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This paper presents several investigations into the prospects for identifying meaningful 
structures in empirical data, namely, structures permitting effective organization of the 
data to meet requirements of future queries. We propose a general framework whereby 
the notion of identifiability is given a precise formal definition similar to that of 
learnability. Using this framework, we then explore if a tractable procedure exists for 
deciding whether a given relation is decomposable into a constraint network or a CNF 
theory with desirable topology and, if the answer is positive, identifying the desired 
decomposition. Finally, we address the problem of expressing a given relation as a Horn 
theory and, if this is impossible, finding the best k-Horn approximation to the given 
relation. We show that both problems can be solved in time polynomial in the length of 
the data. 

1. Introduction 

Discovering meaningful structures in empirical data has long been re- 
garded as the hallmark of scientific activity. Yet, despite the mystical aura 
surrounding such discoveries, we often find that computational consider- 
ations of efficiency and economy play a major role in determining what 
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structures are considered meaningful by scientists. In this paper we address 
the task of finding a computationally attractive description of the data, a 
description that both is economical in storage and permits future queries to 
be answered in a tractable way. 

Invariably, the existence of such a desirable description rests on whether 
the dependencies among the data items are decomposable into local, more 
basic dependencies, possessing some desirable features. A classic example 
would be finding a finite state machine (with the least number of states) 
that accounts for observed dependencies among successive symbols in a 
very long string. In more elaborate settings, the dependencies can form a 
graph (as in the analysis of Markov fields [24]) or a hypergraph (as in 
relational databases [19]), and the task is to find the topology of these 
structures. Structure identification includes tasks such as finding effective 
representations for probability distributions [ 7,16,30 ], devising economical 
decompositions of database schemas, synthesizing simple Boolean expres- 
sions for truth tables [6], and casting logical theories that render subsequent 
processing tractable. 

Despite the generality of the task, very few formal results have been estab- 
lished, and those that exist were confined primarily to probabilistic analysis 
of  statistical data [7,18,24,25]. In this paper we focus on relational (non- 
statistical) data and deterministic descriptions of the data. Given a relation 
p in the form of an explicit listing of the tuples of p, we ask whether we 
can find a more desirable description of p, say a constraint network pos- 
sessing desirable topological features or a logical theory possessing desirable 
syntactic features (e.g., Horn theories). In both cases the desirable features 
would be those that facilitate efficient query processing routines. 

We view this task as an exercise in automatic identification, because 
our main concerns are to recognize cases for which desirable descriptions 
exist and to identify the parameters of at least one such description. Thus, 
we explore the existence of a tractable identification procedure that takes 
data as input, returns a structure, and works in time polynomial in the 
size of the input and output. Given that the data were generated from a 
model that has a desirable structure, our procedure should identify either 
the underlying structure when it is unique, or an equivalent structure when 
it is not unique. Conversely, if the data does not lend itself to effective 
organization, we wish our procedure to acknowledge this fact, so as to 
save further exploration. Sometimes an additional requirement is imposed 
on the procedure, namely, to identify a "best" approximated theory, when 
an exact desirable theory does not exist. We call this latter requirement 
"strong identifiability". 

Our analysis bears a close relation to that of  Selman and Kautz [27], 
where theory formation is treated as a task of "knowledge compilation". 
The main difference between the two approaches is that Selman and Kautz 
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begin with a preformed theory in the form of a (reasonably sized) set of  
clauses, while we start with the bare observations, namely, a (reasonably 
sized) set of  tuples that represent the models of the desired theory. This 
enables us to easily project the tuples onto subsets of variables and to solve 
subtasks that would be intractable had we started with a causal theory. 
Another difference is that we require definite determination of whether the 
theory approximates or describes the data. 

This paper is organized as follows: Section 2 introduces a general frame- 
work of  the identification task. We define weak and strong notions of  
identifiability and, using familiar examples, compare them to Valiant's [30] 
notion of learnability. Section 3 investigates the identifiability of structure- 
based tractable classes of constraint networks and propositional theories. 
We show that stars and trees are identifiable, while chains and k-trees are 
not. Section 4 focuses on identifying theories whose tractability stems from 
syntactic rather than structural features. In particular, we show that rela- 
tions describable by Horn theories can readily be recognized (Theorem 4.9), 
and that corresponding Horn theories can be found in time polynomial in 
the length of the data (Theorem 4.10). Additionally, we show that a best 
approximation in k-Horn theory (in which every clause contains at most 
k literals) can be identified in O(Ipln k+l ) time, where n is the number of 
variables (Corollary 4.11 ). 

2. Preliminaries and basic definitions 

2.1. Theories: networks and formulas 

We denote propositional symbols, also called variables, by uppercase letters 
P, Q, R, X, Y, Z ..... propositional literals (i.e., P, -~P) by lowercase letters 
p, q, r , x ,y ,  z ..... and disjunctions of literals, or clauses, by a, fl . . . . .  The 
complement operator ,,~ over literals is defined as usual: If p = -~Q, then 
~p = Q; if p = Q then ~p = -~Q. A formula in conjunctive normal form 
(CNF) is a set of  clauses ~0 = {al ..... at}, implying their conjunction. The 
models  of a formula ~0, M(~o), is the set of  all satisfying truth assignments 
to all of  the formula's symbols. A clause a is entailed by ~o, written ~o [= a, 
iff a is true in all models of  ~o. A clause a is a prime implicate of ~0 iff 
~0 l= a and ,~fl c_ a such that ~0 [= ft. A Horn formula is a CNF formula 
whose clauses all have at most one positive literal. A k-CNF formula is one 
in which clauses are all of  length k or less, and a k-Horn formula is defined 
accordingly. 

To characterize the structure of a formula q~ we define its scheme as the 
set of  variable sets on which clauses are defined. Formally: 
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Definition 2.1 (Scheme). Let ~ = {o~ 1 . . . . .  O~r} , and let base(a) be the set 
of  all propositional symbols on which clause a is defined, then 

scheme(q~) = {base(aj) l 1 <<, j <~ r}. (I) 

Example 2.2. Consider the formula 

{o = { ( - ~ P V Q V R ) , ( P V S ) , ( - , P V - ~ S ) , ( - ~ P V R ) } .  (2) 

In this case, 

scheme(~o) = {{P, Q,R},  {P,S},  {P,R}}. (3) 

We next define the notions of constraint networks and relations, which 
parallel the notions of  formulas and their satisfying models, for multivalued 
variables. A relation associates a set of multivalued variables with a set of 
tuples specifying their allowed combinations of values. A constraint network 
is a set of such relations, each defined on a subset of the variables. Taken 
together, this set represents conjunction of constraints, namely, it restricts 
value assignments to comply with each and every constituent relation. The 
theory of relations has been studied extensively in the database literature 
[19]. 

Definition 2.3 (Relation and network). Given a set of  multivalued variables 
X = (Xt . . . . .  Xn}, each associated with a domain of discrete values 
D1 . . . . .  Dn, respectively, a relation (or, alternatively, a constraint) p = 
p (Xl . . . . .  Xn ) is any subset 

p C / )  1 x D 2 x " ' x D n .  (4) 

A constraint network N over X is a set /91,..., Pt of such relations. Each 
relation Pi is defined on a subset of variables Si c_ X.  The set of  subsets 
S = {S1,..,St} is called the scheme of N (also denoted scheme(N)) .  The 
dimension of scheme S, denoted dim(S) ,  is defined as the cardinality of 
the largest component in S. The network N represents a unique relation 
rel(N) defined over X, which stands for all consistent assignments (or all 
solutions), namely, 

rel(N) = {x = (xl , . . . ,Xn)l  VSi E S, I-1s,(X) E Pi}, (5) 

where/-/s, (x) is the projection of x onto Si. The projection of a relation p 
onto a subset of  variables R, denoted 17R (p), is the set of tuples defined on 
the variables in R that can be extended to a tuple in p. If rel(N) = p we 
say that N describes or represents p. 
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Clearly, any CNF formula can be viewed as a special kind of constraint 
network, where the domains are bivalued and where each clause specifies a 
constraint on its propositional symbols. We say that a bivalued relation p = 
p ( x l , . . . , x , )  is described (or represented) by a formula q~ = ¢(xl  . . . .  ,xn) 
iff M(q~) = p. We will use the term theory to denote either a network or a 
formula and, correspondingly, will use M (T)  and rel(T) interchangeably. 

Example 2.4. The relation 

p(P ,Q,R ,S )  = {(1010), 

(1110), 

(0101), 

(0011), 

(0111), 

(0001)} 

can be described by the network 

N = {(p(P,Q,R)  = {(101), (111), (010), (001), (011), (000)}), 

(p(P,S) = {(01), (10)}), 

(p(P,R) = {(00), (01), (11)})}, 

since the consistent assignments of  N coincide with p. Being bivalued, p 
can also be described by the formula 

= {(-~P V Q v R),  (P v S),  (-~e v -~S), (-~e v R)}, (6) 

since M (~) = p. 

