we wish to incorporate into that set of beliefs. The update process
is assumed to be an operator ¢ that takes the formula + and transforms it into
a new formula 1 o @, that syntactically represents our updated set of beliefs.
KM have introduced a set of postulates which characterize all update operators
that can be defined by the possible world approach of Winslett [127], hence, they
are considered universal conditions for any model describing belief change due to
external actions. One such postulate, for example,

(U2) If ¢ implies ¢, then ¥ ¢ ¢ is equivalent to 1,
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says that if the new sentence ¢ is derivable from belief set +, that updating by ¢
does not alter the belief set.

In our ranked-based model of beliefs change, the current stock of beliefs is
represented by those worlds w for which & is zero. Hence, v is defined by the
union of all w such that k(w) = 0. If the new sentence (¢) is a conjunction of
literals, then the updated ranking is given by Eq 5.37 and the new set of beliefs,
P © @, is represented semantically by the union of all worlds w for which £g,¢4)(w)

AN
is zero.3!

That updates resulting from Eq. 5.36 comply with the KM postulates can
be seen by the following consideration. KM have shown that their axioms are
equivalent to the existence of a function mapping each possible interpretation
world w to a partial pre-order <, such that for any interpretation ', if w # &'
then w <, w’. Then the set of models for the update of a formula ¢ (representing
our current beliefs) by a formula ¢, written v ¢ ¢, is found by taking the union
of the minimal models for ¢, with respect to each one of the pre-orders defined
by the models for 1:

Mods(p o ¢) = |J min(Mods(¢),<.). (5.39)
weMods(3))

In other words, Eq. 5.39 asserts that the models of 1 ¢ ¢ can be obtained by
replacing each ¥-world w with a set of ¢-worlds w* that are nearest to w. We
shall call each such w* an image of w, a word coined by Lewis [77] to denote a
counterfactual alternative to Bayes conditioning. If w is consistent with ¢ then
its image w* is equal to w itself, as is required by <,. However, when w is
inconsistent with ¢, its image is a closest (according to <) world satisfying ¢.

Thus, to show compliance with the KM postulates we need to define a preorder
<. and show that for every world w |= —¢ that is currently assigned x(w) = 0,
Eq. 5.37 takes each image w* of w and moves it toward &y(4)(w*) = 0. We shall
construct such a preorder and show that, moreover, in an image world w*, every

31Updates involving disjunctions require special treatment. If they are to be interpreted as a
license to effect any change satisfying the disjunction, then the final state of belief is the union,
taken over all disjuncts, of worlds that drift to & = 0. In this interpretation, the instruction
“make sure the box is painted either blue or white” will leave the box color unknown, even
knowing that the box was white initially (contrary to the postulate (U2) of KM). However, if
the intention is to effect no change as long as the disjunctive condition is satisfied, then the
knowledge base should be augmented with an observation-dependent strategy “do(¢) when ¢
is not satisfied”, instead of using the pure action do(¢). Conditioning on such a strategy again
yields a belief set consistent with the KM postulates. The first interpretation is useful for
discrediting earlier observations, for example, “I am not sure the employee’s salary is 50K; it
could be anywhere between 40K and 60K”.
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term w(z;|Pary,;(w*)) > 0 represents a violation of expectation that would be
totally excusable were it caused by an external intervention such as ¢. Intuitively,
the image world corresponds to a scenario in which all the unexpected events are
attributed to the intervention of ¢ but otherwise the world follows its natural,
unperturbed course as dictated by the prediction of the causal theory.

It is not hard to see that the image w* as described above is indeed a minimal
element in the order <, defined as follows:

Definition 5.13 (World orderings) Let O = z;,z,...,2, be any order of
the variables that is consistent with the DAG I'(x ay. Given three worlds w,w,
and wy, we say that wy <, wy iff the following conditions hold:

1. w disagrees with wy on a literal that is earlier (in O) than any literal on
which w disagrees with wy.

2. If a tie occurs, then wy <, wy if k(wy) < k(w2).

a

Theorem 5.14 Let ¢ be a wff representing a set of beliefs. Let k be a ranking
such that w € Mods(y) iff k(w) = 0. Let ¢ represent a conjunction of literals,
and let k4.(4) be the ranking that results from updating k by ¢ as shown in Fq. 5.36
such that w* € Mods(p o ¢) iff Kgo(py(w*) = 0. Then

Mods(po¢)= |J min(Mods(¢),<.). (5.40)
weMods(y)

5.4.3 Related work

The connection between belief update and theories of action was noted by Winslett
in [127] and has been elaborated more recently by del Val and Shoham [22] using
the situation calculus. In fact, del Val and Shoham [22] showed that the KM-
postulates can be derived from their formulation of actions in the situation calcu-
lus, as they are derived from the theory presented in this chapter. The interesting
power of these postulates is that they cover a wide variety of such formulations,
from a simple theory such as the one introduced here to the intricate machinery
of the situation calculus. Due to their broad generality, the KM postulates should
not be taken as a complete characterization of actions-based updates, but merely
as a useful norm of coherence on the resulting belief change. The analysis in this
chapter offers the KM postulates an intuitive, model-theoretic support that is
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well grounded in probability theory, and is accompanied with a concrete charac-
terization of causation and action. It also offers a simple unification of revision
and update, since both are embodied in a conditioning operator, the former by
conditioning on observalions and the latter by conditioning on actions.

Grahne et. al. [56] showed that revision could be expressed in terms of an
update operator in a language of introspection (intuitively, observing a piece of
evidence has the same effect as causing the observer to augment her beliefs by
that very evidence). The analysis in this chapter shows that the converse is also
true: belief updates can be expressed in terms of a conditioning operator, which
is normally reserved for belief revision. The intuition is that acting to produce
a certain effect yields the same beliefs as observing that action performed. This
translation is facilitated by the special status that the added action = effect
rules enjoy in stratified ranking, where actions are always represented as root
nodes, independent of all other events except their consequences. This ensures
that the immediate effects of those actions are explained away and do not reflect
back on other events in the past. It is this stratification that produces the desired
distinction between observing an action produce an effect and observing the effect

without the action.3?

5.5 Discussion

Extensions to the formalism proposed in this chapter should include efficient de-
cision procedures for c-consistency and c-entailment, and a complete proof theory
for c-entailment. Also of interest, are notions of entailment based on strategies
for completing the information provided by the rules in a network A. In Sec-
tion 5.3.3 we presented one such strategy based on the most normal completion
proposed in Chapter 4. However, contrary to the case of system-Z*, this strategy
will not always yield a unique ranking for the stratified case. Further investiga-
tions are needed to uncover classes of networks where the resulting ranking is
unique and the decision procedures tractable. The bridge that the principle of
Markov shielding establishes between probabilistic and nonmonotonic formalisms
invites insights on these issues, including efficient query answering procedures and

32Note that update cannot be expressed in terms of the AGM operators of revision and
contraction, because it is impossible to simulate with these operators the acceptance of a new
conditional do(¢) = ¢, so that the acceptance of do(¢) is treated differently than the acceptance
of ¢. Similarly, update cannot be formulated as a transformation on rankings such as Spohn’s
conditioning because the identity of the image world w* cannot be described in terms of the
initial ranking alone; it requires the causal theory A. Two different theories, A; and As may
give rise to the same ranking «, and still require two very different updates.
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methods of completion (e.g., the noisy-or canonical model in Sec. 5.3.2), from the
literature on Bayes networks.

As pointed out in Section 5.3, the notion of c-entailment ¢ |x ¥ should not
be understood as establishing ¢ as a cause of . The reason is best illustrated
through the following example. Consider the network A = {T'rue — b}; it follows
from this network that a |k b where a is an arbitrary proposition in the language.
By the condition of stratification, each stratified ranking x must comply with
k(AN B) = &(A) + &(B).» Therefore, in every stratified ranking for A it must
be true that

klanb) < k(aA=b), or (5.41)
k(a) + k(b) < &(a)+ &(—b) (5.42)

since the rule in A establishes that k(b) < x(—b). Thus, the reason that b is ex-
pected given a is not because «a is a cause for b, in fact a is actually independent of
b. bis expected simply because it is true by default according to A. Note that this
problem disappears if we make the additional requirement that x(=bla) > k().
However, this definition of causation, by being based on Bayesian conditioning,
would still be subject to the classical difficulties with spurious correlations (or
hidden causes). The definition proposed here is based on the use of rules like
do(c) = c¢ to simulate an external manipulation of the causes. The decision on
whether ¢ is a cause of e can be made based on manipulating and observing the
behavior of e. Thus, for example, ¢ can be identified as a cause for e in the
context of a knowledge base A, if do(c) |fx e in the context of A U {do(c) = ¢},
but it is not the case that do(—c) [ty e in the context of AU {do(—c) = —¢}. This
notion is in line with the counterfactual reading of causation in Lewis [76] where
asserting that ¢ is a cause of e implies that e would not have occurred if it were
not for ¢. It is also in line with the control-based reading of causation which un-
derlies most statistical tests for causal influences as well as the method proposed
by Pearl and Vermain [103] for discovering causality in nonexperimental studies.
This interpretation reads:

“c is a cause for e if an external agent interfering only with ¢ can
affect y.”

