
Artificial Intelligence 58 (1992) 237-270 237
Elsevier

ARTINT 954

Structure identif ication in
relational data *

Rina Dechter
Information and Computer Science, University of California, lrvine, CA 92717, USA

Judea Pearl
Cognitive Systems Laboratory, Computer Science Department, University of California,
Los Angeles, CA 90024, USA

Abstract

Dechter, R. and J. Pearl, Structure identification in relational data, Artificial Intelligence
58 (1992) 237-270.

This paper presents several investigations into the prospects for identifying meaningful
structures in empirical data, namely, structures permitting effective organization of the
data to meet requirements of future queries. We propose a general framework whereby
the notion of identifiability is given a precise formal definition similar to that of
learnability. Using this framework, we then explore if a tractable procedure exists for
deciding whether a given relation is decomposable into a constraint network or a CNF
theory with desirable topology and, if the answer is positive, identifying the desired
decomposition. Finally, we address the problem of expressing a given relation as a Horn
theory and, if this is impossible, finding the best k-Horn approximation to the given
relation. We show that both problems can be solved in time polynomial in the length of
the data.

1. Introduction

Discovering meaningful structures in empirical data has long been re-
garded as the hallmark of scientific activity. Yet, despite the mystical aura
surrounding such discoveries, we often find that computational consider-
ations of efficiency and economy play a major role in determining what

Correspondence to: R. Dechter, Information and Computer Science, University of California,
Irvine, CA 92717, USA. E-mail: dechter@ics.uci.edu.

* This work was supported in part by the Air Force Office of Scientific Research grant AFOSR
900136, NSF grant IRI-9157636, GE Corporate R&D and Micro grant 91-125.

0004-3702/92/$ 05.00 @ 1992 - - Elsevier Science Publishers B.V. All rights reserved

TECHNICAL REPORT
R-172

238 R. Dechter, J. Pearl

structures are considered meaningful by scientists. In this paper we address
the task of finding a computationally attractive description of the data, a
description that both is economical in storage and permits future queries to
be answered in a tractable way.

Invariably, the existence of such a desirable description rests on whether
the dependencies among the data items are decomposable into local, more
basic dependencies, possessing some desirable features. A classic example
would be finding a finite state machine (with the least number of states)
that accounts for observed dependencies among successive symbols in a
very long string. In more elaborate settings, the dependencies can form a
graph (as in the analysis of Markov fields [24]) or a hypergraph (as in
relational databases [19]), and the task is to find the topology of these
structures. Structure identification includes tasks such as finding effective
representations for probability distributions [7,16,30], devising economical
decompositions of database schemas, synthesizing simple Boolean expres-
sions for truth tables [6], and casting logical theories that render subsequent
processing tractable.

Despite the generality of the task, very few formal results have been estab-
lished, and those that exist were confined primarily to probabilistic analysis
of statistical data [7,18,24,25]. In this paper we focus on relational (non-
statistical) data and deterministic descriptions of the data. Given a relation
p in the form of an explicit listing of the tuples of p, we ask whether we
can find a more desirable description of p, say a constraint network pos-
sessing desirable topological features or a logical theory possessing desirable
syntactic features (e.g., Horn theories). In both cases the desirable features
would be those that facilitate efficient query processing routines.

We view this task as an exercise in automatic identification, because
our main concerns are to recognize cases for which desirable descriptions
exist and to identify the parameters of at least one such description. Thus,
we explore the existence of a tractable identification procedure that takes
data as input, returns a structure, and works in time polynomial in the
size of the input and output. Given that the data were generated from a
model that has a desirable structure, our procedure should identify either
the underlying structure when it is unique, or an equivalent structure when
it is not unique. Conversely, if the data does not lend itself to effective
organization, we wish our procedure to acknowledge this fact, so as to
save further exploration. Sometimes an additional requirement is imposed
on the procedure, namely, to identify a "best" approximated theory, when
an exact desirable theory does not exist. We call this latter requirement
"strong identifiability".

Our analysis bears a close relation to that of Selman and Kautz [27],
where theory formation is treated as a task of "knowledge compilation".
The main difference between the two approaches is that Selman and Kautz

Structure identification in relational data 239

begin with a preformed theory in the form of a (reasonably sized) set of
clauses, while we start with the bare observations, namely, a (reasonably
sized) set of tuples that represent the models of the desired theory. This
enables us to easily project the tuples onto subsets of variables and to solve
subtasks that would be intractable had we started with a causal theory.
Another difference is that we require definite determination of whether the
theory approximates or describes the data.

This paper is organized as follows: Section 2 introduces a general frame-
work of the identification task. We define weak and strong notions of
identifiability and, using familiar examples, compare them to Valiant's [30]
notion of learnability. Section 3 investigates the identifiability of structure-
based tractable classes of constraint networks and propositional theories.
We show that stars and trees are identifiable, while chains and k-trees are
not. Section 4 focuses on identifying theories whose tractability stems from
syntactic rather than structural features. In particular, we show that rela-
tions describable by Horn theories can readily be recognized (Theorem 4.9),
and that corresponding Horn theories can be found in time polynomial in
the length of the data (Theorem 4.10). Additionally, we show that a best
approximation in k-Horn theory (in which every clause contains at most
k literals) can be identified in O(Ipln k+l) time, where n is the number of
variables (Corollary 4.11).

2. Preliminaries and basic definitions

2.1. Theories: networks and formulas

We denote propositional symbols, also called variables, by uppercase letters
P, Q, R, X, Y, Z propositional literals (i.e., P, -~P) by lowercase letters
p, q, r , x ,y , z and disjunctions of literals, or clauses, by a, fl The
complement operator ,,~ over literals is defined as usual: If p = -~Q, then
~p = Q; if p = Q then ~p = -~Q. A formula in conjunctive normal form
(CNF) is a set of clauses ~0 = {al at}, implying their conjunction. The
models of a formula ~0, M(~o), is the set of all satisfying truth assignments
to all of the formula's symbols. A clause a is entailed by ~o, written ~o [= a,
iff a is true in all models of ~o. A clause a is a prime implicate of ~0 iff
~0 l= a and ,~fl c_ a such that ~0 [= ft. A Horn formula is a CNF formula
whose clauses all have at most one positive literal. A k-CNF formula is one
in which clauses are all of length k or less, and a k-Horn formula is defined
accordingly.