When considering ways of  approximating a relation p by a theory T, we 
will examine primarily upper bound approximations, namely, theories T 
such that p c_ M (T).  

Definition 2.5 (Tightest approximation). A theory T E C is said to be a 
tightest approximation of p relative to a class C of  theories if p c_ M ( T )  
and there is no T' E C such that p c_ M ( T ' )  c M ( T ) .  

2.2. Identifiability 

We are now ready to give a formal definition of  identifiability: A property 
that is intrinsic to any class of  theories and that governs our ability to 
decide whether a given relation p has a description within the class. As the 
preliminary example, we will use the class of  k-CNF formulas. We will show 
that, while this class is identifiable for k = 2, it may not be identifiable for 
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any k > 2. In other words, there may not be any tractable way of deciding 
whether an arbitrary relation p has a description as a k-CNF formula for 
k > 2. The class of 2-CNF theories will turn out to be strongly identifiable, 
namely, not only can we decide the existence of a 2-CNF description, and 
produce such a description if it exists, but we can also produce a tightest 
2-CNF formula (as well as a k-CNF, k > 2) if a precise description does 
not exist (hence the term "strong"). 

Not surprisingly, the decisions above would depend on our prior knowl- 
edge about the observed relation p. For example, if we were given assurance 
that p has a description in k-CNF, it would be easy to produce such a de- 
scription. Thus, it is necessary to define the notion of identifiability relative 
to a background class C' of theories from which p is chosen. We will adopt 
the convention that, unless stated otherwise, C' is presumed to be the class 
of all theories, namely, p is an arbitrary relation. We will denote by I pl the 
number of tuples in p. 

Definition 2.6 (Identifiability). A class of theories C is said to be identifiable 
relative to a background class C' if there is an algorithm A, polynomial in 
the size of its input and output, such that: 

(1) Recognition: For every relation p that is describable by some theory 
T in C', A determines whether p has a description in C. 

(2) Description: If the answer to (1) is positive, algorithm A finds one 
theory T E C that describes p (i.e., p = M(T) ) .  

(3) Tightness: C is said to be strongly identifiable if, in addition to (1) 
and (2) above, A always finds a theory To in C that is a tightest 
approximation of p. 

By convention, a class in which the problems associated with the recog- 
nition or description tasks are NP-hard will be defined as nonidentifiable. 
Note that in conditions (2) and (3) the complexity of A is measured relative 
to the size of p as well as to the size of the theories that describe p. In the 
analysis of structure-based constraint networks and CNFs (Section 3), the 
description length will usually be insignificant, so ]p] will be the dominant 
factor in the complexity of A. In Section 4, however, where we analyze Horn 
approximations, the two factors will play equal roles. Practically speaking, 
taking the size of p as the basis for measuring complexity amounts to fo- 
cusing the identification task on highly constrained data, where the number 
of distinct observations grows polynomially with the number of variables. 

Coming back to our k-CNF example, we consider again the question 
of whether the class Ck of all relations expressible by k-CNF theories is 
identifiable relative to C' = Cn, the class of all CNFs. As we will show 
in Section 3, although algorithms for condition (3) (and hence condition 
(2)), namely, of  constructing a tightest k-CNF approximation, do exist for 
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any p, we do not have an effective way of fulfilling condition (1), namely, 
of testing whether this approximation represents the relation p exactly or 
a superset thereof. (Even generating a single model of  a tightest k-CNF 
theory may be NP-hard for k > 2.) We will thus conclude that Ck is not 
identifiable. ~ On the other hand, Ck is strongly identifiable relative to itself, 
since recognition is trivially satisfied and any tightest approximation must 
be exact. 

2.3. Identifiability versus learnability 

There is a strong resemblance between the notion of identifiability and of 
learnability [30]. If we associate theories with concepts (or functions) and 
the models of a theory with the learning examples, we see that in both cases 
we are seeking a polynomial algorithm that will take in a polynomial number 
of examples and will produce a concept (or a function) which is consistent 
with those examples, from some family of concepts C. Moreover, for a 
family C to be learnable from positive examples (with one-sided errors), we 
know that it must be closed under intersection and that the algorithm must 
produce the tightest concept in C consistent with the observations [23]. 
This is identical to condition (3) (strong identifiability). 

The main difference between the problems described in this paper and 
those addressed by learning models is that in learnability we are given the 
concept class C and our task is to identify an individual member of C that 
is (either surely or probably) responsible for the observed instances. By 
contrast, in structure identification we are not given the concept class C. 
Rather, one of our primary objectives is to decide whether a fully observed 
concept p, taken from some broad class C' (e.g., all relations), is also a 
member of a narrower class C of concepts, one that possesses desirable 
syntactical features (e.g., a 2-CNF, a constraint tree, or a Horn theory). 
Thus, the task is not to infer the extension of a concept from a subset of  its 
examples (the entire extension is assumed to be directly observed), but to 
decide whether the concept admits a given syntactical description. 

It turns out that deciding whether the tightest approximation exactly 
describes a given concept, even when the concept is of  small size, might 
be computationally expensive--a problem not normally addressed in the 
learning literature. 

The differences between learnability and identifiability can be well demon- 
strated using our previous example of the class Ck of k-CNF theories. We 
have argued earlier that while Ck may not be identifiable relative to the 
class C' of all relations, it is nevertheless strongly identifiable relative to 

1The nonexistence of a tractable procedure for testing exact match with p is subject to 
Conjecture 3.10 (see Section 3.1 ). 
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C' = Ck. By comparison the class Ck is known to be polynomially learnable 
[30] since, given a collection of instances I of  M(q~), one can find in 
polynomial time the tightest k-CNF expression that contains I (see Section 
3). The fact that Ck is not identifiable is not too disturbing in learning 
tasks, because there we assume that the examples must be drawn from some 
k-CNF theory ~0, so in the long run the tightest k-CNF approximation to 
the data will coincide with ~0. However, nonidentifiability can be very dis- 
turbing if the examples are taken from a theory outside Ck. In this case, the 
tightest k-CNF theory consistent with the examples might lead to substantial 
(one-sided) errors. 

In general, if we set C' = C, then, if C is learnable from positive and 
negative examples, it must also be identifiable, because identification is an 
easier task under this condition. Assuming that p contains all instances of 
a concept amounts to observing both positive and negative examples and, 
compared to PAC-learning, we are effectively provided with an answer to 
every membership query without having to wait for examples to be generated 
by a random process. Likewise, if C is one-sided learnable, it must be 
strongly identifiable, because condition (1) is satisfied automatically, and 
the one-sided learnability requirement of zero error on negative examples 
is equivalent to condition (3). There are, of course, concept classes that 
are identifiable but not one-sided learnable under the condition C' = C (a 
trivial example of which is the class of relations p having size I Pl = k), 
again because, in identification, negative examples are implicit through their 
absence from the data. 

3. Topology-based identification 

A given relation p can be represented by many networks or formulas (if p 
is bivalued), each having a different scheme. All such representations will be 
called equivalent (denoted by ~) .  In this section we will focus on networks 
and CNF formulas parameterized by their corresponding schemes. We will 
first analyze the identifiability of several classes of constraint networks and 
then show, using a simple translation, that most results are extensible to the 
scheme-based identifiability of CNF formulas. 

3.1. Identifying constraint networks 

We will first make some observations that generalize Montanari's [21] 
notion of minimal networks (originally defined on binary networks) to 
constraint networks having arbitrary schemes. Some of these observations 
were also made in [22], albeit under a different notation. 
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We denote by Ns the class of all constraint networks having a common 
scheme S, assuming all networks are defined on n variables with the same 
set of domain values. 

Definition 3.1 (Projection network). Given a relation p and a scheme S = 
{S1 . . . . .  Sr}, the projection of p on S, Hs(p),  is defined as the network 
obtained by projecting p onto each component of S: 

I-Is(p) = {17s,(p)l vSi ~ S}. (7) 

Clearly, generating Hs (p) from p is polynomial: 

Lemma 3.2. The network Hs(p)  can be constructed in O(IPllSI) steps. 

Theorem 3.3 (Montanari and Rossi [22] ). The network Hs(p)  is a tightest 
approximation of p relative to the class Ns. 

As in [21,22], we next observe that among all networks R e Ns that 
are equivalent to Hs(p),  Hs(p)  has a unique syntactic property called 
minimality with respect to the partial order c__ defined as follows: 

Definition 3.4 (Network ordering). 

R c _ Q  iff VS ieS ,  Rs, CQsi, 

where Rs, is the relation associated with Si in network R. 