In nonexperimental studies the external agent is simulated by a ”virtual-control”
variable, while in our formulation it is enacted by the do operator; both must
comply with the Markov shielding constraint.

33Capital letters denote literal variables.
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Finally, we point out that the probabilistic roots of the semantics proposed
provides bi-directional inferences for causal and evidential information, the po-
tential of refining pre-encoded knowledge by learning from experience, and the
usual guarantees of clarity, coherence and plausibility that accompany theories
grounded in empirical reality. Some of the other novel contributions of this chap-
ter are: A consistency norm for knowledge bases representing causal relationships,
uniform and practical formulations for belief revision, belief updating, and general
reasoning about action and change.
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CHAPTER 6

Concluding Remarks

6.1 Summary

This dissertation is an account of a semantical and computational approach to
reasoning with incomplete and defeasible information encoded as default rules.
These rules are regarded as if-then conditional sentences allowing exceptions that
have different degrees of abnormality. Semantically, the rules are interpreted us-
ing infinitesimal probabilities, which can be viewed as qualitative abstractions of
an agent’s experience. An equivalent semantics is provided that interprets the
rules using ranks on models, where higher ranked models stand for more surpris-
ing (or less likely) situations. Computationally, these semantics admit effective
procedures for testing the consistency of knowledge bases containing default rules
and for computing whether (and to what degree) a given query is confirmed or
denied. The result is a model-theoretic account of plausible beliefs that, as in
classical logic, are qualitative and deductively closed and, as in probability, are
subject to retraction and to varying degrees of firmness.

The probabilistic semantics enable the introduction of principled ways for
solving some of the problems with irrelevance that plagued previous conditional
based approaches. This is accomplished by restricting the set of rankings that
are considered admissible with a given knowledge base. At the heart of this
formulation is the concept of default priorities, namely, a natural ordering of
the conditional sentences that is derived automatically from the knowledge base
and 1s used to answer queries without computing explicit rankings of worlds or
formulas. As a result, some query-answering procedures (those for system-Z7; see
Chap. 4) require only a polynomial number of propositional satisfiability tests and
hence tractable for Horn expressions. This formulation not only offers a natural
~ embodiment of the principles of belief revision as formulated by AGM [3], but also
allows revisions based on imprecise observations. In addition, it enables features
such as absorption of new conditional sentences and verification of counterfactual
sentences and nested conditionals.

The lack of a mechanism for distinguishing causal relationships from other
kinds of associations has been a serious deficiency in most nonmonotonic sys-
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tems [96]. This problem is solved by augmenting the basic framework of ranking
systems with a simple mechanism, called stratification, for the representation of
causal relationships, actions, and changes. A new norm of consistency for knowl-
edge bases containing causal rules was introduced, and applications to tasks of
prediction and explanation were shown. The addition of stratification provides
the necessary machinery for embodying belief updates and belief revision within
the same framework.

6.2 Future Work

The next three sections sketch new directions for research into extending the
semantical and computational framework presented in this dissertation.

6.2.1 Semantical Extensions

Section 4.6 briefly sketched how to interpret iterated (and embedded) conditionals
using the ranking based semantics proposed in this dissertation. More work is
required in order to characterize, in a manner similar to the postulates in [3,
65] for belief revision and update, the process of revising a knowledge base A
with a conditional rule ¢ — 1. Of special interest are the cases where A U
{¢ — ¢} is inconsistent. The final goal is the development of a meta-logic in
which the connective — can be treated as a another connective in the underlying
language. First steps can be found in [51], where system-Z is augmented to
accept expressions of the form —(¢ — ); “it is not the case that typically if
i then 7. Semantically, ~(¢ — ) is interpreted as establishing that in the
context of ¢, the occurrence of 1 is as surprising or even more unlikely than the
occurrence of =, In terms of rankings —(¢ — %) translates into:

K(p Ap) 2 k(e A=) (6.1)

Procedures for testing consistency and answering queries requiring a polynomial
number of satisfiability tests are also presented in [51].

Finally, the formulation in this dissertation is strictly propositional. Of pri-
mary interest are extensions to the first order case along the lines presented

in [73].
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6.2.2 Qualitative and Quantitative Information

The connection established in this dissertation between probability theory and
qualitative forms of common sense inference provides a solid basis for combining
qualitative information in the form of linguistic quantifiers, such as “likely”, “very
likely”, “extremely likely”, etc, with numerical probabilistic and statistical knowl-
edge. The advantage of this proposal is that both qualitative and quantitative
information can be processed coherently under a uniform semantical interpreta-
tion, in full conformity with the norms of probability calculus. Efforts should
concentrate on developing an architecture where computation is performed in a
parallel and distributed fashion and where precision is a function of the required
urgency of the response (anytime response). The distributed algorithms devel-
oped by Pearl for Bayesian Networks [97] and the work by Hunter [61] on parallel
belief revision provide a good starting point, applicable to cases where a unique

stratified ranking can be established.

This architecture will have an immediate impact in diagnosis systems and in
the interpretation of sense data where the contributions of both qualitative and
quantitative data are required, and anytime response is essential.

Autonomous planning systems are also likely candidates to benefit from such
architecture. However, these systems not only require the ability to reason with
defaults, evidence, and actions, but they also require the ability to reason about
what is desirable and/or difficult, according to the consequences and costs of
these actions. The trade-offs between actions, chances, and pay-offs have been
studied thoroughly in decision theory [124, 64], and their application to Al has
been emphasized recently [26, 125, 59]. In almost all formalisms proposed judge-
ments about the likelihood of events is quantified by numerical probabilities and
judgements about the desirability of action consequences are quantified by util-
ities, thus they are subject to the same criticisms (of the numerical approach)
that motivated the work in this thesis.? An extension of the ranking formalism
to include a qualitative abstraction of utilities should bring the computational
and representational benefits that the approach in this dissertation presents for
reasoning with default information.

'Hunter [61] adapts the algorithms in [97] for computing with Spohn’s OCF.
2See [106] for an approach to default reasoning based on utilities, and [126] for a development
of better representation languages.
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6.2.3 Learning

By virtue of its probabilistic semantical basis, the framework proposed in this
dissertation establishes a connection to learning, and enables us to ask not merely
how to reason with defaults but also where default rules come from. It lays the
theoretical foundations for learning systems that coherently extract conditional
rules from raw observations, integrate them with rules transmitted linguistically,
and further refine them to adapt to new changes in the environment.3

In Bayesian belief networks, the learning task separates nicely into two sub-
tasks: Learning the parameters of the network (i.e., the conditional probabilities)
for a given network topology and identifying the topology itself. These subtasks
are clearly not independent because the set of parameters needed depends largely
on the topology assumed, and conversely, the structure of the network is formally
dictated by the joint distribution. Yet it is more convenient to execute the learn-
ing process in two separate phases: structure learning and parameter learning?
The topic of parameter learning is fairly well covered in the literature on estima-
tion techniques [97, 119]. The task of structure learning is a more challenging
one, and has received recent attention in [97, 39, 103], where methods and al-
gorithms usually introduce assumptions of causality, and a preference towards
simple structures. Given the relation between stratification and Bayes networks,
it is to be expected that these methods can be adapted to the frameworks of
Chapter 4 and 5. The parameters in a Bayes network correspond to the strength
0 of the rules, and the topology of the network corresponds to the underlying
graph structure I'. The do operator introduced in Section 5.4 can be then used
to uncover causal relations through the selective and controlled manipulation of
events.

3In this section we regard learning as the task of finding a generic model of empirical data.
In other words, learning can be thought of as the process of acquiring an effective internal
representation for the persistent constraints in the world, i.e., generic facts and rules.

“The advantages are discussed in [97, Chapter 8].
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APPENDIX A

Proofs

Since some of the proofs below refer to unconfirmable sets, we recall their defini-
tion:

Definition 2.16 A set A = D U S is said to be unconfirmable if one of the
following conditions is true:

1. If D is nonempty, then there cannot be a defeasible sentence in D that is
tolerated by A.

2. If D is empty (i.e., A = S) then there must be a strict sentence in S which
is non tolerated by A.

Essentially, unconfirmable sets are those that violate the conditions of Theo-
rem 2.4 below.