To characterize the structure of a formula q~ we define its scheme as the
set of variable sets on which clauses are defined. Formally:

240 R. Dechter, .L Pearl

Definition 2.1 (Scheme). Let ~ = {o~ 1 O~r} , and let base(a) be the set
of all propositional symbols on which clause a is defined, then

scheme(q~) = {base(aj) l 1 <<, j <~ r}. (I)

Example 2.2. Consider the formula

{o = { (- ~ P V Q V R) , (P V S) , (- , P V - ~ S) , (- ~ P V R) } . (2)

In this case,

scheme(~o) = {{P, Q,R}, {P,S}, {P,R}}. (3)

We next define the notions of constraint networks and relations, which
parallel the notions of formulas and their satisfying models, for multivalued
variables. A relation associates a set of multivalued variables with a set of
tuples specifying their allowed combinations of values. A constraint network
is a set of such relations, each defined on a subset of the variables. Taken
together, this set represents conjunction of constraints, namely, it restricts
value assignments to comply with each and every constituent relation. The
theory of relations has been studied extensively in the database literature
[19].

Definition 2.3 (Relation and network). Given a set of multivalued variables
X = (Xt Xn}, each associated with a domain of discrete values
D1 Dn, respectively, a relation (or, alternatively, a constraint) p =
p (Xl Xn) is any subset

p C /) 1 x D 2 x " ' x D n . (4)

A constraint network N over X is a set /91,..., Pt of such relations. Each
relation Pi is defined on a subset of variables Si c_ X. The set of subsets
S = {S1,..,St} is called the scheme of N (also denoted scheme(N)) . The
dimension of scheme S, denoted dim(S) , is defined as the cardinality of
the largest component in S. The network N represents a unique relation
rel(N) defined over X, which stands for all consistent assignments (or all
solutions), namely,

rel(N) = {x = (xl , . . . ,Xn)l VSi E S, I-1s,(X) E Pi}, (5)

where/-/s, (x) is the projection of x onto Si. The projection of a relation p
onto a subset of variables R, denoted 17R (p), is the set of tuples defined on
the variables in R that can be extended to a tuple in p. If rel(N) = p we
say that N describes or represents p.

Structure identification in relational data 241

Clearly, any CNF formula can be viewed as a special kind of constraint
network, where the domains are bivalued and where each clause specifies a
constraint on its propositional symbols. We say that a bivalued relation p =
p (x l , . . . , x ,) is described (or represented) by a formula q~ = ¢(xl ,xn)
iff M(q~) = p. We will use the term theory to denote either a network or a
formula and, correspondingly, will use M (T) and rel(T) interchangeably.

Example 2.4. The relation

p(P ,Q,R ,S) = {(1010),

(1110),

(0101),

(0011),

(0111),

(0001)}

can be described by the network

N = {(p(P,Q,R) = {(101), (111), (010), (001), (011), (000)}),

(p(P,S) = {(01), (10)}),

(p(P,R) = {(00), (01), (11)})},

since the consistent assignments of N coincide with p. Being bivalued, p
can also be described by the formula

= {(-~P V Q v R), (P v S), (-~e v -~S), (-~e v R)}, (6)

since M (~) = p.

When considering ways of approximating a relation p by a theory T, we
will examine primarily upper bound approximations, namely, theories T
such that p c_ M (T).

Definition 2.5 (Tightest approximation). A theory T E C is said to be a
tightest approximation of p relative to a class C of theories if p c_ M (T)
and there is no T' E C such that p c_ M (T ') c M (T) .

2.2. Identifiability

We are now ready to give a formal definition of identifiability: A property
that is intrinsic to any class of theories and that governs our ability to
decide whether a given relation p has a description within the class. As the
preliminary example, we will use the class of k-CNF formulas. We will show
that, while this class is identifiable for k = 2, it may not be identifiable for

242 R. Dechter, J. Pearl

any k > 2. In other words, there may not be any tractable way of deciding
whether an arbitrary relation p has a description as a k-CNF formula for
k > 2. The class of 2-CNF theories will turn out to be strongly identifiable,
namely, not only can we decide the existence of a 2-CNF description, and
produce such a description if it exists, but we can also produce a tightest
2-CNF formula (as well as a k-CNF, k > 2) if a precise description does
not exist (hence the term "strong").

Not surprisingly, the decisions above would depend on our prior knowl-
edge about the observed relation p. For example, if we were given assurance
that p has a description in k-CNF, it would be easy to produce such a de-
scription. Thus, it is necessary to define the notion of identifiability relative
to a background class C' of theories from which p is chosen. We will adopt
the convention that, unless stated otherwise, C' is presumed to be the class
of all theories, namely, p is an arbitrary relation. We will denote by I pl the
number of tuples in p.

Definition 2.6 (Identifiability). A class of theories C is said to be identifiable
relative to a background class C' if there is an algorithm A, polynomial in
the size of its input and output, such that:

(1) Recognition: For every relation p that is describable by some theory
T in C', A determines whether p has a description in C.

(2) Description: If the answer to (1) is positive, algorithm A finds one
theory T E C that describes p (i.e., p = M(T)) .

(3) Tightness: C is said to be strongly identifiable if, in addition to (1)
and (2) above, A always finds a theory To in C that is a tightest
approximation of p.

By convention, a class in which the problems associated with the recog-
nition or description tasks are NP-hard will be defined as nonidentifiable.
Note that in conditions (2) and (3) the complexity of A is measured relative
to the size of p as well as to the size of the theories that describe p. In the
analysis of structure-based constraint networks and CNFs (Section 3), the
description length will usually be insignificant, so]p] will be the dominant
factor in the complexity of A. In Section 4, however, where we analyze Horn
approximations, the two factors will play equal roles. Practically speaking,
taking the size of p as the basis for measuring complexity amounts to fo-
cusing the identification task on highly constrained data, where the number
of distinct observations grows polynomially with the number of variables.

Coming back to our k-CNF example, we consider again the question
of whether the class Ck of all relations expressible by k-CNF theories is
identifiable relative to C' = Cn, the class of all CNFs. As we will show
in Section 3, although algorithms for condition (3) (and hence condition
(2)), namely, of constructing a tightest k-CNF approximation, do exist for

Structure identification in relational data 243

any p, we do not have an effective way of fulfilling condition (1), namely,
of testing whether this approximation represents the relation p exactly or
a superset thereof. (Even generating a single model of a tightest k-CNF
theory may be NP-hard for k > 2.) We will thus conclude that Ck is not
identifiable. ~ On the other hand, Ck is strongly identifiable relative to itself,
since recognition is trivially satisfied and any tightest approximation must
be exact.

