
TECHNICAL REPORT
R-185
October 1992

A simple algorithm to construct a consistent
extension of a partially oriented graph

Dorit Dor
Computer Science Department

School of Mathematical Sciences
Tel-Aviv University

69978
Israel

Michael Tarsi *
Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024

October 23, 1992

Abstract

A Partially directed acyclic graph, (pdag), is a graph which contains both directed
and undirected edges, with no directed cycle in its directed subgraph. An oriented
extension of a pdag G is a fully directed acyclic graph (dag) on the same underlying
set of edges, with the same orientation on the directed subgraph ofG and the same set of
vee-structures. A vee-structure is formed by two edges, directed toward a common head,
while their tails are nonadjacent. A simple polynomial-time algorithm is presented,
to solve the following problem: Given a pdag, does it admit an oriented extension?
The problem was stated by Verma and Pearl, while studying the existence of causal
explanation to a given set of observed independencies.

'Visiting professor. Permanent address: Computer Science Department, School of Mathematical Sciences,
Tel-Aviv University, 69978, Israel. Supported in part by the Air Force Office, AFOSR 90 0136 and by
Northrop MICRO, PO 11510.

1 Introduction
A Partially directed acyclic graph, (pdag), is a graph which contains both directed and
undirected edges, with no directed cycle in its directed subgraph. An oriented extension
of a pdag G is a fully directed acyclic graph (dag) on the same underlying set of edges,
with the same orientation on the directed subgraph of G and the same set of vee-structures.
A vee-structure is formed by two edges, directed toward a common head, while their tails
are nonadjacent. These definitions as well as some background and motivation are stated
and explained in [1]. While studying the existence of causal explanation to a given set
of observed independencies, Verma and Pearl [1] have faced the following combinatorial
problem, to which we refer here as " PZW (PDag extensibility): Given a pdag, does it
admit an oriented extension?

In Section 2 of [1] the authors present an algorithm for PDX, which is conjectured,
however not proven, to be polynomial. Another algorithm, given by Verma in [3], although
it runs in linear time, is rather complicated and less intuitive. We present here a simple
polynomial-time algorithm to solve the above problem.

2 The algorithm
Our algorithm selects first a vertex x to be the sink of the extension and recursively proceed
to the subgraph obtained by the removal of the sink and all edges incident to it:
Algorithm extend(G': pdag);

begin (extend)
G' := G; A := G;

while A is not empty do
begin (iteration)

Select a vertex x which satisfies the following properties
in the subgraph A:
a. a; is a sink (no edge (x , y) in A is directed outward from a")
b. For every vertex y , adjacent to x, with (x ^ y) undirected, y is
adjacent to all the other vertices which are adjacent to x;

If such x is not found, then the algorithm stops and returns
a negative answer (G does not admit any extension);
If x is found, let all the edges which are incident to a; in A
be directed toward x in G' (G' is meant ^ form the output);
A := A — x (remove x and all the edges incident to x)

end (iteration);
return G' (an extension of the input pdag G)

end (extend).

3 Validity and complexity
An extension of G, if it exists, is a dag and as such it contains a sink. To become a sink
of the extension G' a vertex x must satisfy property a. (of the iteration phase above) in G.
To avoid the creation of new vee-structures, while directing all edges toward x, it should
also satisfy property b.. Hence a vertex which satisfies both properties a. and b. is indeed
necessary for the existence of an extension. To justify our recursive method we should show
first that the removal of a sink x from the extension G' provides an extension G' — x of the
pdag G — x, obtained when the same vertex is removed from the input pdag G: No directed
cycle can be formed by the removal of x and hence G' — x is still a dag. In the general case a
new v-structure might be generated by the removal of edges if a single edge is deleted from
a triangle, whose other two edges now form a v-structure. In the case on hand, however, all
the edges incident to x are deleted, thus, the number of edges removed from any triangle is
either 0 or 2. G' — x is hence indeed an extension of G — x. To complete the proof we should
notice that no existing extension is missed by selecting the specific vertex a: to be a sink. If
there exists an extension where x is not a sink then it will still remain an extension if the
edges going out of x are reoriented toward x. All redirected edges are incident to x and since
x is now a sink no directed cycle was formed. Also no new v-structures are created due to
property b. of the selected vertex x.

For the complexity analysis note that there are \V\ iterations where every edge is searched
at most twice (once for each endvertex). The time complexity is thus OdI/HE'j).

4 Some concluding remarks
A dag with no vee-structure is chordal (any orientation of a chordless cycle contains a vee-
structure). Consequently, if G contains no vee-structure then its underlying graph should
be chordal. A known characterization of chordal graphs states that all such graphs can be
constructed, starting with an isolated vertex, by successive insertion of new vertices, each
adjacent to a clique in the existing graph. When our algorithm is applied to a graph G with
no oriented edges then property b. states that the neighbors of x form a clique. In this case G
admits an extension if and only if it is chordal. Our algorithm is a natural generalization of
a naive chordality test, based on the above characterization, to the case where v-structures
are allowed, but no new ones should be formed. Chordality can be tested in linear time [2]
and hence it takes linear time to test the existence of an extension where the input has no
vee-structures. We believe that linear-time chordality algorithm can be modified to a general
linear-time algorithm for PDX.

References
[1] J. Pearl & T. Verma, "An Algorithm for Deciding if a set of Observed Independencies

a Causal Explanation," Proceedings of the 8th Conference on Uncertainty in Artificial
Intelligence^ Stanford (1992, to appear).

[2] R.E. Tarjan & N. Yannakakis, "Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs ,"
Siam J . Corn-put., 13 (1984), 566-579.

[3] T. Verma, "A linear-time algorithm for finding a consistent expansion of a partially
oriented graph," Technical Report R-180, UCLA Cognitive Systems Laboratory, 1992.