Theorem 2.4 Let A = DUS be a non-emply set of defeasible and strict sentences.
A is p-consistent iff every non-empty subset A" = D' US’ of A complies with one
of the following:

1. If D' is not empty, then there must be at least one defeasible sentence in D’
tolerated by A'.

2. If D" is empty (i.e., A" = 5"), each strict sentence in S’ must be tolerated
by S'.

Proof of the only if part: We want to show that if there exists a non-empty
subset of A which is unconfirmable, then A is not p-consistent. The proof is
facilitated by introducing the notion of quasi-conjunction (see [2]): Given a set
of defeasible sentences D = {¢1 — v1,..., ¢, — ¥} the quasi-conjunction of D
is the defeasible sentence,

C(D)=[¢1 V...V ] = [(61 D 1) A e Ao D tn)] (A.1)

The quasi-conjunction C'(D) bears interesting relations to the set D. In partic-
ular, if there is a defeasible sentence in D which is tolerated (by D) by some

119



model w, C(D) will be verified by w. This is so because the verification of at
least one sentence of D by w guarantees that the antecedent of C(D) (i.e. the
formula [¢1 V...V ¢,] in Eq. (A.1)) is satisfied by w, and the fact that no sen-
tence in D is falsified guarantees that the consequent of C'(D) (i.e. the formula
[(¢1 D 1) Acio A (dn D ¥)] in Eq. (A.1)) is also satisfied by w. Similarly,
if at least one sentence of D is falsified by a model w’, its quasi-conjunction is
also falsified by w’ since in this case, the consequent of C'(D) is not satisfied
by w’ (at least one of the material implication in the conjunction is falsified by
w'). Additionally, let U,(C(D)) =1 — P(C(D)) (the uncertainty of C(D)) where
P(C(D)) is the probability assigned to the quasi-conjunction of D according to
Eq. (2.4), then, it is shown in [1] that the uncertainty of the quasi-conjunction of
D is less or equal to the sum of the uncertainties of each of the sentences in D,
ie. Uy(C(D)) < 3:(1 — P(whilé:)) where the sum is taken over all ¢; — ; in D.

We are now ready to proceed with the proof. Let A’ = D’U S’ be a nonempty

subset of A where D’ is a subset of D and S’ is a subset of S. If A’is unconfirmable

then one of the following cases must occur:

Case 1.- 5" is empty and D' is unconfirmable!. In this case, the quasi-conjunction
for D' is not verifiable; from Eq. (2.4), we have that for any P which is proper
for C(D"), P(C(D")) =0 and U,(C(D’")) = 1. Tt follows, by the properties of the
quasi-conjunction outlined above that Y°;(1 — P(1{|¢)) over all ¢! — ! in D’ is
at least 1. If the number of sentences in D’ is n > 1, then,

n= P > 1 (A2)
i‘wm < n-1 (A.3)

which implies that at least one sentence in D’ has probability smaller than 1 — %
Hence, it is impossible to have P(¥!|¢}) > 1 — ¢, for every ¢ > 0, for every
defeasible sentence ¢ — ¢! € D’. Thus, A is p-inconsistent.

Case 2.- D' is empty. If S’ is unconfirmable, then there must be at least one
sentence ¢’ = o’ € 5’ such that no model W’ verifies ¢' = ¢’ without falsifying
another sentence in S’. We show by contradiction that there is no probability
assingment P to the sentences in S” such that P(o|¢) = 1 for all ¢ = o € &’
and P is proper for every sentence in S’. Assume there exists such a P. From

Eq. (2.4)
Zw}:(p/\a P(w)
Ew}:go/\a' P(w) + Ew}:@/\—xa P<w>

'This case is covered by Theorem 1.1 in [2].

P(ol4) = =1 (A.4)
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which immediately implies that if a model w" falsifies any sentence p” = ¢” € S’
(including ¢’ = o), then P(w”) must be zero, else P(c”|¢") will not equal 1.
Thus, P(w') = 0 for every w’ verifying ¢’ = o' since ' must falsify another
sentence in S’. But then either P(o'|¢') = 0, or P is not proper for ¢' = o’: A
contradiction. We conclude that if S” is unconfirmable then A is p-inconsistent.

Case 3.- Neither D’ nor S are empty and A’ is unconfirmable. That is, either
the quasi-conjunction C(D’) is not verifiable or every ' that verifies a defeasible
sentence in D' falsifies at least one sentence in S’. The first situation will lead
us back to case 1 while the second to a contradiction similar to case 2 above. In

either case, A is not p-consistent.

Proof of the if part: Assume that every non-empty subset of A = DU S com-
plies with the conditions of Theorem 2.4. Then the following two constructions
are feasible:

o We can construct a finite “nested decreasing sequence” of non-empty sub-
sets of A, namely Ay,...,; A, (A = A;), and an associated sequence of
truth assignments wy,...,w,, such that w; satisfies all the sentences in 4;
and verifies at least one one defeasible sentence in A;, and the sets in the
sequence present the following characteristics:

1. A4y 1s the proper subset of A; consisting of all the sentences of D;
not verified by w;, for 2 = 1,...,m — 1, plus the sentences in S.
2. All sentences in D,, are verified by w,,.
o We can construct a sequence wy,t1,...,w, that will confirm A,y = S.
That is, the sequence wy,11,...,w, will verify every sentence in .S without
falsifying any. We will associate with w,,41,...,w, the “nested decreasing

sequence” Ap,i1,...,4, where A;4; is the proper subset of A; consisting
of all the sentences of S; not verified by w; for i =m +1,...,n.

We can now assign probabilities to the truth-assignments wy,...,w, in the
following way:

Fori=1,...,n—1

and
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We must show that, in fact, every ¢ — @ in D obtains P(¢|¢) > 1 — ¢ and
that every ¢ = o in S obtains P(s) = 1. Since every ¢ — 1) is verified in at least
one of the member of the sequence Ay, ..., A,, using Eq. (2.4) we have that for
1 < ne

g1 —¢)
e l—e)+e(l—eg)+---Fent

and P(v,|¢,) = 1ifit is only verified by the last model when S is originally empty.
Finally, since no ¢ = o in S is ever falsified by the sequence of truth assignments
wi,...,w, and each and every ¢ = o is verified at least once, it follows from
Eq (2.4) and the process by which we assigned probabilities to wy,...,w, that
indeed P(c|¢) =1 for every ¢ = 0 € S. O

Corollary 2.5 A = DUS s p-consistent iff we can build an ordered partition of
D =[Dy,Ds,...,D,] where:

1. For all 1 <1 < n, each sentence in D; is tolerated by S U;:?H D;.
2. Every sentence in S is tolerated by S.

Proof: If A is p-consistent, by Theorem 2.4 we must be able to find a tolerated
defeasible sentence in every subset A’ = D'US’ (of A) where D' is nonempty, and
it follows that the construction of the ordered partition D = [Dy, Dy, ..., D,] is
possible. Similarly, by Theorem 2.4, if A is p-consistent every strict sentence in
S must be tolerated by S. On the other hand, if both conditions in the corollary
hold, we use the set of models (w;) that renders the sentences in each D; tolerated
by the set S U?i?ﬂ D; to construct a high probability model for A, following the
probability assignments of Eqs. A.5 and A.6. O

Theorem 2.8 If A is p-consistent, A p-entails @' — " ifl ¢’ — =)' is substan-
tively inconsistent with respect to A.

Proof of the only if part: (If A p-entails ¢’ — 9’ then ¢’ — -’ is substantively
inconsistent with respect to A.) Let A k=, ¢ — ¢'. From the definition of p-
entailment (Def. 2.7), for all £ > 0 there exists a § > 0 such that for all P € Pps
which are proper for A and ¢’ — ', P(=¢'|¢') < e. This means that for all
proper probability assignments P for A and ¢’ — )’ 2, the sentence ¢’ — —p’
gets an arbitrarily low probability whenever all defeasible sentences in A can be
assigned arbitrarily high probability and all strict sentences in A can be assigned

probability equal to 1. Thus ¢’ — =) is substantively inconsistent with respect

to A.

2Note that from the definition of p-entailment there must exists at least one P proper for
A and ¢’ — ¢’




Proof of the if part: ( If ¢’ — —¢’ is substantively inconsistent with respect
to A then A p-entails ¢’ — ¢’.) Let ¢’ — —¢’ be substantively inconsistent
with respect to A. From Theorem 2.4, we know that there must be a subset A’
of AU {¢" — —¢'} that is unconfirmable. Furthermore, since A is p-consistent,
A= A"U{¢' — —¢'}. Let Pg stand for the set of probability distributions that
are proper for A and ¢’ — —¢’ such that if P € Pg, then P(o|¢) = 1 for all
¢ = o in A 3. We will consider two cases depending on the structure of A”:

Case 1.- A" does not include any defeasible sentences. From Theorem 2.4, we
know that ¢’ — =’ cannot be tolerated by A” for otherwise A’ wouldn’t be
inconsistent. It follows from Eq. 2.4 (probability assignment) that P(-4'|¢') =0
for all P € Ps. Thus, P(¢'|¢') = 1 in all P € Ps and since any probability
distribution that is in Pa . must also belong to Pg, it follows from the definition
of p-entailment that A =, ¢ — 9.