2.3. Identifiability versus learnability

There is a strong resemblance between the notion of identifiability and of
learnability [30]. If we associate theories with concepts (or functions) and
the models of a theory with the learning examples, we see that in both cases
we are seeking a polynomial algorithm that will take in a polynomial number
of examples and will produce a concept (or a function) which is consistent
with those examples, from some family of concepts C. Moreover, for a
family C to be learnable from positive examples (with one-sided errors), we
know that it must be closed under intersection and that the algorithm must
produce the tightest concept in C consistent with the observations [23].
This is identical to condition (3) (strong identifiability).

The main difference between the problems described in this paper and
those addressed by learning models is that in learnability we are given the
concept class C and our task is to identify an individual member of C that
is (either surely or probably) responsible for the observed instances. By
contrast, in structure identification we are not given the concept class C.
Rather, one of our primary objectives is to decide whether a fully observed
concept p, taken from some broad class C' (e.g., all relations), is also a
member of a narrower class C of concepts, one that possesses desirable
syntactical features (e.g., a 2-CNF, a constraint tree, or a Horn theory).
Thus, the task is not to infer the extension of a concept from a subset of its
examples (the entire extension is assumed to be directly observed), but to
decide whether the concept admits a given syntactical description.

It turns out that deciding whether the tightest approximation exactly
describes a given concept, even when the concept is of small size, might
be computationally expensive--a problem not normally addressed in the
learning literature.

The differences between learnability and identifiability can be well demon-
strated using our previous example of the class Ck of k-CNF theories. We
have argued earlier that while Ck may not be identifiable relative to the
class C' of all relations, it is nevertheless strongly identifiable relative to

1The nonexistence of a tractable procedure for testing exact match with p is subject to
Conjecture 3.10 (see Section 3.1).

244 R. Dechter, J. Pearl

C' = Ck. By comparison the class Ck is known to be polynomially learnable
[30] since, given a collection of instances I of M(q~), one can find in
polynomial time the tightest k-CNF expression that contains I (see Section
3). The fact that Ck is not identifiable is not too disturbing in learning
tasks, because there we assume that the examples must be drawn from some
k-CNF theory ~0, so in the long run the tightest k-CNF approximation to
the data will coincide with ~0. However, nonidentifiability can be very dis-
turbing if the examples are taken from a theory outside Ck. In this case, the
tightest k-CNF theory consistent with the examples might lead to substantial
(one-sided) errors.

In general, if we set C' = C, then, if C is learnable from positive and
negative examples, it must also be identifiable, because identification is an
easier task under this condition. Assuming that p contains all instances of
a concept amounts to observing both positive and negative examples and,
compared to PAC-learning, we are effectively provided with an answer to
every membership query without having to wait for examples to be generated
by a random process. Likewise, if C is one-sided learnable, it must be
strongly identifiable, because condition (1) is satisfied automatically, and
the one-sided learnability requirement of zero error on negative examples
is equivalent to condition (3). There are, of course, concept classes that
are identifiable but not one-sided learnable under the condition C' = C (a
trivial example of which is the class of relations p having size I Pl = k),
again because, in identification, negative examples are implicit through their
absence from the data.

3. Topology-based identification

A given relation p can be represented by many networks or formulas (if p
is bivalued), each having a different scheme. All such representations will be
called equivalent (denoted by ~) . In this section we will focus on networks
and CNF formulas parameterized by their corresponding schemes. We will
first analyze the identifiability of several classes of constraint networks and
then show, using a simple translation, that most results are extensible to the
scheme-based identifiability of CNF formulas.

3.1. Identifying constraint networks

We will first make some observations that generalize Montanari's [21]
notion of minimal networks (originally defined on binary networks) to
constraint networks having arbitrary schemes. Some of these observations
were also made in [22], albeit under a different notation.

Structure identification in relational data 245

We denote by Ns the class of all constraint networks having a common
scheme S, assuming all networks are defined on n variables with the same
set of domain values.

Definition 3.1 (Projection network). Given a relation p and a scheme S =
{S1 Sr}, the projection of p on S, Hs(p), is defined as the network
obtained by projecting p onto each component of S:

I-Is(p) = {17s,(p)l vSi ~ S}. (7)

Clearly, generating Hs (p) from p is polynomial:

Lemma 3.2. The network Hs(p) can be constructed in O(IPllSI) steps.

Theorem 3.3 (Montanari and Rossi [22]). The network Hs(p) is a tightest
approximation of p relative to the class Ns.

As in [21,22], we next observe that among all networks R e Ns that
are equivalent to Hs(p), Hs(p) has a unique syntactic property called
minimality with respect to the partial order c__ defined as follows:

Definition 3.4 (Network ordering).

R c _ Q iff VS ieS , Rs, CQsi,

where Rs, is the relation associated with Si in network R.

(8)

Similarly, we define the intersection of networks R and Q in Ns as the
network created by the intersection of the corresponding constraints.

Definition 3.5 (Network intersection). Let R, Q E Ns. The intersection N of
R and Q is given by:

R N Q = {Rs, N Qs, I vSi e S}. (9)

Note that R E Ns and Q E Ns implies that R N Q E Ns.

The next theorem states the existence of a unique (with respect to c_)
minimal network Ms of p having scheme S.

Theorem 3.6 (Montanari and Rossi [22]) . . Let R ,Q E Ns and let p =
rel(R), then

(1) R ~ Q ~ R N Q ~ R ,
(2) there exists a unique minimal (with respect to c_) network Ms repre-

senting p, and it is given by Ms = Hs(p).

246 R. Dechter, J. Pearl

Proof. The first part is clear and implies the existence of a unique minimal
network Ms, which equals the intersection of all equivalent networks. We will
show that Ms = Hs(p). Clearly, Ms ~ Hs(p). By definition, Ms c_ Hs(p).
However, if we eliminate even a single tuple from any constraint in Hs (p),
the resulting network will not allow a legal tuple of p, contradicting the fact
that Ms describes p. Consequently, Ms = Hs(p) . []

Corollary 3.7. Among all tightest approximations to p from Ns, 1-1s(p) is
the minimal one.

We are now ready to discuss identifiability relative to specific schemes.
The negative result that follows hinges on Conjecture 3.10 and Lemma 3.8.

Lemma 3.8 (Ullman[29]) . Given a relation p and an arbitrary scheme S,
deciding whether rel(1-1s(p)) = p is NP-hard.

Theorem 3.9. Given an arbitrary scheme S, the class Ns is not identifiable
relative to all networks N, but is strongly identifiable relative to Ns.