(8) 

Similarly, we define the intersection of networks R and Q in Ns as the 
network created by the intersection of the corresponding constraints. 

Definition 3.5 (Network intersection). Let R, Q E Ns. The intersection N of 
R and Q is given by: 

R N Q = {Rs, N Qs, I vSi e S}. (9) 

Note that R E Ns and Q E Ns implies that R N Q E Ns. 

The next theorem states the existence of a unique (with respect to c_) 
minimal network Ms of p having scheme S. 

Theorem 3.6 (Montanari and Rossi [ 22 ] ) . .  Let R ,Q E Ns and let p = 
rel(R), then 

(1) R ~ Q  ~ R N Q ~ R ,  
(2) there exists a unique minimal (with respect to c_) network Ms repre- 

senting p, and it is given by Ms = Hs(p).  
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Proof. The first part is clear and implies the existence of a unique minimal 
network Ms, which equals the intersection of all equivalent networks. We will 
show that Ms = Hs(p  ). Clearly, Ms ~ Hs(p  ). By definition, Ms c_ Hs(p  ). 
However, if we eliminate even a single tuple from any constraint in Hs (p), 
the resulting network will not allow a legal tuple of p, contradicting the fact 
that Ms describes p. Consequently, Ms = Hs(p) .  [] 

Corollary 3.7. Among all tightest approximations to p from Ns, 1-1s(p) is 
the minimal one. 

We are now ready to discuss identifiability relative to specific schemes. 
The negative result that follows hinges on Conjecture 3.10 and Lemma 3.8. 

Lemma 3.8 (Ullman[29]) .  Given a relation p and an arbitrary scheme S, 
deciding whether rel(1-1s(p) ) = p is NP-hard. 

Theorem 3.9. Given an arbitrary scheme S, the class Ns is not identifiable 
relative to all networks N, but is strongly identifiable relative to Ns. 

Proof. We will show a polynomial reduction from the decision problem 
of whether rel(Hs(p))  = p) (which is NP-complete) to the problem of 
deciding the identifiability of Ns (for any S). Given a relation p and a 
scheme S, if we can identify in polynomial time whether p is representable 
by scheme S, then, due to condition (1), we can also determine whether 
rel ([Is (p) ) = p ): If p is identifiable, rel (Hs (p) ) = p; if not, rel (Hs (p) ) 
p. Since the projection formula can be computed in time proportional to 
IPlISI, the reduction is polynomial. Consequently, based on Lemma 3.8, 
unless P = NP, the identifiability of Ns relative to all networks is NP-hard. 
When the background is Ns, the exactness decision is trivially satisfied 
(the projection Hs(p)  is guaranteed then to represent p) and hence Ns is 
strongly identifiable. D 

Let Sk be the set of all subsets of  size k or less of X = {X1 . . . . .  Xn}. 
Although we believe that the NP-completeness result of Lemma 3.8 extends 
to these special schemes, we are unable to prove it as yet. For convenience 
we will use the shorthand Ark = Ns~. 

Conjecture 3.10. Given a relation p and an integer k, deciding whether 
rel(17s~ (p) ) = p is NP-hard. 

Corollary 3.11. The class Nk is not identifiable relative to N. 
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Example 3.12. The class N2 of all binary multivalued constraint networks 
is not identifiable (unless the number of values is 2). This class is char- 
acterized by a scheme consisting of all variable pairs (i.e., the complete 
graph) for which, subject to Conjecture 3.10, we cannot establish whether 
rel(Hs2 (p ) ) = p in polynomial time. 

When the scheme S has topological properties that permit solution in 
polynomial time, Ns is identifiable. We say that a scheme S is tractable 
when there exists a polynomial algorithm for deciding the consistency of 
every constraint network in the class Ns. For instance, any tree or acyclic 
hypergraph [10] is a tractable scheme. 

Theorem 3.13. Let S be a tractable scheme. Then the class of networks Ns 
is strongly identifiable. 

Proof. The projection l l s (p)  provides a tightest Ns approximation to p 
and can be computed in polynomial time. The tractability of S assures 
that the equality [rel(Hs(p))[ = IPl can also be tested in polynomial time. 
It was recently shown [11] that for every theory T satisfiable in time t, 
deciding whether IM(T)I > c takes time O(ct). Now, since S is tractable, 
it is satisfiable in polynomial time; therefore, deciding rel(Hs(p)) ~ p can 
be accomplished in polynomial time. [] 

3.2. Identifying CNF formulas 

In this section we shift our attention to bivalued relations and to the task 
of identifying tractable classes of CNF formulas. We will show that there 
is great similarity between the identifiability of scheme-based constraint 
networks and that of scheme-based CNF having the same scheme. This 
will become clear through a simple translation from bivalued relations into 
CNFs. As in the multivalued case, we will first extend the auxiliary notions of 
projection network and minimal network to projection formula and maximal 
formula. 

Definition 3.14 (Canonical representation). 
(1) Let p be a bivalued relation over X = Xl . . . . .  Xn. We define 

canonical(p ) 

{ ('X'Xl ~/ "~'X2 V ' ' "  ~ / ~ x , ) l ( x l , x 2  . . . . .  x , )  f[ p}. 
(lO) 

(2) Given a constraint network N = {Pl . . . . .  Pt}, we define canonical(N) 
as the formula generated by collecting the canonical formulas of every 
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constituent relation in N. Namely, 

canonical(N) = U{canonical(pi)]Pi E N}. (11) 

The equivalence of the relational and propositional representations of this 
translation, as stated in the following lemma, is quite immediate: 

Lemma 3.15. The models of the canonical formula of network N coincide 
with the solutions of N. Namely, M(canonical(N) ) = rel(N). 

We now extend the notion of projection network to projection formula. 

Definition 3.16 (Projection formula). Given a relation p and a scheme S, 
the projection formula of p with respect to S, denoted Fs(p), is given by 

Fs(p ) = canonical(Hs(p ) ). (12) 

Example 3.17. Let 

p(P,Q,R)  = {(100), (010), (001)} 

and 

Then, 

and 

S = {{P,Q}{P,R}{Q,R}}. 

Hs(p) = {(p(P,Q) = {(10), (01), (00)}), 

(p(P,R) = {(10), (01), (00)}), 

(p(Q,R) = {(10), (01), (00)})}, 

Fs(p) = {(-~P v-~Q), (-,P v- ,R) ,  (-,R v-,Q)}. 

Generating Fs(p) from Hs(p)  may be exponential in the size of the 
largest component in S, as it requires enumerating all tuples defined on 
each component. Consequently, for schemes of bounded dimension, this 
construction is polynomial. 

Lemma 3.18. Let dim(S) <~ k. The complexity of generating Fs(p) is 
O(IpLISI + ISI2k) 

Let Cs be the class of CNF formulas having scheme S. Parallel to Theorem 
3.3, we have: 
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Theorem 3.19. The formula Fs(p) is a tightest approximation of p relative 
to Cs. 

Proof. Follows immediately from the facts that 1"1s (p) is a tightest approx- 
imation to p and M(Fs(p))  = rel(1-1s(p)). [] 

Parallel to the notion of minimal networks in multivalued relations, we 
will now show that among all formulas ~0 in Cs that are equivalent to Fs (p), 
Fs (p) is maximal with respect to the partial order c_ defined by set inclusion 
(of clauses). Clearly the class Cs is closed under union. The next lemma 
(parallel to Theorem 3.6) proves that among all equivalent formulas in Cs, 
Fs (p) is the unique maximal formula. 

Lemma 3.20. Let ~,z E Cs and let p = M(~) .  Then 
(1) ~ z  ~ ¢Ur , .~¢ ,  
(2) there exists a unique maximal (with respect to c__) formula Its repre- 

senting p, and it is given by Its = 1-'s(p). 

Proof. The first part is immediate, since the union of formulas stands for 
their conjunction. The second part is similar to the proof of Theorem 
3.6. [] 

When the scheme S has components containing each other, the corre- 
sponding clauses may subsume each other and thus present redundancy. We 
clearly prefer to consider formulas in reduced form, without subsumption. 

Definition 3.21 (Reduced formula). A formula ~ is reduced if none of its 
clauses contain another clause. The formula obtained after eliminating clause 
subsumption from ~ is denoted reduced(~). 

Lemma 3.22. Reduced(Fs (p) ) contains all (but not only) the prime impli- 
cates of Fs(p) that are restricted to the subsets in S. 

Proof. Being maximal, Fs(p) must contain all prime implicates restricted 
to S. [] 

We now state a scheme-based correspondence between scheme-based iden- 
tification of constraint networks and CNFs. 