Case 2.- A" includes defeasible and a possible empty set of strict sentences. Since
A" U {¢’ — =’} is unconfirmable, we have from the proof of Theorem 1, that
for all probability distributions P € Ps:

Do Ul = )+ Up(¢' = —¢') > 1 (A.8)
o=t EAN
which implies that
Y2 Ul =) 2 1= Up(¢' — =) = Up(¢' — o) (A.9)

pPEA

Since Up(p — ) =1—Pp — ) and U,(¢' — ¢') =1 — P(p' — '), Eq. (A.9)
says that 1 — P(¢’ — 9') can be made arbitrarily small by requiring the values
1 — Py — o) for ¢ — 9 € D to be sufficiently small and the values of P(a|¢)
to be 1 for all ¢ = o € S. This is equivalent to say that A |=, ¢’ — ¢/, O

Theorem 2.10 If A = D U S is p-consistent, A strictly p-entails ¢' = o iff
S UA{¢ — True} is p-consistent and there exists a subset S’ of S such that
¢ = —o is not tolerated by S'.

Proof It follows from the proof of Theorem 2.8 (see case 1 of the if part). O

Lemma A.1 TEST_CONSISTENCY constitutes a decision procedure for testing
the p-consistency of a set A of conditional sentences.

3We know that Ps is not empty since A U {¢' — True} must be p-consistent according
to Def. 2.6. In the case where A does not contain any strict sentences, Pg simply denotes all
probability distributions that are proper for A U {¢' — True}.
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Proof: If the procedure stops at either line 4 or line 9 an unconfirmable subset is
found, and by Theorem 2.4 the set of sentences is p-inconsistent. If on the other
hand, the procedure reaches line 10, the order in which the sentences are tolerated
can be used to build a high probability model for A using the construction (of the
“nested decreasing sequence”) in the proof of Theorem 2.4, and A must therefore
be p-consistent. O

Theorem 2.13 The worst case complexity of testing consistency (or entailment)
is bounded by [PS % (!—%ﬁ + |S|)] where |D| and |S| are the number of defeasi-
ble and strict sentences respectively, and PS is the complezity of propositional
satisfiability for the material counterpart of the sentences in the database.

Proof: Given that TEST_CONSISTENCY constitutes a decision procedure for
p-consistency (see Lemma A.1 above), a complexity bound for this procedure will
be an upper bound for the problem of deciding p-consistency. To assess the time
complexity of TEST_CONSISTENCY, note that the WHILE-loop of line 6 will
be executed |S| times in the worst case, and each time we must do at most PS
work to test the satisfiability of S — s; thus, its complexity is |.S| x PS. In order
to find a tolerated sentence d : ¢ — ¥ in D', we must test at most |D’| times
(once for each sentence d € D') for the satisfiability of the conjunction of ¢ A
and the material counterparts of the sentences in SU D’ — {d}. However, the size
of D" is decremented by at least one sentence in each iteration of the WHILE-
loop in line (2), therefore the number of times that we test for satisfiability is
|D|+|D|—=14|D|—2+...+1 which is bounded by l—%f— Thus, the overall time
complexity is O[PS x (J—%E +[51)]. O

Theorem 2.24 If the set A is acyclic and of Horn form, wpy-implication can be
decided in polynomial time.

Proof: The proof of this theorem requires a short review of some results from [25],
since the procedure for deciding wps-implication is based on one of the algorithms
presented in that paper. Given a set H of Horn clauses, Dowling and Gallier define
an auxiliary graph Gy to represent the set H, and reduce the problem of finding
a truth assignment satisfying the sentences in H, to that of finding a pebbling on
the graph using a breadth first strategy. We first describe these concepts more
precisely and then apply them to the problem at hand:

Definition A.2 ([25]) Given a set H of Horn clauses, G is labeled directed
graph with N 4 2 nodes (a node for each propositional letter occurring in H, a
node for true and a node for false) and a set of labels [M]. It is constructed with
¢ taking values in [M] as follows depending of the form of the ¢** Horn formula

in H:
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1. If it is a positive literal ¢, there is an edge from true to ¢ labeled 3.

2. If it is of the form —py V...V =p,, there are n edges from py, ..., p, to false
labeled 1.

3. If it is of the form —p; V...V —p, V ¢, there are n edges from py,...,p, to
g labeled 1.

A node ¢ in G can be pebbled if and only if for some label ¢, all sources of
incoming edges labeled ¢ are pebbled. The node true is considered to be pebbled.
A pebbled path is a path on the graph such that all its nodes are pebbled. Given
the correspondence between a Horn rule h; and the set of i-labeled edges in the
graph we are going to use both terms (edge and rule) indistinctively. Thus,
eliminating a rule h; should be understood as removing the set of ¢-labeled edges
from the graph. Similarly a pebbled rule will indicate that the associated nodes
in the graph are pebbled etc. A graph G'% is considered to be completely pebbled,
if and only if all nodes that remain unpebbled have at least one incoming edge
with a source that cannot be pebbled; i.e., there cannot be a pebbled path from
true to that node.

Lemma A.3 ([25]) Let H be a set of Horn clauses and let Gy be its associated
graph, H is unsatisfiable iff there is a pebbling in Gy from true to false

This lemma and the existence of an O(N?) algorithm for deciding satisfiability
are proven in [25] (N represents the number of occurrences of literals in the set
of clauses). We now prove a couple of lemmas regarding a polynomial procedure
for deciding whether a conditional sentence z is weakly inconsistent with respect
to a set A. Recall that by the definition of wps-implication (Def. 2.22) once we
have identified a sentence as weakly inconsistent, its negation is wpy-implied. The
lemma below shows a simple test for deciding whether a particular horn sentence
h is essential for the unsatisfiability of some set H:

Lemma A.4 Let Gy be an acyclic graph representing the set H of Horn clauses.
Assume that 'H is unsatisfiable and that Gy is completely pebbled. Let h € H be
a Horn clause such that both the antecedent and consequent of h are pebbled in
Gy, and assume that there is a pebbled path from the consequent of h to false.
Then there exists a nonempty subgraph G, of Gy containing h such that G}, is

unsatisfiable but G4 — {h} is satisfiable.

We show the correctness of this lemma by constructing the graph G%. The idea
is to eliminate from G all the alternative pebbled paths to false, and leave G,
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with only the path that goes through the rule h, together with those necessary to
render this path pebbled. First, we select one pebbled path from true to false
that goes through h (by the assumptions of the lemma, we know that there is at
least one.) Next, we eliminate any rule that reaches false directly (i.e. of form 2
in Def. A.2) that is not in the selected path. We now traverse the selected path
“backwards” from false to the node representing the consequent of h, and remove
any incoming edges are not necessary to render this path pebbled. Note that we
can guarantee to have eliminated alternative paths to false. The only possibility
for this construction to fail is if we would have removed some paths that pebble
the antecedents of A (in which case G, would be satisfiable), but this can only
happen if there is a cycle in the graph involving A, and this possibility is ruled
out by the assumptions of acyclicity. Since to complete the pebbling of a graph is
no worse than testing for satisfiability, and searching for a pebbled path from one
node to another can also be done by a breadth first search algorithm it follows
that the test outlined in Lemma A.4 can be performed in polynomial time. This
test constitutes the basis of a procedure for deciding weakly inconsistency:

Lemma A.5 Given a set A which of Horn form and acyclic, to decide whether
a sentence is weakly inconsistent with respect to A\ requires polynomial time.

Given a set A and a sentence z, we first apply the consistency test of Section 2.4
to AU {z} in order to find an unconfirmable subset A,. If none can be found
or the sentence x does not belong to A,, we can assert that z is not weakly
inconsistent with respect to A. In the first case A is consistent, and in the
second case z does not belong to any inconsistent subset of AU {z}. Once A, is
found (and z € A,), we systematically complete the pebbling of the associated
graph Ga, starting from each one of the antecedents of the sentences in A,. If
in one of these pebblings, the sentence & complies with the requirements of the
test outlined in Lemma A.4, then x is weakly inconsistent. Note that all the
steps involved require polynomial time with respect to N (i.e. the number of
occurrences of literals in the set of clauses), and since once we have a procedure
for deciding whether a sentence is weakly inconsistent we have a procedure for
wpe-implication (see Def. 2.22),; we have essentially proven Theorem 2.24. O

We remark that these results are not relevant only to nonmonotonic reasoning
but to any application involving propositional entailment.

Theorem 3.3 A set D is consistent (in the sense of Def. 3.2) iff D is p-
consistent.

Proof: By Theorem 2.4, if D is p-consistent then by there exist at least one
tolerated rule in every nonempty subset D' C D. It follows that we can use the
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same construction used in the proof of Theorem 2.4 (see Eqs. A.5 and A.6), and
build a probability function parameterized on ¢ such that for each ¢; — ¥; € D,

limg P (i) = 1 (A.10)

(see Eq. A.7), and it follows that D is consistent according to Definition 3.2.