Proof. We will show a polynomial reduction from the decision problem
of whether rel(Hs(p)) = p) (which is NP-complete) to the problem of
deciding the identifiability of Ns (for any S). Given a relation p and a
scheme S, if we can identify in polynomial time whether p is representable
by scheme S, then, due to condition (1), we can also determine whether
rel ([Is (p)) = p): If p is identifiable, rel (Hs (p)) = p; if not, rel (Hs (p))
p. Since the projection formula can be computed in time proportional to
IPlISI, the reduction is polynomial. Consequently, based on Lemma 3.8,
unless P = NP, the identifiability of Ns relative to all networks is NP-hard.
When the background is Ns, the exactness decision is trivially satisfied
(the projection Hs(p) is guaranteed then to represent p) and hence Ns is
strongly identifiable. D

Let Sk be the set of all subsets of size k or less of X = {X1 Xn}.
Although we believe that the NP-completeness result of Lemma 3.8 extends
to these special schemes, we are unable to prove it as yet. For convenience
we will use the shorthand Ark = Ns~.

Conjecture 3.10. Given a relation p and an integer k, deciding whether
rel(17s~ (p)) = p is NP-hard.

Corollary 3.11. The class Nk is not identifiable relative to N.

Structure identification in relational data 247

Example 3.12. The class N2 of all binary multivalued constraint networks
is not identifiable (unless the number of values is 2). This class is char-
acterized by a scheme consisting of all variable pairs (i.e., the complete
graph) for which, subject to Conjecture 3.10, we cannot establish whether
rel(Hs2 (p)) = p in polynomial time.

When the scheme S has topological properties that permit solution in
polynomial time, Ns is identifiable. We say that a scheme S is tractable
when there exists a polynomial algorithm for deciding the consistency of
every constraint network in the class Ns. For instance, any tree or acyclic
hypergraph [10] is a tractable scheme.

Theorem 3.13. Let S be a tractable scheme. Then the class of networks Ns
is strongly identifiable.

Proof. The projection l l s (p) provides a tightest Ns approximation to p
and can be computed in polynomial time. The tractability of S assures
that the equality [rel(Hs(p))[= IPl can also be tested in polynomial time.
It was recently shown [11] that for every theory T satisfiable in time t,
deciding whether IM(T)I > c takes time O(ct). Now, since S is tractable,
it is satisfiable in polynomial time; therefore, deciding rel(Hs(p)) ~ p can
be accomplished in polynomial time. []

3.2. Identifying CNF formulas

In this section we shift our attention to bivalued relations and to the task
of identifying tractable classes of CNF formulas. We will show that there
is great similarity between the identifiability of scheme-based constraint
networks and that of scheme-based CNF having the same scheme. This
will become clear through a simple translation from bivalued relations into
CNFs. As in the multivalued case, we will first extend the auxiliary notions of
projection network and minimal network to projection formula and maximal
formula.

Definition 3.14 (Canonical representation).
(1) Let p be a bivalued relation over X = Xl Xn. We define

canonical(p)

{ ('X'Xl ~/ "~'X2 V ' ' " ~ / ~ x ,) l (x l , x 2 x ,) f[p}.
(lO)

(2) Given a constraint network N = {Pl Pt}, we define canonical(N)
as the formula generated by collecting the canonical formulas of every

248 R. Dechter, J. Pearl

constituent relation in N. Namely,

canonical(N) = U{canonical(pi)]Pi E N}. (11)

The equivalence of the relational and propositional representations of this
translation, as stated in the following lemma, is quite immediate:

Lemma 3.15. The models of the canonical formula of network N coincide
with the solutions of N. Namely, M(canonical(N)) = rel(N).

We now extend the notion of projection network to projection formula.

Definition 3.16 (Projection formula). Given a relation p and a scheme S,
the projection formula of p with respect to S, denoted Fs(p), is given by

Fs(p) = canonical(Hs(p)). (12)

Example 3.17. Let

p(P,Q,R) = {(100), (010), (001)}

and

Then,

and

S = {{P,Q}{P,R}{Q,R}}.

Hs(p) = {(p(P,Q) = {(10), (01), (00)}),

(p(P,R) = {(10), (01), (00)}),

(p(Q,R) = {(10), (01), (00)})},

Fs(p) = {(-~P v-~Q), (-,P v- ,R) , (-,R v-,Q)}.

Generating Fs(p) from Hs(p) may be exponential in the size of the
largest component in S, as it requires enumerating all tuples defined on
each component. Consequently, for schemes of bounded dimension, this
construction is polynomial.

Lemma 3.18. Let dim(S) <~ k. The complexity of generating Fs(p) is
O(IpLISI + ISI2k)

Let Cs be the class of CNF formulas having scheme S. Parallel to Theorem
3.3, we have:

Structure identification in relational data 249

Theorem 3.19. The formula Fs(p) is a tightest approximation of p relative
to Cs.

Proof. Follows immediately from the facts that 1"1s (p) is a tightest approx-
imation to p and M(Fs(p)) = rel(1-1s(p)). []

Parallel to the notion of minimal networks in multivalued relations, we
will now show that among all formulas ~0 in Cs that are equivalent to Fs (p),
Fs (p) is maximal with respect to the partial order c_ defined by set inclusion
(of clauses). Clearly the class Cs is closed under union. The next lemma
(parallel to Theorem 3.6) proves that among all equivalent formulas in Cs,
Fs (p) is the unique maximal formula.

Lemma 3.20. Let ~,z E Cs and let p = M(~) . Then
(1) ~ z ~ ¢Ur , .~¢ ,
(2) there exists a unique maximal (with respect to c__) formula Its repre-

senting p, and it is given by Its = 1-'s(p).

Proof. The first part is immediate, since the union of formulas stands for
their conjunction. The second part is similar to the proof of Theorem
3.6. []

When the scheme S has components containing each other, the corre-
sponding clauses may subsume each other and thus present redundancy. We
clearly prefer to consider formulas in reduced form, without subsumption.

Definition 3.21 (Reduced formula). A formula ~ is reduced if none of its
clauses contain another clause. The formula obtained after eliminating clause
subsumption from ~ is denoted reduced(~).

Lemma 3.22. Reduced(Fs (p)) contains all (but not only) the prime impli-
cates of Fs(p) that are restricted to the subsets in S.

Proof. Being maximal, Fs(p) must contain all prime implicates restricted
to S. []

We now state a scheme-based correspondence between scheme-based iden-
tification of constraint networks and CNFs.

Theorem 3.23. I f Ns is identifiable relative to all constraint networks and if
scheme S has a bounded dimension, then the class Cs is also identifiable
relative to all CNFs.