Theorem 3.23. I f  Ns is identifiable relative to all constraint networks and if 
scheme S has a bounded dimension, then the class Cs is also identifiable 
relative to all CNFs. 
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Proof. Given a bivalued relation p and a scheme S, since Ns is identi- 
fiable we can decide in polynomial time whether the projection network 
Hs(p)  represents p. moreover, since dim(S)  is bounded the translation 
from Hs(p)  to Fs (p) is polynomial. Hence, the conclusion follows because 
Hs(p)  describes p i f fFs (p )  describes p. [] 

The following theorem shows that the converse is not true. Although N2 
is not identifiable, C2 is, because the satisfiability of 2-CNF is tractable. 
Consequently, testing of whether [Fs2 (P)I > ]P[ can be done in polynomial 
time [ 11 ]. 

Theorem 3.24. The class of  2-CNFs is strongly identifiable relative to all 
CNFs. 

The negative results ahead are based on an extended version of Lemma 3.8 
and on the bivalued version of Conjecture 3.10. 

Lemma 3.25 (Parallel to Lemma 3.8). Given a bivalued relation p and an 
arbitrary scheme S, deciding whether M (Fs (p ) ) = p is NP-complete. 

Proof. The proof follows from a simple polynomial translation of any mul- 
tivalued relation to a bivalued relation and from Lemma 3.8. [] 

Theorem 3.26 (Parallel to Theorem 3.9). Given a parameterized scheme 
class SCn of  bounded dimension, the class Csc, is not identifiable relative to 
the class of all CNFs, but is strongly identifiable relative to itself 

Proof. The proof of the first part is identical to that of  Theorem 3.9. The 
reason that Csc n is identifiable relative to itself is that the translation from 
Hsc  n (p) to FSC ~ (p) is polynomial for bounded schemes. [] 

Conjecture 3.27 (Parallel to Conjecture 3.10). Given a bivalued relation p 
and an integer k, deciding whether M (Fsk (p ) ) = p is NP-hard. 

Consequently, 

Corollary 3.28. The class of  k-CNF is not identifiable relative to all CNFs. 
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3.3. Identifying constraint trees 

We saw in the previous section that the class N2 of binary constraint 
networks is not identifiable, while the class Cs of constraint networks with 
some specific scheme S is identifiable if S is tractable. We now study 
a unique class of  tractable schemes, those structured as constraint trees, 
which is identifiable not only when we present one specific scheme (i.e., 
a particular tree), but also when we have no knowledge of the underlying 
scheme except that it is a tree. 

Let NT be the class of  all constraint networks that have a tree-structured 
scheme. The following theorem [9] shows that NT is identifiable. 

Theorem 3.29. Given an arbitrary relation p, let n (xi) be the number o f  
n-tuples in p for which Xi = xi, and let n (xi, xj ) be the number o f  n-tuples 
in p for which Xi = xi and Xj = xj. Define the arc-weights m (Xi, Xj )  as 

1 
m(Xi ,  Xj)  - [p[ y ~  n(xi,xj)log n(xi)n(xj)'n(xi'xJ) (13) 

(Xi,Xj )e I'Ixix j (p ) 

I f  p has a constraint-tree representation, then any maximum-weight spanning 
tree (MWST) formed with the arc-weights defined above constitutes a scheme 
o f  such a representation. 

Example 3.30. Consider the relation p over the binary variables A, B, C, 
D and E given in Fig. 1. The first step in the algorithm computes the 
quantities n(Xi  = xi) and {n(Xi  = xi, Xj  = x j )}  for all variables and 
their values, obtaining 

n(A = 0 )  = 8, (B = 1) = 6, n(B  = 0 )  = 2 ,  

n (B  = 0, C = 1) = 2, n(B  = 1,C = 1) = 3, etc. 

Next, for each pair of  variables (Xi, Xj  ), we compute the weights m (Xi, Xj  ), 
according to equation (13). 

m ( A , B )  = m ( A , C )  = m ( A , D )  = m ( A , E )  = -16.63,  

m ( B , C )  = -13.97,  m ( B , D )  = -15.95,  m ( B , E )  = -16.55,  

m ( C , D )  = -16.55,  m ( C , E )  = -17.13,  m ( D , E )  = -15.50.  

Finally, using the MWST algorithm on these weighted arcs, the tree shown 
in Fig. 2 is produced. The relations associated with the arcs of  the tree are the 
projections of p on pairs of  connected variables. For instance, the relation 
associated with variables D and B is given in Fig. 2(a). The tree generated 
in this example, together with its associated database (see Fig. 2), represents 
the original relation, in the sense that it provides a lossless decomposition. 
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A B C D E  

0 0  1 1 1 

0 0  1 1 0 

0 1 1 1 1 

0 1 1 1 0 

0 1 1 0 1  

0 1 0 1 1 

0 1  011 0 

0 1 0 0 1 

Fig. 1. The input relation p for Example 3.30. 

D 

A C 

D B 

1 0 

1 1 

0 1 

D E 

1 1 

1 0 

0 1 

(a) (b) 

Fig. 2. The tree decomposition of p. 

A B 

0 0 

0 1 

B C 

0 1 

1 1 

I 0 

(c) (d) 

In other words, the set of all solutions to this network coincide with relation 
p and they can be recovered efficiently. 

Corollary 3.31. NT is identifiable in time O(([p[ + logn)n2). 

Proof. The MWST can be constructed in O(([p] + logn)n 2) steps. To 
verify that the generated tree t represents the input relation p, we project 
p onto the arcs of t, compute (in linear time) the number of n-tuples 
represented by the resulting constraint tree, and compare it to the size of 
p. If the two numbers are equal, the constraint tree represents p precisely. 
Otherwise, we know that no tree representation exists for p. [] 

An alternative method of identifying and constructing tree representations, 
avoiding the numerical precision required for computing equation (13), is 
described in [20]. We first project p onto all triplets of variables, then 
examine each triplet for possible redundancy, namely, whether the constraint 
on one of the pairs is implied by the other two. Next we assign integer 



Structure identification in relational data 253 

weights to the edges (Xi, Xj  ) in such a way that any redundant edge should 
always receive a lower weight than that of a nonredundant edge in the same 
triangle. Finally, we construct an MWST according to the integer weights 
thus assigned. It can be shown that the resulting tree has all the properties 
of the tree constructed by the weights of equation (13). 

Although the class of constraint trees is identifiable, it is still open to 
question whether this class is strongly identifiable; we were not able to prove 
(or disprove) that the MWST method returns a tightest tree containing p 
when the input relation p does not have a tree representation. In all examples 
examined so far, the returned tree was a tightest one. 

Note that although the class of constraint trees is identifiable, it is not 
learnable with one-sided error, because it is not closed under intersect ionn 
the intersection of two trees may form a graph with cycles. Hence, there is 
no unique tightest tree that contains every subset of positive examples, and 
this implies that Nr  is not learnable with one-sided error. 

3.4. Chains, stars, and k-trees 

The previous analysis might leave the impression that any class of networks 
is identifiable as long as the scheme of each network in the class is tractable. 
To see that this may not be so, consider the class Nc of constraint chains. 
Being a special kind of a tree, each individual member of Nc is clearly 
tractable. Yet deciding whether an arbitrary relation p can be described by 
some chain seems an insurmountable task. We do not know of any method 
of solving this decision problem, save for exhaustive enumeration of all n! 
chains or all spanning trees that tie for the minimal weight. The difficulty 
is that since chains are not matroids we do not have a greedy algorithm 
similar to the MWST for identifying the correct ordering of the variables. 

Another class of trees that are not matroids are stars, namely, trees 
in which one node is adjacent to all the others. This class is (strongly) 
identifiable, however, primarily due to its low cardinality; there are exactly 
n stars on n variables. To identify a star, we simply test whether any of the 
n possible stars represents the input relation p. This test, as usual, involves 
projecting p on the edges of the tested star, then counting (in linear time) 
the number of solutions of the resulting constraint network and testing 
whether it is equal to [p[. 

An important class of networks is k-trees (or chordal graphs), a powerful 
generalization of trees (where k = 1) investigated in [3,4], and, more 
recently, [ 13 ]. k-Trees can be viewed as trees of clusters, where each cluster 
consists of  a clique of variables with cardinality not exceeding k. Like 
trees, they are tractably satisfiable. However, not being matroids, k-trees 
are probably not identifiable. We know of no method (save for exhaustive 
enumeration) of testing whether an arbitrary relation is representable as a 
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k-tree for any k > 1. In [9] we provide a heuristic algorithm for identifying 
k-trees which is a generalization of the one for 2-trees. 

4. Identifying Horn theories 

In this section we shift our attention to bivalued relations and to the task 
of identifying tractable classes of  CNF formulas, such as Horn theories. 