On the other hand, by Theorem 2.4, if D is not p-consistent, then there exist
a subset [’ where no default rule is tolerated. We show that if this is the case,
there cannot be an admissible ranking for D. Following Proposition 3.8 D is
inconsistent (according to Definition 3.2), and the other direction of Theorem 3.3
holds. We reason by contradiction: Assume that there is no tolerated rule in
D" C D and there is an admissible ranking &’ for D. Let us define a characteristic
possible world for a rule to be a possible world with minimal ranking verifying
the rule. Since there is no tolerated rule in D', we know that any characteristic
possible world w; for rule ry € D’ must falsify another rule r; € D'. By the
admissibility of &’ the following must hold

I*Cl(wz) < fﬁl(wl) (All)

where wy is a characteristic possible world for r,. By the same token, wy must

4

falsify another rule in D', say r3, and we can insert x'(ws) * in the chain of

Eq. A.11:
K'(ws) < K'(w2) < K'(wy) (A.12)
We can continue to expand the chain in this fashion and get,
K (wn) < K (wn-1) < ... < K'(w2) < &' (wy) (A.13)

Note that if at any point in the construction of this chain, a possible world
falsifies a rule that has a characteristic possible world in the chain, we arrive at
a contradiction since by the admissibility of «', «'(w') < &'(w") but since both
w' and w" are characteristic possible worlds of the same rule it must be that
k'(w') = k'(W"). Moreover, given that D’ is finite we are bound to encounter such
contradiction. O

Theorem 3.6 A PPD consequence relation satisfies the Logic, Cumulativity,
Cases and Rational Monotony rules of inference.

Proof: Note that if ¢ F ¢ then P(y|p) = 1. Thus, each PPD consequence
relation satisfies the Logic rule. From elementary probability equivalences,

P(rlp) = P(7[¥ A o) P(le) + P(v[=¢ A @) P(—dle); (A.14)

‘w3 is a characteristic possible world for rs.
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thus, lime_.o P.(v|¢) approaches lim._,o P.(y[tp Ap) as lim._q P.(0|) approaches
1. Hence, each such relation satisfies Cumulativity. Again, from elementary
probability equivalences we have P(vy|o V ) = P(y|¢) + P(v|y) — P(ylp A ).
Thus, lim.o P:(v|e V ¢) > limeo Pe(v|e) + lim.o P.(7|0) — 1, and it follows
that a PPD consequence relation also satisfies Cases. Finally, since P(—%|p) =
P(=ply A@) P(v|o) + P(—~¢ |~y Ap) (=), i limeo Po(—9]p) = 0 (ie. ¢ v ¢)
and lim._o P.(y|p) # 0, it must be the case that lim..q P.(-|y A ¢) = 0 (i.e.
¥ A b o) and it follows that a PPD consequence relation also satisfies Rational
Monotony. O

Theorem 3.6 Fvery PPD consequence relation can be represented as a ranked
preferential model, and every ranked preferential model with a finite non-empty
state space can be represented as a PPD consequence relation.

Proof: We have shown (Theorem 3.5) that each PPD consequence relation sat-
isfies Logic, Cumulativity, Cases and Rational Monotony, and hence by the rep-
resentation theorem in [74] it can be represented as a ranked preferential model.

For the converse part, we employ essentially the same construction as used in
Lemma 31 of [74], except we take pains to ensure the probability functions are
polynomial in €. Suppose we are given a ranked preferential model with n ranks,
denoted by Ri,..., R,. Let a; be the number of states in R;, for 1 < i <n. For
each state s,> define

l—e—...—e"Y/a; for sin R,
Pi(s) = [ 1/a 1

e /a; for sin B;,2<:<n

It is easy to see that this probability measure on states will yield a PPD with the
same consequence relation as the given ranked preferential model. O

Theorem 3.10 Given a consistent D, ¢~ o iff D |5, ¢ — 0.

Proof: We recall the definition of p-entailment (Def. 2.7). Given a positive real
number ¢, we say that a probability measure P e-satisfies a default rule ¢ — b,
if Py
by a set D if for every ¢ > 0 there exists a § > 0 such that every probability

) > 1 —e. According to Definition 2.7, a default ¢ — & is p-entailed

measure that 6-satisfies each rule in D will e-satisfy ¢ — o. Now suppose that
¢ — o is p-entailed by a set D. Let € > 0 be arbitrary, and let  be such that

®For technical reasons, Lehmann and Magidor [74] define ranked preferential models in terms
of a set of states S, and a function | mapping states s € S to possible worlds w € Q. A state s
will satisfy a formula ¢ if and only if I(s) = . For the purposes of this prool we define P, as
a probability measure on a set of states, and define P.(w) as P{w) = 2oi(s)=w Te(s). The rest

of our definitions and results hold without further modifications.
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if P é-satisfies each default in D, then it e-satisfies ¢ — o. Let P, be a PPD
admissible with D. Then for each default ¢; — ; in D, P, §-satisfies o; —
for sufficiently small 4. Since D is finite, we can find a single constant K, such
that P, é-satisfies every member of D for v < K. Thus, P, e-satisfies ¢ — o for
sufficiently small . Since ¢ is arbitrary, we conclude that o is probabilistically
entailed by D given ¢.

For the converse, suppose that ¢ — o is not p-entailed by D. From Theo-
rem 2.8, either D U {¢ — =} is consistent, or D U {¢ — T'rue} is inconsistent.
Suppose first that D U {¢ — T'rue} is inconsistent. Since D is consistent, the
construction in the proof of Theorem 2.4 can be used to obtain a PPD admis-
sible with D. Since D U {¢ — T'rue} is inconsistent, this PPD does not satisfy
¢ — T'rue, and hence ¢ p o cannot hold in its proper consequence relation. As-
sume now that DU {¢ — —o} is consistent. Once again using the construction in
the proof of Theorem 2.4, we get a PPD admissible with respect to DU{¢ — —c}.
Clearly, the induced consequence relation cannot satisfy ¢ — o. Thus, o is not
probabilistically entailed by D given ¢. O
Proposition 3.12 If D is an MC-set then, for all defaults r : o — o € D,
@ b 1 is not in the consequence relation induced by D — {p — ¥} .

Proof: Note that since D is an MC set then D — {¢; — 1;} must also be an
MC set. By the MC set property (Def. 3.11) for each rule »; : ¢; — 9; € D,
there exists a possible world w; such that w; falsifies only r; and no other rule in
D. Thus, £*(w;) for the set D — {¢; — t;} must be equal to zero (no rule in
D — {pi — 1} is violated by w;) and thus any possible world ' |= ¢; A 1;, must
comply with £*(w') > &*(w;). It follows that ¢; | 1; is not in the consequence
relation induced by D — {¢; — v;}. O

In order to show Theorem 3.13, we require the following lemma:

Lemma A.6 Given an MC set D, there exists at least one Z function that sat-
isfies eq. 8.19.

Proof: We define an operator O on Z functions by O(Z) = Z', where

Z'(r;) = 1—}—%1111[ o Z(r)] 1<i<n
i r;eDg

A Z function satisfies eq. 3.19 iff it is a fixed point of O.
Now define a sequence {Z,} of Z functions by

Z1(r) =1 for every rule r
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and

Zn+1 = O(Zn)

We will prove that, for every r, the sequence {Z,(r)} is both non-decreasing
and bounded, and hence converges.

First we show that Z,,1(r) > Z,(r) for every r. (We will abbreviate this as
Zny1 2 Zyn.) To see this, note that if Z > Z’, then O(Z) > O(Z'). Clearly,
Zy 2 Zy. Applying O to both sides, we get Z3 > Z,. This process can be
repeated, showing (by induction) that Z,4 > Z,, for every n.

Next, we use the partition of D introduced in Corollary 2.5 to show that
{Z.(r)} is bounded above for every r. We can do this by induction on the
tolerance set to which r belongs. Clearly it is true for rules in Dy, since among
the verifiers for such rules are possible worlds with no violations. Assume it is
true for r in D;. Consider a rule r that belongs to D;,;. There must be at least
one verifier w of r that violates only rules in D;. According to the inductive
hypothesis, therefore, ZMEDA} Z(r;) will be bounded during every application of
O. It follows that {Z,(r)} is bounded.

Since {Z,} converges, we can define

Z = lim Z,.

0O

Clearly Z will be a fixed point of @. O

Relying on Lemma A.6 we can now define Z* to be an arbitrarily chosen
solution to Eq. 3.19. It will follow from Theorem 3.13 that this solution is unique.

Theorem 3.13 Given an MC set D, Procedure Z*_order computes the function
Z* defined by Fgs. 8.20 and 3.21.

Proof: We first show that the relevant steps in Procedure Z*_order are well
defined. By the assumption that D is consistent, Dy cannot be an empty set
(steps 1 and 2): There must be at least one rule tolerated by D. By similar
reasons, {} cannot be empty in each iteration of the loop in step 3. By consistency
we must be able to find a tolerated sentence in each nonempty subset of D.
Finally, in the computation of Eq. 3.23, since w only falsifies rules in RZ™, all Z
for these rules are available.