250 R. Dechter, J. Pearl

Proof. Given a bivalued relation p and a scheme S, since Ns is identi-
fiable we can decide in polynomial time whether the projection network
Hs(p) represents p. moreover, since dim(S) is bounded the translation
from Hs(p) to Fs (p) is polynomial. Hence, the conclusion follows because
Hs(p) describes p i f fFs (p) describes p. []

The following theorem shows that the converse is not true. Although N2
is not identifiable, C2 is, because the satisfiability of 2-CNF is tractable.
Consequently, testing of whether [Fs2 (P)I >]P[can be done in polynomial
time [11].

Theorem 3.24. The class of 2-CNFs is strongly identifiable relative to all
CNFs.

The negative results ahead are based on an extended version of Lemma 3.8
and on the bivalued version of Conjecture 3.10.

Lemma 3.25 (Parallel to Lemma 3.8). Given a bivalued relation p and an
arbitrary scheme S, deciding whether M (Fs (p)) = p is NP-complete.

Proof. The proof follows from a simple polynomial translation of any mul-
tivalued relation to a bivalued relation and from Lemma 3.8. []

Theorem 3.26 (Parallel to Theorem 3.9). Given a parameterized scheme
class SCn of bounded dimension, the class Csc, is not identifiable relative to
the class of all CNFs, but is strongly identifiable relative to itself

Proof. The proof of the first part is identical to that of Theorem 3.9. The
reason that Csc n is identifiable relative to itself is that the translation from
Hsc n (p) to FSC ~ (p) is polynomial for bounded schemes. []

Conjecture 3.27 (Parallel to Conjecture 3.10). Given a bivalued relation p
and an integer k, deciding whether M (Fsk (p)) = p is NP-hard.

Consequently,

Corollary 3.28. The class of k-CNF is not identifiable relative to all CNFs.

Structure identification in relational data 251

3.3. Identifying constraint trees

We saw in the previous section that the class N2 of binary constraint
networks is not identifiable, while the class Cs of constraint networks with
some specific scheme S is identifiable if S is tractable. We now study
a unique class of tractable schemes, those structured as constraint trees,
which is identifiable not only when we present one specific scheme (i.e.,
a particular tree), but also when we have no knowledge of the underlying
scheme except that it is a tree.

Let NT be the class of all constraint networks that have a tree-structured
scheme. The following theorem [9] shows that NT is identifiable.

Theorem 3.29. Given an arbitrary relation p, let n (xi) be the number o f
n-tuples in p for which Xi = xi, and let n (xi, xj) be the number o f n-tuples
in p for which Xi = xi and Xj = xj. Define the arc-weights m (Xi, Xj) as

1
m(Xi , Xj) - [p[y ~ n(xi,xj)log n(xi)n(xj)'n(xi'xJ) (13)

(Xi,Xj)e I'Ixix j (p)

I f p has a constraint-tree representation, then any maximum-weight spanning
tree (MWST) formed with the arc-weights defined above constitutes a scheme
o f such a representation.

Example 3.30. Consider the relation p over the binary variables A, B, C,
D and E given in Fig. 1. The first step in the algorithm computes the
quantities n(Xi = xi) and {n(Xi = xi, Xj = x j)} for all variables and
their values, obtaining

n(A = 0) = 8, (B = 1) = 6, n(B = 0) = 2 ,

n (B = 0, C = 1) = 2, n(B = 1,C = 1) = 3, etc.

Next, for each pair of variables (Xi, Xj), we compute the weights m (Xi, Xj),
according to equation (13).

m (A , B) = m (A , C) = m (A , D) = m (A , E) = -16.63,

m (B , C) = -13.97, m (B , D) = -15.95, m (B , E) = -16.55,

m (C , D) = -16.55, m (C , E) = -17.13, m (D , E) = -15.50.

Finally, using the MWST algorithm on these weighted arcs, the tree shown
in Fig. 2 is produced. The relations associated with the arcs of the tree are the
projections of p on pairs of connected variables. For instance, the relation
associated with variables D and B is given in Fig. 2(a). The tree generated
in this example, together with its associated database (see Fig. 2), represents
the original relation, in the sense that it provides a lossless decomposition.

252 R. Dechter, J. Pearl

A B C D E

0 0 1 1 1

0 0 1 1 0

0 1 1 1 1

0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 1 011 0

0 1 0 0 1

Fig. 1. The input relation p for Example 3.30.

D

A C

D B

1 0

1 1

0 1

D E

1 1

1 0

0 1

(a) (b)

Fig. 2. The tree decomposition of p.

A B

0 0

0 1

B C

0 1

1 1

I 0

(c) (d)

In other words, the set of all solutions to this network coincide with relation
p and they can be recovered efficiently.

Corollary 3.31. NT is identifiable in time O(([p[+ logn)n2).

Proof. The MWST can be constructed in O(([p] + logn)n 2) steps. To
verify that the generated tree t represents the input relation p, we project
p onto the arcs of t, compute (in linear time) the number of n-tuples
represented by the resulting constraint tree, and compare it to the size of
p. If the two numbers are equal, the constraint tree represents p precisely.
Otherwise, we know that no tree representation exists for p. []

An alternative method of identifying and constructing tree representations,
avoiding the numerical precision required for computing equation (13), is
described in [20]. We first project p onto all triplets of variables, then
examine each triplet for possible redundancy, namely, whether the constraint
on one of the pairs is implied by the other two. Next we assign integer

Structure identification in relational data 253

weights to the edges (Xi, Xj) in such a way that any redundant edge should
always receive a lower weight than that of a nonredundant edge in the same
triangle. Finally, we construct an MWST according to the integer weights
thus assigned. It can be shown that the resulting tree has all the properties
of the tree constructed by the weights of equation (13).

Although the class of constraint trees is identifiable, it is still open to
question whether this class is strongly identifiable; we were not able to prove
(or disprove) that the MWST method returns a tightest tree containing p
when the input relation p does not have a tree representation. In all examples
examined so far, the returned tree was a tightest one.

Note that although the class of constraint trees is identifiable, it is not
learnable with one-sided error, because it is not closed under intersect ionn
the intersection of two trees may form a graph with cycles. Hence, there is
no unique tightest tree that contains every subset of positive examples, and
this implies that Nr is not learnable with one-sided error.

3.4. Chains, stars, and k-trees

The previous analysis might leave the impression that any class of networks
is identifiable as long as the scheme of each network in the class is tractable.
To see that this may not be so, consider the class Nc of constraint chains.
Being a special kind of a tree, each individual member of Nc is clearly
tractable. Yet deciding whether an arbitrary relation p can be described by
some chain seems an insurmountable task. We do not know of any method
of solving this decision problem, save for exhaustive enumeration of all n!
chains or all spanning trees that tie for the minimal weight. The difficulty
is that since chains are not matroids we do not have a greedy algorithm
similar to the MWST for identifying the correct ordering of the variables.