In general, determining whether a given query formula follows from a 
given CNF formula is intractable [ 8 ]. However, when the latter contains only 
Horn clauses, the problem can be solved in linear time [ 14]. The tractability 
of Horn theories stems not from the topology of the interactions among their 
clauses, but rather from a syntactic restriction imposed on each individual 
clause. This restriction is, in general, less constraining than those imposed by 
topological considerations; experience with logic programming and databases 
suggests that humans find it natural to communicate knowledge in terms 
of Horn expressions. Additionally, the tractability of Horn theories covers 
a wide range of queries, including, for example, membership, equivalence, 
disjointness, and entailment. In contrast, the data compression techniques 
used in classification learning, such as decision trees [26], are effective only 
for certain membership queries. 2 Thus, it would be useful to determine 
whether a given set of observations (the data p)  can be described as a Horn 
theory. 

We shall show that Horn theories are polynomially identifiable; the recog- 
nition test of  whether p has a Horn description can be decided in time 
proportional to [pl 2 log IPl, while the time needed to find such a description 
is proportional to [plEn2. However, there are several impediments to using 
Horn theories as effective approximations to relational data. Selman and 
Kautz [27], have shown that finding a tightest Horn approximation to a 
given CNF formula is NP-hard and that any tightest approximation might 
sometimes require exponentially many clauses (in the size of the source the- 
ory). All indications are that similar problems would surface in using Horn 
expressions to approximate empirical data. First, we have no guarantee that 
the length of the best approximation would not be exponential in the input 
[p[ and, second, we still have no polynomial method of finding the best 
approximation, even if we take the length of the minimal output theory as 
the basis for analysis. 

In such cases it might be futile to use Horn approximations instead of  the 
observations themselves. A more practical question to ask, then, is whether 

2For example, decision trees are efficient for determining class membership from a set of 
properties hut do not permit us to effectively infer properties from class membership (and 
other properties) or to decide whether two decision trees are equivalent or disjoint. 
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a given relation can be approximated by a Horn theory of a reasonable 
size. To that end, we analyze the identifiability of k-Horn formulas, namely, 
Horn formulas in which every clause contains at most k literals. We show 
that this class of formulas is strongly identifiable. 

4. i. Preliminaries 

We will assume that all Horn clauses are represented as implications 
I) 1 A 1)2 A . . .  A V l ~ Z, where 1)1,v2 . . . . .  v I are positive literals and z may 
be either a positive literal or 0 (0 stands for "false" and 1 for "true"). 

Definition 4.1. Let x = (xl, x2 . . . . .  xn) be a tuple where xi E { 1,0}. Then 
t rue(x)  is the set of variables assigned 1 by x and fa l se (x )  is the set of 
variables assigned the value 0 by x. 

Definition 4.2 (Intersection and closure). Let x and y be two tuples. Then 
x Ny is defined to be the tuple z such that t rue(z)  = t r u e ( x ) N  true(y) .  A 
set of tuples X is said to be closed under intersection if x N y E X whenever 
x E X and y E X. A set X* is said to be the intersection closure of X if it 
is the smallest set containing X that is closed under intersection. 

We shall show that a relation p has a precise Horn representation iff it is 
closed under intersection, namely, p = p*. The proof is based on the notion 
of extreme tuples 3, and on Lemma 4.4 below. 

Definition 4.3 (Extreme tuples). Given a set X of tuples, x E X is said to 
be extreme (relative to X) if it is not in the intersection closure of { X - x } .  
A tuple that is not extreme is called interior, and the set of extreme tuples 
will be called the basis of X, denoted B ( X ) .  

Remarks. It is easy to show that every set X has a unique basis B ( X )  and, 
moreover, that B ( X )  is the minimal set having the same closure as X, 
namely, [B(X)]* = X*. B ( X )  is also the maximal subset of X that is the 
basis of itself, that is, B ( X )  is the maximal Y c_ X satisfying B ( Y )  = Y. 
Finally, the basis of any set X can be found in time quadratic in IXI; we 
simply check for every x E X whether it is extreme (relative to X) by 
intersecting all tuples y E X such that true(y)  ~ t rue(x)  and then testing 
whether the intersection differs from x. 

3This notion, and its connection to Horn approximation (Corollary 4) was brought to our 
attention by H. Kautz. Lemma 4.5 which makes this connection possible, appears to be a 
general folklore among many researchers, although we could not trace its precise origin. An 
explicit proof for the propositional case is presented below; alternative treatment is given in 
[28]. 
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Lemma 4.4. Given a set X o f  tuples and another tuple t such that t is not in 
the intersection closure o f  X, there exists a Horn theory H that contains X 
and excludes t. 

Proof. Construct H as follows: Start with the set of all Horn clauses and 
remove every clause that conflicts with any tuple x E X. We will show 
that among the remaining clauses, there must be at least one clause c' that 
excludes t. Consider the set of variables T( t )  such that: 

T ( t ) = ['~ true(x),  
x:true(x )3true(t) 

and assume T( t )  is nonempty. Since t is not in the intersection closure of 
X, true(t) is a proper subset of T (t), and we can choose an element z from 
{T(t)  - t rue ( t ) }  and form the clause c ' :  Ai 'Ui  ----+ Z where vi E true(t). This 
clause will not be removed during the construction of H, because it is not 
violated by any x E X. For c' to be violated by a tuple x, true(t) must be 
a subset of  true(x) and z must be in false(x),  but c' was chosen such that 
each set true(x) that contains true(t) also contains z. Thus, since t violates 
c' and H contains c', t will not be a model of H. The argument remains 
valid in case T(t)  is empty, because in that case we have z = 0, thus, c' 
will eliminate t but nothing else. [] 

Lemma 4.5. Let p be a set o f  tuples. Then p is the set o f  models o f  some 
Horn theory H i f  and only i f  it is closed under intersection. 

Proof. Let p be closed under intersection, and let H be the tightest Horn 
theory containing p. Suppose H has a model t that is not in p. Since p 
is closed under intersection, t cannot be in the intersection closure of  p 
and, according to Lemma 4.4, it is possible to form a Horn theory, Ha, 
that contains p and excludes t. The Horn theory H N H1 is clearly a tighter 
approximation of p, contrary to our assumption. This establishes the "if" 
part of the lemma. The "only it" part follows from showing that any clause 
that satisfies x and y also satisfies x Ny (see [31 ] and [2, Lemma 3] ). [] 

Corollary 4.6. 4 Let h (p) stands for any tightest Horn approximation o f  an 
arbitrary relation p, and let B (p )  stand for the basis o f  p. Then 

h[B(p ) ]  ~ h (p)  ~ h(p*).  

4Independently proved in [28]. 
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Proof. For any p, we have h(p) ,~ h(p*),  because Lemma 4.5 dictates 
M[h(p*)]  = p*, and so, if M[h(p)]  were a proper subset of M[h(p*)]  
= p*, it would constitute a set closed under intersection containing p 
that is properly contained in p*, thus violating the status of p* as the 
closure of p (see Definition 4.2). Therefore, substituting B(p)  for p, we 
also have h[B(p)]  ~ h[B(p)*]. Moreover, since [B(p)]* = p*, we get 
h[B(p)]  ~ h(p*) ,.~ h(p),  which proves the corollary. [] 

Corollary 4.7. Let X be a set o f  extreme tuples. Then, for every subset Y 
of  X, there exists a Horn theory H that contains X -  Y and excludes Y. 
Conversely, i f  such a theory can be found for every subset Y of  X, then X 
must be a set of  extreme tuples. 

Proof. Let Y = {Yl,Y2,...}. From Lemma 4.4, there exists a set of  Horn 
theories {Hi, H2 . . . .  } such that Hi contains { X - y i }  and excludes Yi. Clearly, 
the union of clauses in {H1,H2 . . . .  } is a Horn theory that satisfies the 
condition of the corollary. The converse follows from the fact that if some 
member of X is given by the intersection of several other elements of X then 
every Horn theory that contains the latter must also contain the former. [] 

Corollary 4.8. The VC-dimension of  (the class of) Horn theories is 
O[exp(n/2) ] .  

Proof. The VC-dimension is defined as the maximum number of points 
that can be "shattered" by Horn theories, in the sense of Corollary 4.7 [5]. 
Accordingly, this number is equal to the maximum number of n-tuples such 
that none is in the intersection closure of the rest, namely, 

n )  = O[exp(n /2) ] .  
n/2 

[] 

The VC-dimension plays an important role in the framework of PAC- 
learning, where it is used to assess the number of random samples needed 
before the error associated with learning an incorrect theory can be bounded 
[5]. Roughly speaking, Corollary 4.8 states that approximately as many sam- 
ples as the square root of the 2 n possible tuples are needed before one can be 
fairly confident that the Horn theory learned does not deviate substantially 
from the one generating the data. Since the VC-dimension grows exponen- 
tially in n, we conclude that Horn theories are not polynomially learnable 
(in the PAC sense) from random examples [5]. This negative result has no 
significant impact on identification tasks, where we assume that all models 
of the learned theory are available explicitly. It does mean, however, that 
every Horn theory H can be completely characterized by at most exp (n/2) 
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of its models. Conversely, at most exp(n/2)  tuples would ever be needed to 
characterize p if we are determined to approximate p by a Horn theory. 