We now show that Z = Z* for rules ro € Dy. Since each ry is tolerated by
D, there must be a possible world wy (for each one of these rules), such that wg
verifies ro and wy satisfies D. Thus, each one of these possible worlds does not
falsify any rules in D, and £*(wg) = 0. According to Eq. 3.21, Z*(rg) = 1 for
those rules and that is precisely what is computed in step 2.
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The proof proceeds by induction on the iterations of loop 3; we show that
for every rule r € RZ%, Z(r) = Z*(r) holds as an invariant. For the basis
of the induction consider the first iteration: Since RZ* = D, then for every
ro € Do, Z(ro) = Z*(ro) holds as shown above. Our objective is to show that
this equality holds for the rules inserted into RZ™ at step 3.(c). Note that since
all the values x(w) for w € ) are computed from Z*-values of rules in RZ* (step
3.b Eq. 3.23), they must be equal to *(w). We define a characteristic possible
world for a rule r to be the possible world w, with minimal ranking «* verifying
r. Thus, Z*(r) = mingpeay £5(w) + 1 = £*(w,) + 1. We claim that £*(w*)% is a
characteristic possible world for the rules outside RZ™" it verifies. Suppose not:
Assume that there is a possible world w,s such that w,  verifies some rule v’ which
w* also verifies, and «k*(w,) < £*(w*). Note that w, cannot belong to € since
the value of «*(w*) is minimal with respect to the x* of possible worlds in Q. It
follows then that w, must falsify a rule r” € RZ*. Let w,» be a characteristic
possible world for r”, then

Ii*(wru) < /s*(wT/) (A15)
Note that w* cannot verify r”, since otherwise
K (w") < k™ (wp) (A.16)

a contradiction. By the same argument as above, w,» ¢ ), and therefore it must
falsify a rule v € RZ*. if w,m is a characteristic possible world for r” we have
that

f’\’,*(wrm) < K)*(wrll) < K,*(WTI) (Al?)
w,s cannot verify r"”; otherwise we get the contradiction
/{*(wrl) < /{*(wru) < K,*(CUT/) (A.IS)

and if w* verifies 7"’ we get the contradiction of Eq. A.16. w,m cannot belong to
2 and therefore it must falsify another rule outside RZ*. However, given that
D is finite, we cannot extend the “chain” of Eq. A.17 indefinitely, and therefore
we are bound to get a contradiction in the form of Eq. A.16 or Eq. A.18. Since
our only assumption was that £*(w*) is not a characteristic possible world for the
rules it verifies, that assumption must be wrong. It follows then that the value
of Z(r) computed in step 3.c (Eq. 3.24) must be equal to Z*. For the induction

SRecall that w* is a possible world in Q with minimal value x (see step 3.c in Procedure
Z* order).
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step assume that the invariant holds up till the n** iteration. Then by the same
argument used in the basis of the induction, the k(w) for w € Q are equal to
£*(w), w* must be a characteristic possible world for the rules r outside of RZ*
that it verifies, and thus Z(r) = s*(w*) + 1 = Z*(r). O

Theorem 4.3 A set A is consistent (in the sense of Def. 4.2) iff A is p-
consistent.

Proof: By Theorem 2.4, A is p-consistent iff there exist at least one tolerated
rule (by A') in every nonempty subset A’ of A. We first show that if there
exists a tolerated rule in every nonempty subset of A we can always produce an
admissible ranking «. Under the stated condition, we can construct the following
ordered partition (Ag, Aq,...,A,) of A: Rules in Ay are tolerated by A, rules
in Ay are tolerated by A — Ag and so on (see Cor. 2.5). By Def. 2.3, for each
one of these Aj;, there must exist a nonempty subset Q; of Q (the set of all
possible possible worlds), such that for each rule r; € A; there must exists a
possible world w; € Q;, where w; verifies r; and w; satisfies A if j = 0 and
A—{AgU...UA;_;} otherwise. Thus, using these possible worlds (the possible
worlds actually required to effectively build the partition of A), we define a
partition (Q0o,, ..., Ly, Qpy1) of Q. where each §); contains possible worlds
with the characteristics mentioned above, and €, .1 contains the possible worlds
necessary to complete the partition. Let 6 denote the highest § among rules in
set A;. We now build, in a recursive fashion, an admissible ranking « based on
these two partitions in the following manner: If wy € Qq, set k(wy) = 0. Else if
wj € §, set £(w;) = k(w;-1) +65_; + 1. Note that each possible world w; € Q; is
a characteristic possible world® of the rule r; € A; it verifies, and the x-minimal
possible world falsifying any rule r; € A; must belong to the set ;1. Thus,
in order to guarantee the admissibility of &, it is enough to show that for an
arbitrary pair of possible worlds w; € Q; and w;4; € Q44 the {ollowing relation
holds:

K(wj) + 65 < Kwje1) (A.19)

where ¢; can be any é among the rules in A;. But this relation is guaranteed by
the construction of « since k(w;) + 67 + 1 = k(w;y1), where 67 is the highest &
among the rules in Aj. Therefore x is admissible.

To show the converse we reason by contradiction: Assume that there is no
tolerated rule in A’ C A and there is an admissible ranking «’ for A (this part

“Rules with strength & are verified, falsified, and therefore tolerated in the same way that
rules without strength 6.

8Recall that a possible world w* is said to be a characteristic possible world for rule ¢ — ¢
relative to ranking &, if K(w?) = min{x(w) 1w E e A},
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of the proof is almost identical to the proof of Theorem 3.3, except for the §’s on
the rules). Since there is no tolerated rule in A’, we know that any characteristic
possible world wy for rule ry € A’ must falsify another rule r € A’. By the
admissibility of &’ the following must hold

K'(wg) + 65 < K'(wy) (A.20)

where wy is a characteristic possible world for ry. By the same token, wy must

9

falsify another rule in A', say rs, and we can insert «’(w3) ? in the chain of

Eq. A.20:
Kll(w;g) + 63 < /s:'(wz) + 62 < li,(wl) (Agl)
We can continue to expand the chain in this fashion and get,

&' (wn) + 6p < K (Wpe1) + 61 < ... <
&' (w2) + 62 < K'(wy) (A.22)
Note that if at any point in the construction of this chain, a possible world
falsifies a rule that has a characteristic possible world in the chain, we arrive at
a contradiction since by the admissibility of &', «'(w') + ¢' < &'(w”) but since
both w’ and w” are characteristic possible worlds of the same rule it must be that

£'(w') = K'(wW"). Moreover, given that A’ is finite we are bound to encounter such
contradiction. O

Proposition A.7 The ranking function k* is admissible.

Proof: Given that Z*(r;) = min{x*(w) : w = ¢; A ¥;} + &, we can re-write the
conditions for admissibility (Eq. 4.6) as

Z(r;) < min{xt(w) : w = @i A ;) (A.23)

Since k1 (w) = max{Z1(r;) : w | wi A =th;} + 1, it follows that «* is admissible.
]

Lemma A.8 The ranking k* is compact.

Proof: By contradiction. Assume it is possible to lower £ (w’) of some possible
world ', where kT (w') > 0. From the definition of k% (Def. 4.4, there must be a
rule 7 : o 5 1 such that x*(w') = Z*+(r) + 1 (see BEq. 4.7), which implies that

(W) = min{st (W) wkEEAp}+6+1 (A.24)

%ws is a characteristic possible world for rj.
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Lowering the value of x*(w’) will violate Eq. A.24 which will imply the violation
of Eq. 4.6 for rule r. O

Theorem 4.7 Every consistent A has a unique compact ranking given by x*’.

Proof: By Lemma A.8, k% is compact. We show it is also unique. Suppose
there exists some other compact ranking & that differs from «% in at least one
possible world. We will show that if there exists an w’ such that x(w') < £¥(w)
then x cannot be admissible, where if x(w’) > £ (w’), then & cannot be compact.
Assume k(w') < kT (w'), let I be the lowest & value for which such inequality
holds, and let k*(w’) = J > I. By the definition of k¥ (Def. 4.4), we know that

there is a rule 7 : ¢ ER ¥ such that Eq. A.24 holds, and as a consequence
min{xT(w):wkEpAY}=J 61 (A.25)
Since k is assumed to be admissible, the following must hold for rule r
k(W) > min{s(w):wkEeAp}+5+1 (A.26)
Since J > k(w'),
J>min{k(w) wkEeAP}+6+1 (A.27)
If we subtract 6 + 1 from both sides of this inequality and use Eq. A.25 we get

min{st(w):w Ep AP} >
min{x(w) :w E ¢ A} (A.28)

But this cannot be since I was assumed to be the minimal value of x for which
this inequality can occur, and if min{s(w) : w = @ A9} > I, then & is not
admissible (see Eq. A.26).