Another class of trees that are not matroids are stars, namely, trees
in which one node is adjacent to all the others. This class is (strongly)
identifiable, however, primarily due to its low cardinality; there are exactly
n stars on n variables. To identify a star, we simply test whether any of the
n possible stars represents the input relation p. This test, as usual, involves
projecting p on the edges of the tested star, then counting (in linear time)
the number of solutions of the resulting constraint network and testing
whether it is equal to [p[.

An important class of networks is k-trees (or chordal graphs), a powerful
generalization of trees (where k = 1) investigated in [3,4], and, more
recently, [13]. k-Trees can be viewed as trees of clusters, where each cluster
consists of a clique of variables with cardinality not exceeding k. Like
trees, they are tractably satisfiable. However, not being matroids, k-trees
are probably not identifiable. We know of no method (save for exhaustive
enumeration) of testing whether an arbitrary relation is representable as a

254 R. Dechter, J. Pearl

k-tree for any k > 1. In [9] we provide a heuristic algorithm for identifying
k-trees which is a generalization of the one for 2-trees.

4. Identifying Horn theories

In this section we shift our attention to bivalued relations and to the task
of identifying tractable classes of CNF formulas, such as Horn theories.

In general, determining whether a given query formula follows from a
given CNF formula is intractable [8]. However, when the latter contains only
Horn clauses, the problem can be solved in linear time [14]. The tractability
of Horn theories stems not from the topology of the interactions among their
clauses, but rather from a syntactic restriction imposed on each individual
clause. This restriction is, in general, less constraining than those imposed by
topological considerations; experience with logic programming and databases
suggests that humans find it natural to communicate knowledge in terms
of Horn expressions. Additionally, the tractability of Horn theories covers
a wide range of queries, including, for example, membership, equivalence,
disjointness, and entailment. In contrast, the data compression techniques
used in classification learning, such as decision trees [26], are effective only
for certain membership queries. 2 Thus, it would be useful to determine
whether a given set of observations (the data p) can be described as a Horn
theory.

We shall show that Horn theories are polynomially identifiable; the recog-
nition test of whether p has a Horn description can be decided in time
proportional to [pl 2 log IPl, while the time needed to find such a description
is proportional to [plEn2. However, there are several impediments to using
Horn theories as effective approximations to relational data. Selman and
Kautz [27], have shown that finding a tightest Horn approximation to a
given CNF formula is NP-hard and that any tightest approximation might
sometimes require exponentially many clauses (in the size of the source the-
ory). All indications are that similar problems would surface in using Horn
expressions to approximate empirical data. First, we have no guarantee that
the length of the best approximation would not be exponential in the input
[p[and, second, we still have no polynomial method of finding the best
approximation, even if we take the length of the minimal output theory as
the basis for analysis.

In such cases it might be futile to use Horn approximations instead of the
observations themselves. A more practical question to ask, then, is whether

2For example, decision trees are efficient for determining class membership from a set of
properties hut do not permit us to effectively infer properties from class membership (and
other properties) or to decide whether two decision trees are equivalent or disjoint.

Structure identification in relational data 255

a given relation can be approximated by a Horn theory of a reasonable
size. To that end, we analyze the identifiability of k-Horn formulas, namely,
Horn formulas in which every clause contains at most k literals. We show
that this class of formulas is strongly identifiable.

4. i. Preliminaries

We will assume that all Horn clauses are represented as implications
I) 1 A 1)2 A . . . A V l ~ Z, where 1)1,v2 v I are positive literals and z may
be either a positive literal or 0 (0 stands for "false" and 1 for "true").

Definition 4.1. Let x = (xl, x2 xn) be a tuple where xi E { 1,0}. Then
t rue(x) is the set of variables assigned 1 by x and fa l se (x) is the set of
variables assigned the value 0 by x.

Definition 4.2 (Intersection and closure). Let x and y be two tuples. Then
x Ny is defined to be the tuple z such that t rue(z) = t r u e (x) N true(y) . A
set of tuples X is said to be closed under intersection if x N y E X whenever
x E X and y E X. A set X* is said to be the intersection closure of X if it
is the smallest set containing X that is closed under intersection.

We shall show that a relation p has a precise Horn representation iff it is
closed under intersection, namely, p = p*. The proof is based on the notion
of extreme tuples 3, and on Lemma 4.4 below.

Definition 4.3 (Extreme tuples). Given a set X of tuples, x E X is said to
be extreme (relative to X) if it is not in the intersection closure of { X - x } .
A tuple that is not extreme is called interior, and the set of extreme tuples
will be called the basis of X, denoted B (X) .

Remarks. It is easy to show that every set X has a unique basis B (X) and,
moreover, that B (X) is the minimal set having the same closure as X,
namely, [B(X)]* = X*. B (X) is also the maximal subset of X that is the
basis of itself, that is, B (X) is the maximal Y c_ X satisfying B (Y) = Y.
Finally, the basis of any set X can be found in time quadratic in IXI; we
simply check for every x E X whether it is extreme (relative to X) by
intersecting all tuples y E X such that true(y) ~ t rue(x) and then testing
whether the intersection differs from x.

3This notion, and its connection to Horn approximation (Corollary 4) was brought to our
attention by H. Kautz. Lemma 4.5 which makes this connection possible, appears to be a
general folklore among many researchers, although we could not trace its precise origin. An
explicit proof for the propositional case is presented below; alternative treatment is given in
[28].

256 R. Dechter, ,L Pearl

Lemma 4.4. Given a set X o f tuples and another tuple t such that t is not in
the intersection closure o f X, there exists a Horn theory H that contains X
and excludes t.

Proof. Construct H as follows: Start with the set of all Horn clauses and
remove every clause that conflicts with any tuple x E X. We will show
that among the remaining clauses, there must be at least one clause c' that
excludes t. Consider the set of variables T(t) such that:

T (t) = ['~ true(x),
x:true(x)3true(t)

and assume T(t) is nonempty. Since t is not in the intersection closure of
X, true(t) is a proper subset of T (t), and we can choose an element z from
{T(t) - t rue (t) } and form the clause c ' : Ai 'Ui ----+ Z where vi E true(t). This
clause will not be removed during the construction of H, because it is not
violated by any x E X. For c' to be violated by a tuple x, true(t) must be
a subset of true(x) and z must be in false(x), but c' was chosen such that
each set true(x) that contains true(t) also contains z. Thus, since t violates
c' and H contains c', t will not be a model of H. The argument remains
valid in case T(t) is empty, because in that case we have z = 0, thus, c'
will eliminate t but nothing else. []

Lemma 4.5. Let p be a set o f tuples. Then p is the set o f models o f some
Horn theory H i f and only i f it is closed under intersection.