4.2. Recognition, description, and approximation 

This subsection analyzes the three conditions required for the identifia- 
bility of Horn theories. We first show that Horn theories are identifiable 
by analyzing the recognition and description conditions. We later address 
difficulties in finding tightest Horn approximations--the condition needed 
for strong identifiability. 

Theorem 4.9. Deciding whether an arbitrary set p of tuples can be represented 
by a Horn theory can be done in O(Ipl 2 log Ipl) time. 

Proof. According to Lemma 4.5, it is enough to test whether p is closed under 
intersection. This can be done by simply checking whether the intersection 
of any two elements in p is in p [17]. This method requires O(]p] 2 log ip]) 
steps (the number of pairs times the time to check whether the intersection 
of the pair is in p), thus proving the theorem. [] 

Theorem 4.9 establishes the recognition part of the identification task. 
We remark that of  all the classes considered in this paper, the class of Horn 
theories is unique in that we can decide the existence of a description in 
the class without actually producing one. Consequently, the time required 
for reaching this decision is independent of the length of the final theory (if 
such exists). 

To fully establish the identifiability of Horn theories, there remains to 
show that whenever p is describable by a Horn theory, it is possible to find 
one such theory in polynomial time. This task is facilitated by a learning 
algorithm called HORN, recently devised by Angluin, Frazer, and Pitt [2]. 5 
The learning algorithm of Angluin et al. assumes that an oracle possesses a 
target Horn theory H* having m clauses, and tries to find a Horn theory 
equivalent to H* by asking the oracle two types of queries: equivalence and 
membership. An equivalence query asks whether some conjectured Horn 
theory H is equivalent to H*, and its answer is either a confirmation or 
a counterexample (i.e. an assignment that satisfies H* but not H, or vice 
versa). When there are no counterexamples, the learning algorithm has 
clearly succeeded in identifying a correct theory. Membership queries allow 
the algorithm to ascertain whether a given tuple satisfies the target theory 

5This algorithm and the possibility of simulating it on relational data was brought to our 
attention by an anonymous reviewer. These results were independently recognized by Kautz, 
Kearns, and Selman [17]. A direct and more efficient algorithm is described in the appendix. 
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H*; they are answered "yes" or "no" by the oracle. Angluin et al. have shown 
that HORN finds a theory equivalent to H* in polynomial time, making 
O (mn) equivalence queries and O (mZn) membership queries. Moreover, 
every theory H that HORN presents as a conjecture (including, of course, 
the final output theory) has at most m(n + 1) clauses. 

To find a Horn description of a given relation p, we simply simulate 
HORN by addressing its queries to the data p rather than to the oracle's 
theory H*. A membership query is answered by simply checking whether 
the tuple presented is in p. Equivalence queries can be answered as follows: 
Given a conjectured Horn theory H, we first check that every tuple of p 
satisfies H. If not, we return the unsatisfying tuple as a counterexample. 
Otherwise, M ( H )  contains p, and we then determine whether M ( H )  = p 
by the polynomial enumeration method of [1 1]. 

Thus, since we can correctly answer the two basic queries of HORN, the 
simulation algorithm must output an exact Horn representation of p if one 
exists. Moreover, since every membership query takes O(n log ]p] ) time, and 
every equivalence theory takes O(]p]]H[) time, we conclude that a Horn 
description of p can be found in 

O(mn[pllHI + m2n210glp[) = O(m2n2(Ipl + loglPl)) 
= O(m2n21pl) 

time, where m is the minimum number of clauses in any Horn theory 
describing p. 

This essentially establishes the identifiability of Horn theories as pre- 
scribed in Definition 2.6, according to which a description must be found 
in time polynomial in both the input (]p]) and the shortest possible output 
(m (n + 1 ) ). However, we can establish an even stronger result by showing 
that m is polynomial in I P], namely, the size of the shortest output theory 
cannot be substantially larger than the input. Indeed, it is possible to show 
(see appendix) that every Horn theory with K models can be expressed by 
a Horn formula that employs at most Kn 2 clauses. Translated to our set- 
ting, this means that m cannot exceed [Pin 2 and hence that the simulation 
algorithm will find a Horn description for p of length O(]p]n 3) clauses. 
Moreover, while the time it takes the HORN algorithm to find this descrip- 
tion is O(Ip13n6), a simpler algorithm can be found (see appendix), which 
works directly on p, finds a description of length O (]pin 2) clauses, and runs 
in only O(Ip[2n 2) steps. 

We summarize this analysis by stating: 

Theorem 4.10. I f  a relation p has a Horn description, then one such de- 
scription, having at most Ipln 2 clauses, can be found in O(Ip[2n 2) time. 



260 R, Dechter, .L Pearl 

Combining Theorems 4.9 and 4.10 we now have: 

Corollary 4.11. Horn theories are identifiable in input-polynomial time. 

We remark that the tight connection between the number of  models 
and the number of clauses renders Horn theories a useful tool in data 
compression. Short relations are guaranteed to have short theories, whereas 
the converse does not hold; some extremely long relations may have short 
Horn descriptions. For example, the theory containing a single clause, say 
a ~ b, has exponentially many models. Recent study reveals that such a 
tight connection does not exist between the length of a Horn theory and the 
number of extreme models it may have [17]. In other words, the number 
of extreme models of some Horn theory with m clauses is exponential in m 
and, conversely, the length of the shortest Horn theory having K extreme 
models may be exponential in K and n. This implies that the tightest Horn 
approximation of some long relations may be much shorter than the relation, 
even if the input data consists of only extreme models. Conversely, it raises 
the interesting possibility that the basis of p, which can be computed in 
O([p[ 2) steps, could serve as a more economical description of p than any 
Horn approximation of p. 

This brings us to the complexity of finding tightest Horn approximations 
to relations p that do not have precise Horn descriptions. In principle, we 
can find such approximations by simulating the HORN algorithm again, 
this time referring all its queries to the closure p* of p, which we can keep 
implicit. We know from Corollary 4 that B(p)  contains all the informa- 
tion about p*, and that p* has a Horn representation that is the tightest 
Horn approximation of p. This simulation would have a difficulty answering 
equivalence queries, however. Whereas previously we were able to answer 
equivalence queries in time polynomial in [p[, the size of p* may be ex- 
ponential in p, and we do not have a way of testing whether M ( H )  c_ p* 
except by enumerating M ( H )  and p*. Thus, the strong identifiability of 
Horn theory remains an open problem. 

We can still assert a weaker result: 

Corollary 4.12. Horn theories are strongly identifiable for every dataset whose 
intersection closure is of  a polynomial size. 

Corollary 4.12 might seem weak in view of the fact that there is no 
simple method of estimating the size of p*, short of  actually enumerating p*. 
However, if the size of/9* is substantially larger than that of p, we know that 
any Horn approximation is bound to be very poor. It is only when [p* - p{ 
is a fraction of [Pf that Horn theories can offer a reasonable approximation 
to p, and it is precisely in those cases that we can find a tightest Horn 
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approximation in a reasonable time. This suggests a strategy of focusing the 
development of Horn approximations on those cases only that can benefit 
from such approximations. Given a relation p and a tolerance level z, we 
begin to generate the closure of p and test whether its size exceeds (1 + z)[p[. 
If it does, we know that no acceptable Horn approximation is feasible. If 
[p*[ < (1 + r)[p[, we proceed to find a tightest Horn approximation using 
either the HORN simulation or the envelope-based algorithm described in 
the appendix. 

4.3. Identifying k-Horn formulas 

We now restrict our attention to the identifiability of k-Horn formulas. 
As before, Sk denotes the set of all subsets of  X of size k or less. A 

tightest k-Horn approximation can be generated by first constructing the 
tightest CNF approximation over the scheme Sk and then eliminating all 
non-Horn clauses from that approximation. In other words: given a relation 
p on n variables and a constant k, we generate the formula F&(p) and 
throw away all non-Horn clauses. We claim that the resulting Horn theory is 
the tightest k-Horn approximation of p ( which may have, of course, many 
equivalent syntactic representations). Since, as we will show, this is also the 
longest form of the tightest approximation, we then generate an equivalent 
reduced version by eliminating subsumptions. To test if the resulting Horn 
theory represents p exactly, we enumerate its models. Note, however, that 
while there are 2 k clauses over a set of k symbols, there are only k + 1 Horn 
clauses over the same set. Thus, it makes more sense to go in the opposite 
direction: first enumerate all possible Horn formulas over scheme Sk, then 
eliminate those clauses that conflict with any tuple of p. It can be shown 
that these two methods yield the same expression. Given a CNF formula q~, 
we denote by Horn (~o) the formula resulting from eliminating all non-Horn 
clauses from ~0. Given a relation p, let ~k (P) be the set of all possible Horn 
formulas over scheme Sk that are consistent with all tuples of p. 