Now assume that there is a non-empty set of possible worlds for which x(w) >
k*(w), and let I be the lowest ¥ value in which k(w’) > x*(w') for some possible
world w’. We will show that x cannot be compact, since it will be possible to
reduce £(w’) to k*(w') while keeping constant the & of all other possible worlds.
From «*(w'") = I we know that w’ does not falsify any rule » with Z+ rank higher
than I — 1. Hence, we only need to watch whether the reduction of x can violate
rules r for which Z*(r) < I. For every such rule there exists a possible world
w, such that w verifies v and £*(w) < I. Since for all these possible worlds & is
assumed to be equal to x* it follows that none of these possible worlds can be
violated by reducing x(w’) to k(w'). O
Theorem 4.9 The function Z computed by Z* _order complies with Definition 4.4,
that is 7 = ZF.
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Proof: We first show that the relevant steps in Procedure Z% _order are well de-
fined. By the assumption that A is consistent, Ay cannot be an empty set (steps 1
and 2): There must be at least one rule tolerated by A. By similar reasons, AT
cannot be empty in each iteration of the loop in step 3. By consistency we must
be able to find a tolerated sentence in each nonempty subset of A. Finally, in
the computation of Eq. 4.10, since w only falsifies rules in RZ™, all Z for these
rules are available.

We now show that Z = Z* for rules rq € Ag. Since each 1y is tolerated by
A, there must be a possible world wy (for each one of these rules), such that
wg verifies rg and wp satisfies A. Thus, each one of these possible worlds does
not falsify any rules in A, and £*(wg) = 0. According to Eq. 4.8 in Def. 4.4,
Z*(ro) = o for those rules and that is precisely what is computed in step 2.

The proof proceeds by induction on the iterations of loop 3; we show that
for every rule r € RZ*, Z(r) = Z*(r) holds as an invariant. For the basis
of the induction consider the first iteration: Since RZ* = Dy, then for every
ro € Do, Z(ro) = Z*(ro) holds as shown above. Our objective is to show that
this equality holds for the rules r* inserted into RZ* at step 3.(c). Note that
since all the values k% (w,) for w, in every Q, are computed from Z*-values of
rules in RZ* (step 3.b Eqs. 4.10 and 4.11), they must be equal to «*(w). As
done in the proof of Theorem 3.13, let a characteristic possible world for a rule
r be the possible world w} with minimal ranking «* verifying r. Thus, Z*(r) =
Milgpeay 67 (W) + 6 = £T(wF) + 6. We claim that £ (w)'? is a characteristic
possible world for the rules outside RZ* it verifies. Suppose not: Assume that
there is a possible world w,» such that w,« verifies a rule r* (that is inserted into
RZ* in step 3.c), and £%(wr) < &7 (wi). Note that w,. must falsify a rule
r' ¢ RZ*. Otherwise the computation in Eq. 4.10 would not have used w*. but
wy instead. Let w,s be a characteristic possible world for 7/, then

kT (wp) < &1 (wpe) (A.29)
Note that w. cannot verify ', since otherwise
H(wh) < k1 (W) (A.30)

a contradiction. If w, does not verify the same rule r* that w}. verifies, then
Z(r") > Z(r*) by Step 3.c, and then by Eq. 4.11, &(w» > &(w’ which is a con-
tradiction. Therefore w, verifies the same 7*, and by the minimality of w}. among
the worlds in Q,+, w,» must falsify a rule r” ¢ RZT. If w,» is a characteristic

10Recall that 7* is a rule inserted into RZ7T in Step 3.c.
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possible world for r” we have that

& (w) < kT (W) < 6T (w,s) (A.31)
w,» cannot verify r”; otherwise we get the contradiction

£ (W) < kT (W) < KT () (A.32)

and if w. verifies r” we get the contradiction of Eq. A.30. By similar arguments
as before w,» must falsify another rule outside RZ*. However, given that A is
finite, we cannot extend the “chain” of Eq. A.31 indefinitely, and therefore we
are bound to get a contradiction in the form of Eq. A.30 or Eq. A.32. Since
our only assumption was that w}. is not a characteristic possible world for the
rules it verifies, that assumption must be wrong. It follows then that the value
of Z(r*) computed in step 3.b (Eq. 4.10) must be equal to Z*. For the induction
step assume that the invariant holds up till the n'* iteration. Then by the same
argument used in the basis of the induction, the x(w,) for w, € §, are equal to
£¥(w,), the minimal k1 (w}.) in Eq. 4.10 must be a characteristic possible world
for the rules r* outside of RZ™* that it verifies, and thus Z(r*) = k™ (W) + 6,+ =
ZT(r*). O

Lemma 4.10 Let A = {r; | r; = ¢; LA ;} be a consistent set where the rules are
sorted in nondecreasing order according to priovities Z(r;). Let k(M) be defined

as in Fq. 4.7

0 if M does not falsify any rule in A
k(M) = (A.33)

MaXMpin-y: 2 (Ti)] + 1 otherwise.

Then, for any wff ¢, k(@) can be computed in O(log |Al]) propositional satisfiability
tests.

Proof: The idea is to perform a binary search on A to find the lowest Z(r)
such that there is a model for ¢ that does not violate any rule v’ with priority
Z(r') > Z(r). We first divide A into two roughly equal sections: top-half (r,,4
to r4ign) and bottom-half (rje, to rm4). Then we examine the top-—half: If the
wif o = qﬁ/\j_f_::”d w; D 1; is satisfiable, then there exists a model for ¢ that does
not violate any rule in this top-half. It follows that Z(rm,.q) + 1 is an upper
bound on the value of £(¢), and the binary search is continued iteratively in the
bottom-half. If, on the other hand, « is not satisfiable, then the maximum Z(r;)
for any model for ¢ must be in the top-half, and the search is continued there.
Eventually, the set in which the search is conducted is reduced to one rule, and
we can determine the value of k(¢) with one more satisfiability test. O
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Lemma4.11 The value of Z(¢ 2 o) in Eq. 4.10 can be computed in O(log |[RZT|)
satisfiability tests.

Proof: Let A’ in Step 3(a) be equal to {¢p; &, ¥;}, and let the wif o be equal to
a Ao N; i D ; where i ranges over all the rules in A’. Note that since any world
M, in M, is a model for o A ¢ and does not violate any rule in A’, it follows that
M, € M, iff M, |= o. Then, since x(a) = miny,enm, £(M,), Z(¢ - o) must
be equal to «(e) +1 + §. Thus, once A’ is sorted, by Lemma 4.10, x{«) can be
computed in O(log |RZ*|) satisfiability tests which proves Lemma 4.11. O

Theorem 4.12 Given a consistent A, the computation of the ranking Z+ requires
O(|A?* x log |Al) satisfiability tests.

Proof: Step 1 requires at most |A| satisfiability tests and is performed once,
while Step 2 takes at most |A| data assignments. Step 3(a) again requires O(]A])
satisfiability tests. Computing Eq. 4.10 in Step 3(b) can be done in O(log |RZ™|)
satisfiability tests according to Lemma 4.11,'' and since it will be executed at
most O(|A]) times, it requires a total of O(]A] x log|A|) satisfiability tests.
Step 3(¢) is a minimum search which can be done in conjunction with the com-

putation of Eq. 4.10, since we only need to keep the minimum of such values. It
involves || data comparisons. Loop 3 is performed at most |A] — |Ag| times,
hence the whole computation of the priorities Z* on rules requires a total of
O(IA]? x log|Al) satisfiability tests. O

Theorem 4.14 Let rl : LN v oand r2 : ¢ %2 5 be two rules in a consistent A
such that

1. oy ¢ (i.e., o is more specific than ¢).

2. There is no model satisfying e AP A ¢ Ao (i.e., r1 conflicts with ry).

Then Z*(rl) > Z*(r2) independently of the values of 61 and §,.

Proof: If ¢ |~ ¢ is in every consequence relation of every x admissible with A
then (by Prp. 3.8) the following constraint must hold in all these k-rankings
(including kT):

(A @) < k(e A=) (A.34)

HNote that we need RZ* to be sorted, nondecreasingly, with respect to the priorities Z.
This requires that the initial values inseried to ®RZ1 in Step 2 of Procedure Z1 _order be sorted
— O(]Ag)?) data comparisons — and that the new Z-value in Step 3(c) be inserted in the
right place — O(JRZ*|) data comparisons. We are assuming that the cost of each of these
operations is much less than that of a satisfiability test.
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Thus, any characteristic possible world w for r; must render ¢ (the antecedent
for ry) true, and since there is no possible world such that both rules are verified
(condition 2 in the theorem above), all w} must also falsify r;. From Def. 5
(Eqs. 4.7 and 4.8): k¥ (wf) > ZF(ry) 4+ 1, and Z¥(ry) = s (w}) + 6. Tt follows
that Z*(r;) > Z*(ry). Note that the characteristic possible world for r, cannot
in turn falsify ry since this will preclude the existence of an admissible ranking &
and A was assumed to be consistent. O

Theorem 5.2 Given a network A, let O1(X) and Oz(X) be two orderings of the
elements in X according to A. If k is stratified for A under O1(X), then & is
stratified for A under Oy(X).