Proof. Let p be closed under intersection, and let H be the tightest Horn
theory containing p. Suppose H has a model t that is not in p. Since p
is closed under intersection, t cannot be in the intersection closure of p
and, according to Lemma 4.4, it is possible to form a Horn theory, Ha,
that contains p and excludes t. The Horn theory H N H1 is clearly a tighter
approximation of p, contrary to our assumption. This establishes the "if"
part of the lemma. The "only it" part follows from showing that any clause
that satisfies x and y also satisfies x Ny (see [31] and [2, Lemma 3]). []

Corollary 4.6. 4 Let h (p) stands for any tightest Horn approximation o f an
arbitrary relation p, and let B (p) stand for the basis o f p. Then

h[B(p)] ~ h (p) ~ h(p*).

4Independently proved in [28].

Structure identification in relational data 257

Proof. For any p, we have h(p) ,~ h(p*), because Lemma 4.5 dictates
M[h(p*)] = p*, and so, if M[h(p)] were a proper subset of M[h(p*)]
= p*, it would constitute a set closed under intersection containing p
that is properly contained in p*, thus violating the status of p* as the
closure of p (see Definition 4.2). Therefore, substituting B(p) for p, we
also have h[B(p)] ~ h[B(p)*]. Moreover, since [B(p)]* = p*, we get
h[B(p)] ~ h(p*) ,.~ h(p), which proves the corollary. []

Corollary 4.7. Let X be a set o f extreme tuples. Then, for every subset Y
of X, there exists a Horn theory H that contains X - Y and excludes Y.
Conversely, i f such a theory can be found for every subset Y of X, then X
must be a set of extreme tuples.

Proof. Let Y = {Yl,Y2,...}. From Lemma 4.4, there exists a set of Horn
theories {Hi, H2 } such that Hi contains { X - y i } and excludes Yi. Clearly,
the union of clauses in {H1,H2 } is a Horn theory that satisfies the
condition of the corollary. The converse follows from the fact that if some
member of X is given by the intersection of several other elements of X then
every Horn theory that contains the latter must also contain the former. []

Corollary 4.8. The VC-dimension of (the class of) Horn theories is
O[exp(n/2)] .

Proof. The VC-dimension is defined as the maximum number of points
that can be "shattered" by Horn theories, in the sense of Corollary 4.7 [5].
Accordingly, this number is equal to the maximum number of n-tuples such
that none is in the intersection closure of the rest, namely,

n) = O[exp(n /2)] .
n/2

[]

The VC-dimension plays an important role in the framework of PAC-
learning, where it is used to assess the number of random samples needed
before the error associated with learning an incorrect theory can be bounded
[5]. Roughly speaking, Corollary 4.8 states that approximately as many sam-
ples as the square root of the 2 n possible tuples are needed before one can be
fairly confident that the Horn theory learned does not deviate substantially
from the one generating the data. Since the VC-dimension grows exponen-
tially in n, we conclude that Horn theories are not polynomially learnable
(in the PAC sense) from random examples [5]. This negative result has no
significant impact on identification tasks, where we assume that all models
of the learned theory are available explicitly. It does mean, however, that
every Horn theory H can be completely characterized by at most exp (n/2)

258 R. Dechter, J. Pearl

of its models. Conversely, at most exp(n/2) tuples would ever be needed to
characterize p if we are determined to approximate p by a Horn theory.

4.2. Recognition, description, and approximation

This subsection analyzes the three conditions required for the identifia-
bility of Horn theories. We first show that Horn theories are identifiable
by analyzing the recognition and description conditions. We later address
difficulties in finding tightest Horn approximations--the condition needed
for strong identifiability.

Theorem 4.9. Deciding whether an arbitrary set p of tuples can be represented
by a Horn theory can be done in O(Ipl 2 log Ipl) time.

Proof. According to Lemma 4.5, it is enough to test whether p is closed under
intersection. This can be done by simply checking whether the intersection
of any two elements in p is in p [17]. This method requires O(]p] 2 log ip])
steps (the number of pairs times the time to check whether the intersection
of the pair is in p), thus proving the theorem. []

Theorem 4.9 establishes the recognition part of the identification task.
We remark that of all the classes considered in this paper, the class of Horn
theories is unique in that we can decide the existence of a description in
the class without actually producing one. Consequently, the time required
for reaching this decision is independent of the length of the final theory (if
such exists).

To fully establish the identifiability of Horn theories, there remains to
show that whenever p is describable by a Horn theory, it is possible to find
one such theory in polynomial time. This task is facilitated by a learning
algorithm called HORN, recently devised by Angluin, Frazer, and Pitt [2]. 5
The learning algorithm of Angluin et al. assumes that an oracle possesses a
target Horn theory H* having m clauses, and tries to find a Horn theory
equivalent to H* by asking the oracle two types of queries: equivalence and
membership. An equivalence query asks whether some conjectured Horn
theory H is equivalent to H*, and its answer is either a confirmation or
a counterexample (i.e. an assignment that satisfies H* but not H, or vice
versa). When there are no counterexamples, the learning algorithm has
clearly succeeded in identifying a correct theory. Membership queries allow
the algorithm to ascertain whether a given tuple satisfies the target theory

5This algorithm and the possibility of simulating it on relational data was brought to our
attention by an anonymous reviewer. These results were independently recognized by Kautz,
Kearns, and Selman [17]. A direct and more efficient algorithm is described in the appendix.

Structure identification in relational data 259

H*; they are answered "yes" or "no" by the oracle. Angluin et al. have shown
that HORN finds a theory equivalent to H* in polynomial time, making
O (mn) equivalence queries and O (mZn) membership queries. Moreover,
every theory H that HORN presents as a conjecture (including, of course,
the final output theory) has at most m(n + 1) clauses.

To find a Horn description of a given relation p, we simply simulate
HORN by addressing its queries to the data p rather than to the oracle's
theory H*. A membership query is answered by simply checking whether
the tuple presented is in p. Equivalence queries can be answered as follows:
Given a conjectured Horn theory H, we first check that every tuple of p
satisfies H. If not, we return the unsatisfying tuple as a counterexample.
Otherwise, M (H) contains p, and we then determine whether M (H) = p
by the polynomial enumeration method of [1 1].