Theorem 4.13. Let p be an n-ary bivalued relation, k a constant, z~ = F& (p ), 
and q = Horn(re). Let Hk be the family o f  k-Horn formulas, then 

(1) q is a tightest k-Horn approximation o f  re, 
(2) q is maximal with respect to Hk, 
(3) i f  M(q)  D p, no k-Horn formula describes p, 
(4) reduced(q) equals the set of  all k-Horn prime implicates o f  q, 
(5) q = ~k(p) .  

Proof. (1) and (2) follow from the fact that rc already contains all k-Horn 
clauses consistent with p. (3) follows immediately from the tightness of 
q. Since the scheme Sk contains all subsets of size k or less, it follows 
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Algorithm Horn-generation(p, k) 

Input: A relation p on n variables and an integer k. 
Output: A k-Horn formula describing p or a k-Horn tightest 

approximation of p. 

(1) Enumerate Ok, the set of all Horns over Sk. 
(2) Eliminate any Horn clause that violates p, resulting in 

t2k (p). 
(3) r / ~ =  reduced(Ok (p)) (by eliminating subsumptions). 
(4) Enumerate the models of q, {m 1, m2 . . . .  }, using the method 

in [11], and, if for some i ~< IPl, mi f[ p, or if M(r/)  
contains more than IPl elements, then return: "r/is a tightest 
k-Horn approximation"; else, return "r/ describes p". 

Fig. 3. Algorithm Horn-generation. 

from Lemma 3.22 that reduced(q) contains all and only the k-Horn prime 
implicates of q, thus proving (4). Finally, (5) follows from (2) and from 
the observation that by definition, Ok (p) is the tightest maximal k-Horn of 
p. [] 

Theorem 4.13 implies that algorithm Horn-generation in Fig. 3 which 
outputs the formula reduced(Ok(p)), is guaranteed to return the tightest 
k-Horn approximation of p relative to Ilk. The algorithm also returns a 
statement as to whether the formula found is an exact representation of p. 

To summarize: 

Corollary 4.14. Algorithm Horn-generation provides a tightest k-Horn ap- 
proximation of an arbitrary relation p. Moreover, this approximation equals 
the k-Horn prime implicates of p. 

Example 4.15. Consider again the relation 

p(PQR) = {(100), (010), (001)} 

and let k = 2. For this example, it is easier to first list the tightest k-CNF 
approximation and then eliminate non-Horn clauses. We have 

I-Is2(p) = {(p(P,Q) = {(10), (01), (00)}), 

(p(P,R) = {(10), (01), (00)}), 

(p(Q,R) = {(10), (01), (00)})}, 
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and P = {0, 1}, Q = {0, 1}, R = {0, 1}. When applying the canonical 
transformation to each of these relations, we get the (already reduced) 
formula 

Fs2(P) = {(-~P v -~Q), (-~Pv -~R), (-,R v-~Q)}. 

Since this is a Horn formula, we need not throw any clauses away. 
Computing the number  of models of this theory yields four models (there 
is an additional (0,0,0) tuple), so we conclude that the formula is a tightest 
2-Horn approximation of p and that p is not 2-Horn identifiable. If we 
generate the 3-Horn approximation for p, we get the same formula (because, 
in this case, the 2-Horn approximation already contains all its Horn prime 
implicates). Going through algorithm Horn-generation, step (2) yields: 

Ok(p) = {(-~P V -,Q v R),  (P V -~Q v -~R), (-~P v Q v -~R), 

(-~P v -~Q v -~R), (-~P v -~Q), (-~P v -~R),-~R v -~Q)}. 

The result of further eliminating subsumptions yields the same formula: 

reduced(Ok(p))) = {(-~P v -~Q), (-~P v-~R), (-~RV -~Q)}. (14) 

Example 4.15 suggests an anytime variation of the algorithm described in 
Fig. 3. Instead of applying the algorithm to all subsets of size k, we first 
apply the algorithm to subsets of size 2, then add the result of processing 
subsets of size 3, and so on, until we get a satisfying approximation. The 
algorithm is given in Fig. 4. Let us denote by S~k) all subsets of size exactly 
k and by ~~(k) the set of all Horn clauses of length k that are consistent 
with p. 

Note that the algorithm always retains the unreduced formula generated 
in the previous iteration. 

We next assess the complexity of our approximation and the size of its 
resulting Horn theory. 

Theorem 4.16 (Complexity). 
(1) The length (number of  clauses) of  reduced(Ok(p)) is O ( kn k + l ). 
(2) The complexity of  Horn-generation (p, k ) is 0 (I P l k nk + 1 ). 

Proof. Since worst-case analysis is unable to distinguish between a maximal 
formula and its reduced form, we assume that the algorithm generates the 
former. 

(1) Since there are i + 1 distinct Horn clauses on a subset of size i and 
since there a r e  n k+l subsets in scheme Sk, the overall number  of 
Horn clauses is O ( k n  k +l ). 
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Algorithm Anytime-Horn-generation(p, k ) 

Input: A relation p and a constant k. 
Output: A Horn formula describing p or a k-Horn tightest 

approximation to p. 

(1) zr ~ =  C2(l)(p) 
(2) For i = 2, while i ~< k, do 

• z~ ~ =  z~ U C2(i) (p )  
• rl ~ =  r e d u c e d ( z c )  

• i f  IMO1)I equals Ipl, then return "~/descr ibes p ' .  
(3)  endwhi le.  
(4) Return fl and a statement "q is a tightest k-Horn approxi- 

mation of p". 

Fig. 4. Algorithm Anytime-Horn-generation. 

(2) Generating all possible Horn clauses over Sk not in conflict with 
p takes O([p[kn k+l ). Eliminating subsumption may take additional 
O( (2n)k) ,  resulting in an overall time complexity of O(([p[ + k n + 
2 k)n k). Finally, computing the number of  models of a Horn theory 
is linear in the theory size and the number of  models [ 11 ]. There- 
fore, testing whether this number exceeds [p[ takes O(knk+l[p[)) 
steps. [] 

Corollary 4.17. The class of k-Horn theories is strongly identifiable in 
O(Ipl M+I ) time. 

Interestingly, algorithm Horn-generation can easily be converted into an 
on-line version, which is useful for stream processing. Assume the tuples of 
p are not available all at once, but are obtained sequentially as a stream of 
observations, normally containing many repetitions. In this case it might be 
advantageous to store a parsimonious theory of past data, rather than the 
data itself, and to update the theory incrementally whenever an observation 
arrives that contradicts the theory. If storage space permits, the update can 
be made particularly easy if in addition to the reduced approximation q 
we also keep the maximal tightest Horn approximation ~z. Then, whenever 
a new tuple arrives, all clauses in zc that conflict with it are eliminated, 
and the resulting theory can now be reduced to form a new t/ so as to 
facilitate query answering. When the size of z~ is much larger than that of 
r/, it might be advantageous to store only ~/and compute the maximal zc on 
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the fly, update n to conform with the new tuple and reduce it back to more 
economical form. The time it takes for this operation is O(n k) per update. 

5. Conclusions 

This paper summarizes several investigations into the prospects for identi- 
fying meaningful structures in empirical data. The central aim is to identify 
a computationally attractive description, in cases where the observed data 
possess such a description and a best approximate description otherwise. 
The feasibility of performing this task in reasonable time has been given 
a formal definition through the notion of identifiability, which is normally 
weaker (if C' = C )  than that of learnability. 

In exploring the decomposition of data into a given scheme of smaller rela- 
tions, it was shown that, whereas a best approximation can always be found, 
it is only in cases where the scheme is tractable that we can (tractably) 
decide whether the resulting approximation constitutes an exact representa- 
tion of the data. It is worth noting that the difficulty associated with this 
decision can be mitigated by allowing approximation through sampling. It 
is a known result by Angluin [1] that polynomial-time algorithms for exact 
identification of concepts using equivalence and membership queries can 
be transformed into polynomial-time PAC learning algorithms using mem- 
bership queries only. In our case, the difficulty associated with confirming 
the exactness of the tightest theory amounts to that of answering an equiv- 
alence query, and hence, it can be transformed to answering a sequence of 
(randomly sampled) membership queries, yielding an approximately correct 
confirmation of the exactness of the output theory. 6 

The decomposition of data into a structure taken from a class of schemes 
turned out to be a harder task, one that is intractable even in cases where 
each individual member of the class is tractable. The class of tree structured 
schemes is an exception. Here it was shown that an effective procedure 
exists for determining whether a given relation is decomposable into a tree 
of binary relations and, if the answer is positive, identifying the topology 
of such a tree. The procedure runs in time proportional to the size of the 
relation, but whether it provides a tightest tree-structured approximation in 
cases where the answer is negative is still an open question. 