Proof: Let £ = {X;,...,X,} be the set of literals variables in the language tak-
ing values from the atomic propositions X' = {zy,...,2,}. Let Oy = [V},...,Y}]
and Oy = [Zy,...,2Z,], where {X1,..., X, } ={Y1,..., Yo} ={Z,...,Z,} and ]

denotes sequences. We will show that for 1 <7 < n

7

j:
K(Zi N N Zy) =Yk (Z;|Pargz,) (A.35)
7=1

given that for 1 <k <n

1=k
li(i/k A }/1> K(Y;']Pa’r‘yj) (A36)
I=1
The proof is by induction on ¢. The base case where 1 = 1 is trivial. For

the induction step we show that the statement is true for i = m. Let Y] be
the last element in the smallest subsequence of Oy(L) such that {Z,,...,7,,} C
{Yi,....Y} Let {Y,,..., Y} = {V1,.... Y.} = {Z,..., Z,}. Since & is stratified
for A with respect to O; we have that

J=l

=Y k(Y;|Pary,) (A.37)
J=1

Since {Y1,..., Y.} ={Y,,... ) Y;} U{Z,..., Z,.}, and both orderings are based

on the same underlying graph, we can re-write Eq. A.37 as

k(YIA...AYY)

Jj=s Jj=m
k(YIA . AYY) =) w(Yj|Pary,) + Y k(Z;|Parz,) (A.38)
= =

which is equivalent to

J=s J=m
Yfmr}x/(n(yz A AY)) = Yfmr%/(j; #(Yj|Pary,)) + ; #(Z;|Parz;) (A.39)
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It follows from the ranking properties in Eqs. 4.1-4.2 that

min, (Y0 s(%;{Par(¥}))) = 0 (A.40)

since for any &(Y'|Pary) either k(y|Pary) = 0 or s(—y|Pary) = 0 or both. Also

Ymin («(YIAN...AYVY) = k(Zn Ao .ANZy) (A.41)
Thus,
j=m
K(Zm N ... NZy) = k(Z;|Parg,) (A.42)
j=1
O

Theorem 5.6 Let A be a network, and let {p,,...,ps} be a set of literals cor-
responding to the parent set {x,,..., x5} of x; (each p;, r <1 < s, is either z;
or ;). Let ey, denote a literal built on xy, and let Y = {y1,...,ym} be a sel
of atomic propositions such that no y; € Y is a descendant of x¢ in I'\x ay. Let
oy be any wff built only with elements from Y such that ¢y Ap, A ... A p, is
satisfiable. If p. A ... A ps | €z, then ¢y Ap, Ao Aps i ex,-

Proof: If {p,,...,ps} is the parent set of z;, and no y; € Y is a descendant of
x¢, then we can select an ordering O such that all the variables in ) occur before

z¢. By Eq. 5.2

By Theorem 5.2, Eq. A.43 must be true in every stratified ranking. Thus, if
k(eg|ps A ... Ap) > 0 then sleglps Ao Ap, AYiu AL AY]) > 0 for any
instantiation of the variables Y; 1 < ¢ < m, and the theorem follows. O
Theorem 5.7 Let X' C & and A’ C A such that all rules in A" are built with
atomic propsitions tn X', and if 2’ € X' then all the rules in A with either z’
or =z’ as their consequent are also in A'. Lel ¢ and 1 be two wffs built with
elements from X'. If o |rv,9 then @ lix 2.

Proof: Note that any stratified ranking for A must also be a stratified ranking
for A’. Therefore if £(—p|1) > 0 in every stratified ranking for A’} £(=p|) > 0
in every stratified ranking for A. the theorem follows. O

Theorem 5.14 Let ¢ be a wff representing a set of beliefs. Let k be a ranking
such that w € Mods(v) iff k(w) = 0. Let ¢ represent a conjunction of literals,
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and let kqo(4) be the ranking that results from updating k by ¢ as shown in Eq. 5.36
such that w* € Mods(1p © ¢) iff Kgo(ey(w*) = 0. Then

Mods(p o ¢) = | ) min(Mods(¢),<.). (A.44)
weMods{y)

Proof: Let us first assume that the wif ¢ is equal to the single proposition a.
The generalization to the case of a conjunction is straightforward, and follows
the lines of Eq. 5.37. Let {z1,...,qa,...,2,} be the set of atomic propositions in
the language and let O be an ordering of these propositions consistent with the
underlying graph I'(x a) for A. Pred, and Succ, will denote the set of atomic
propositions that precede and succeed a in O (respectively). Let « denote the
ranking responsible for ¢, and g.(,) represent the ranking after « is updated
by a according to Eq. 5.36. In other words, w € Mods(y) iff kK(w) = 0 and
W' € Mods(1p o a) Hf Kgo(a)(w') = 0. We first show that

) min(Mods(a), <,) C Mods(y o a) (A.45)
weMods(y)

Since w € Mods(v), by stratification

k(w) = k(zi|Parx,(w)) =0 (A.46)
i=1

If w = a then we are done: First, w is a model for ¢; second, w is trivially minimal
(or nearest to itself) in <., and third, since by Eq. A.46 (w) = &(a|Para(w)) =
0, it follows from Eq. 5.36 that x4.)(w) = 0, and therefore w € Mods(y ¢ a).
Assume that w = —a. We construct a w* = a such that w* is minimal in
<. (following Def. 5.13) and show that kg4 (w*) = 0. The first condition in
Definition 5.13 states that w; <, wq iff

1. w disagrees with w; on a literal that is earlier (in O) than any literal on
which w disagrees with wy.

Since any world in Mods(t) ¢ a) must disagree with w on a (recall that w = —a),
in order to make w* minimal with respect to <, we force w* to coincide with w
in all propositions in Pred,. From the properties of ranking functions (Eqgs. 4.1~
4.3), either x(z|Parx) = 0 or &(—z|Parx) = 0 (or both). Thus, we can always
complete the truth assignment for w* in such a way that for every z; € Suce,,
#(X;|Pary,(w*)) = 0. 1t follows then, that

k(w*) = k(a|Para(w™)), (A.4T)
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which is the minimal s-value that a model for a can have given the additional
constraint that propositions in Pred, coincide with w. It follows that w* is
minimal in <, (see Condition 2 in Def. 5.13). Moreover, from Eq. 5.36 and
Eq. A.47, it follows that k.(.)(w*) = 0, and therfore w* € Mods(z) © a).

We now show that

Mods(p oa)C | J min(Mods(a),<,) (A.48)
weMods(+)

Consider an arbitrary w* € Mods(i ¢ a). By Eq. 5.36, we know that x(w*) =
t(a|Para(w*)). If k(a|Pars(w*)) = 0, then we are done; x(w*) = 0 and therefore
w* € Mods(¢) (w* = ¢). Moreover, w* is trivially minimal with respect to <,».
If, on the other hand, &(a|Par4(w*)) > 0, then

k(—a|Pars(w™)) = 0. (A.49)

We build a world w such that w* is minimal in <. This construction proceeds in
a similar way as above. First, all propositions in Pred, must coincide between w
and w*. Second, we complete the world w by making sure that for all z; € Sucec,,
#(X;|Par(X;)(w)) = 0. Thus, w* is minimal in <,, and from A.49, k(w) = 0
which implies that w € Mods(3)).

For the generalization to the case of ¢ being a conjunction of literals ¢ =
ai A —ay. .., we simply use Eq. 5.37 instead of Eq. 5.36. O
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APPENDIX B

The Lagrange Multipliers Technique.

We present a step by step application of the Lagrange multipliers technique on a

set of n active constraints (rules):

L.

2.

3.

Multiply each of the constraint equations by a lagrange multiplier A. Thus

o x D_Pw)y—1]=0 (B.1)

/\,‘ X [P(l/)z A L,Di) - Cz‘é‘ X P("@bl AN sz)] = (0 wherel S ) S i (BQ)

Add the left-hand side of each equation to the objective function and obtain

H[P] = —%:P(w)log Plw) + Ao % [Xﬂ: P(w) —1]

+A1 X [P(h1 A1) — Cre x P(=tby A y)]
+o A X [P($n A @n) = Cue X P(=9hn A )] (B.3)

Differentiate this equation with respect to each term P(w) of the distribu-
tion, equate it to zero and (after some algebraic manipulations) get:

P(w) = P01 1I eM x I e MiCie (B.4)

ri€Dg r;€DF

where D7 denotes the set of rules falsified in w and D denotes the set of
rules verified in w.

. Performing the variable substitutions

&y = 6(/\0_1)

o, = e

in equation (B.4), will yield equation (3.14).
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