Focusing on bivalued data, we then explored the identification of de- 
scriptions whose tractability stems from syntactic rather than structural 
features. In particular, we showed that Horn theories can be identified in 
input-polynomial time, that is, one can decide whether the input data pos- 
sesses an exact Horn description and find such a description (whenever 

6For further detail see [17]. 



266 R. Dechter, 3. Pearl 

possible) in time polynomial with the length of  the input. The strong iden- 
tifiability of Horn theories, that is, the problem of finding a tightest Horn 
approximation, remains open. Since there are small sets of models with ex- 
ponentially long tightest Horn approximations [17], the best one can hope 
for is an output-polynomial algorithm for generating such approximations. 
So far, only sampling algorithms are known for this task, namely, algorithms 
which guarantee that the output theory is "probably almost tightest", thus 
rendering Horn theories "strongly PAC-identifiable". Whether there is an 
output-polynomial algorithm that returns the tightest Horn approximation 
is still an open question. 

By contrast, k-Horn theories were shown to be strongly identifiable in 
polynomial time, when k is bounded. Both anytime and on-line algorithms 
where discussed for identifying these theories. 

An important issue not dealt with in this paper is assessment of the 
goodness of the approximations provided by Horn theories. Another issue 
is the feasibility of constructing both an upper bound and a lower bound 
approximations of p, in the manner discussed in [27] and also in [9]. 
Finally, we should mention that the methods presented in this paper will 
also handle partial observations, namely, observations of truncated tuples of 
p. 

Appendix A. Proof of Theorem 4.10 

In this appendix we prove the two assertions stated in Theorem 4.10, 
Section 4.2:7 

(1) Every Horn formula with K models has an equivalent Horn formula 
that employs at most Kn 2 clauses. 

(2) Given a relation p, closed under intersection, it is possible to find a 
Horn description of p in time O(Ip[2n2). 

Let x and y be two arbitrary tuples. We say that x is an ancestor of y 
(equivalently, y is a descendant of  x)  if t rue(x)  ~ true(y); we say that x is 
a parent of y (equivalently, y is a child of  x)  if x is an ancestor of y and 
t t rue(x)  I = [true(y) + 1 [. Let p be a set of  tuples closed under intersection, 
we say that x is a least ancestor o f y  (relative to p) i f x  is in p and y has 
no other ancestor z in p such that true(z)  c true(x) .  Note that if y is not 
in p, then it either has a unique least ancestor (since the intersection of any 
two ancestors in p yields another ancestor in p), or it has no ancestor in p, 
in which case we say that the least ancestor of y is ~. 

7We are indebted to Dana Angluin for outlining the method used in this proof. 
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Define the envelope E ( p )  of  p as the set of  tuples not in p that  either 
have a child in p or have no child at all (the latter corresponds to the tuple 
containing all zeros) .  Clearly, there are at most  nip I elements in E (p) .  Also, 
every tuple that is not  in E (p)  must  ei ther be in p or have a descendant  in 

E(p) .  
Let e be an element  in E ( p )  and let e' be the (unique)  least ancestor 

o f  e in p (possibly 0). Attach to every pair  ( e , e ' )  a Horn  theory H(e ,e ' )  
containing one clause, c~ = antecedent ~ vi for every variable vi in true(e' ) -  
true(e), where antecedent stands for the conjunct ion of  all positive literals 
o f  true(e). 8 I f  true(e) = {0}, then ci = vi and i f  e' = 0, then vi = O. Note  
that H(e ,e ' )  excludes those and only those tuples that are ancestors o f  e 

and not  of  e'. 

Lemma A.1. Let p be a relation closed under intersection and let H (p) be 
the Horn formula formed by collecting the clauses from all the subtheories 
H (e, e' ), where e ranges over all elements o f  E (p). Then H (p) constitutes 
a precise description o f  p, and contains at most Ipln 2 clauses. 

Proof. It is easy to show that every tuple in p is a model  of  H(p) .  For  if  
a tuple x in p conflicts with any H(e ,e ' )  then x must  be an ancestor  of  e 
and not  of  e', and then the intersection x n e' which is in p would also be 

an ancestor of  e with a smaller number  of  ones than e' .  Hence e' cannot  be 
the least ancestor o f  e in p. 

To  prove that  every model  of  H ( p )  is in p we show that the opposite 
al ternative leads to a contradict ion.  Suppose there is a model  y of  H ( p )  that  
is not  in p. Since H ( p )  excludes all tuples in E(p ) ,  it is clear that y cannot  
be in E(p ) .  Since y itself is not  in p or in E(p) ,  there must  be at least one 
descendant  o f  y that  is in E ( p ) ;  let z be a maximal  such descendant  (i.e., 
there is no x E E (p)  that is an ancestor  o f  z and a descendant  o f  y. Being 
in E(p ) ,  z must contr ibute  a set of  clauses H ( z ,  z') to H,  where z' is the 
least ancestor  of  z in p and H ( z ,  z') excludes all ancestors o f  z unless they 
are also ancestors o f  z'. Thus, i f  y is a model  of  H,  it must  be that y is also 
an ancestor  o f  z'. Now consider any descending path P from y to z (i.e., 
every pair  o f  successive elements along P consists of  a parent  followed by 
its child).  Since y is not  in E ( p )  and z'  is in p, P must  contain an element  
z" ~ E ( p )  such that z" is an ancestor  of  z'  and a descendant  o f  y. But 
this contradicts  our  assumption that z is the maximal  descendant  o f  y in 
E(p) .  [] 

SFor example, for variables a, b, c, d, and e = (1,0,1,0), e' = (1,1,1,1), we have 
true(e) = {a, c}, true(e') = {a, b, c, d}, and H(e, e') = {a A c --* b, a A c ~ d}. 



268 R. Dechter, J. Pearl 

Theorem A.2. Every Horn formula with K models has an equivalent Horn 
formula that employs at most Kn 2 clauses. 

Proof. The proof follows immediately from Lemma A. 1. If p stands for the 
models of a Horn formula H', then p must be closed under intersection and 
contain precisely K models. From Lemma A. 1, an equivalent Horn formula 
H can be constructed from the elements of E(p)  that describes p precisely 
and employs at most n[E(p)[ clauses. Since, each of the K elements in p 
can contribute at most n elements to E(p) ,  we conclude that the number 
of clauses in H is at most Kn 2. [] 

We will now prove the second claim by analyzing the complexity of 
constructing H. 

Theorem A.3. Given a relation p, closed under intersection, it is possible to 
find a Horn description of  p in time O([p[Zn2). 

ProoL Assume [p[ = K. The construction of H consists of three parts: 

(a) identifying the elements of the envelope E (p), 
(b) identifying the pair (e ,e ' )  for every element in E(p) ,  and 
(c) constructing the formulas H(e, e') for every pair found in (b). 

Part (a) can be done in O(nKlogK)  time, simply testing which of the n 
parents of  each member of p is not in p. 

Part (b) requires the identification of the least ancestor e' ~ p for each 
member e ~ E(p) .  Clearly, there are at most nK elements e in E(p) ,  and 
identifying e' requires at most 2nK steps (i.e., taking each element of p and 
testing whether it is an ancestor of  e, then taking its intersection with that 
of  previously found ancestors of e). This takes a total of at most 2n2K 2 
operations. 

Part (c) requires at most n operations for each of the (e ,e ' )  pairs, of 
which there are at most nK. This gives a total of n2K operations. 

The dominant effort is clearly part (b ) ,  yielding a total of O (K2n 2 ) steps, 
thus confirming the theorem. [] 

We remark that while the envelope-based algorithm described in the proof 
of Theorem A.3 yields a theory of size O ([p[n 2) and the HORN simulation 
algorithm produces a theory of size O([pln3), the latter has the advantage 
of always producing theories that lie within a factor (n + 1 ) of the shortest 
possible theory representing p. Thus, in cases where a long p is suspected of 
having a short Horn description, it is worth running HORN instead of the 
envelope-based algorithm. Alternatively, it is possible in such cases to run 
the HORN algorithm directly on the theory H found by the envelope-based 
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algorithm, so as to reduce its length. Given any Horn theory H, if we use 
H to answer the queries of HORN, then HORN is guaranteed to yield a 
theory equivalent to H, whose length is within a factor n + 1 of Hmin, the 
shortest Horn equivalent of H. This simplification procedure runs in time 
proportional to n lHI21Hminl. 
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