Thus, since we can correctly answer the two basic queries of HORN, the
simulation algorithm must output an exact Horn representation of p if one
exists. Moreover, since every membership query takes O(n log]p]) time, and
every equivalence theory takes O(]p]]H[) time, we conclude that a Horn
description of p can be found in

O(mn[pllHI + m2n210glp[) = O(m2n2(Ipl + loglPl))
= O(m2n21pl)

time, where m is the minimum number of clauses in any Horn theory
describing p.

This essentially establishes the identifiability of Horn theories as pre-
scribed in Definition 2.6, according to which a description must be found
in time polynomial in both the input (]p]) and the shortest possible output
(m (n + 1)). However, we can establish an even stronger result by showing
that m is polynomial in I P], namely, the size of the shortest output theory
cannot be substantially larger than the input. Indeed, it is possible to show
(see appendix) that every Horn theory with K models can be expressed by
a Horn formula that employs at most Kn 2 clauses. Translated to our set-
ting, this means that m cannot exceed [Pin 2 and hence that the simulation
algorithm will find a Horn description for p of length O(]p]n 3) clauses.
Moreover, while the time it takes the HORN algorithm to find this descrip-
tion is O(Ip13n6), a simpler algorithm can be found (see appendix), which
works directly on p, finds a description of length O (]pin 2) clauses, and runs
in only O(Ip[2n 2) steps.

We summarize this analysis by stating:

Theorem 4.10. I f a relation p has a Horn description, then one such de-
scription, having at most Ipln 2 clauses, can be found in O(Ip[2n 2) time.

260 R, Dechter, .L Pearl

Combining Theorems 4.9 and 4.10 we now have:

Corollary 4.11. Horn theories are identifiable in input-polynomial time.

We remark that the tight connection between the number of models
and the number of clauses renders Horn theories a useful tool in data
compression. Short relations are guaranteed to have short theories, whereas
the converse does not hold; some extremely long relations may have short
Horn descriptions. For example, the theory containing a single clause, say
a ~ b, has exponentially many models. Recent study reveals that such a
tight connection does not exist between the length of a Horn theory and the
number of extreme models it may have [17]. In other words, the number
of extreme models of some Horn theory with m clauses is exponential in m
and, conversely, the length of the shortest Horn theory having K extreme
models may be exponential in K and n. This implies that the tightest Horn
approximation of some long relations may be much shorter than the relation,
even if the input data consists of only extreme models. Conversely, it raises
the interesting possibility that the basis of p, which can be computed in
O([p[2) steps, could serve as a more economical description of p than any
Horn approximation of p.

This brings us to the complexity of finding tightest Horn approximations
to relations p that do not have precise Horn descriptions. In principle, we
can find such approximations by simulating the HORN algorithm again,
this time referring all its queries to the closure p* of p, which we can keep
implicit. We know from Corollary 4 that B(p) contains all the informa-
tion about p*, and that p* has a Horn representation that is the tightest
Horn approximation of p. This simulation would have a difficulty answering
equivalence queries, however. Whereas previously we were able to answer
equivalence queries in time polynomial in [p[, the size of p* may be ex-
ponential in p, and we do not have a way of testing whether M (H) c_ p*
except by enumerating M (H) and p*. Thus, the strong identifiability of
Horn theory remains an open problem.

We can still assert a weaker result:

Corollary 4.12. Horn theories are strongly identifiable for every dataset whose
intersection closure is of a polynomial size.

Corollary 4.12 might seem weak in view of the fact that there is no
simple method of estimating the size of p*, short of actually enumerating p*.
However, if the size of/9* is substantially larger than that of p, we know that
any Horn approximation is bound to be very poor. It is only when [p* - p{
is a fraction of [Pf that Horn theories can offer a reasonable approximation
to p, and it is precisely in those cases that we can find a tightest Horn

Structure identification in relational data 261

approximation in a reasonable time. This suggests a strategy of focusing the
development of Horn approximations on those cases only that can benefit
from such approximations. Given a relation p and a tolerance level z, we
begin to generate the closure of p and test whether its size exceeds (1 + z)[p[.
If it does, we know that no acceptable Horn approximation is feasible. If
[p*[< (1 + r)[p[, we proceed to find a tightest Horn approximation using
either the HORN simulation or the envelope-based algorithm described in
the appendix.

4.3. Identifying k-Horn formulas

We now restrict our attention to the identifiability of k-Horn formulas.
As before, Sk denotes the set of all subsets of X of size k or less. A

tightest k-Horn approximation can be generated by first constructing the
tightest CNF approximation over the scheme Sk and then eliminating all
non-Horn clauses from that approximation. In other words: given a relation
p on n variables and a constant k, we generate the formula F&(p) and
throw away all non-Horn clauses. We claim that the resulting Horn theory is
the tightest k-Horn approximation of p (which may have, of course, many
equivalent syntactic representations). Since, as we will show, this is also the
longest form of the tightest approximation, we then generate an equivalent
reduced version by eliminating subsumptions. To test if the resulting Horn
theory represents p exactly, we enumerate its models. Note, however, that
while there are 2 k clauses over a set of k symbols, there are only k + 1 Horn
clauses over the same set. Thus, it makes more sense to go in the opposite
direction: first enumerate all possible Horn formulas over scheme Sk, then
eliminate those clauses that conflict with any tuple of p. It can be shown
that these two methods yield the same expression. Given a CNF formula q~,
we denote by Horn (~o) the formula resulting from eliminating all non-Horn
clauses from ~0. Given a relation p, let ~k (P) be the set of all possible Horn
formulas over scheme Sk that are consistent with all tuples of p.

Theorem 4.13. Let p be an n-ary bivalued relation, k a constant, z~ = F& (p),
and q = Horn(re). Let Hk be the family o f k-Horn formulas, then

(1) q is a tightest k-Horn approximation o f re,
(2) q is maximal with respect to Hk,
(3) i f M(q) D p, no k-Horn formula describes p,
(4) reduced(q) equals the set of all k-Horn prime implicates o f q,
(5) q = ~k(p) .

Proof. (1) and (2) follow from the fact that rc already contains all k-Horn
clauses consistent with p. (3) follows immediately from the tightness of
q. Since the scheme Sk contains all subsets of size k or less, it follows

262 R. Dechter, J. Pearl

Algorithm Horn-generation(p, k)

Input: A relation p on n variables and an integer k.
Output: A k-Horn formula describing p or a k-Horn tightest

approximation of p.

(1) Enumerate Ok, the set of all Horns over Sk.
(2) Eliminate any Horn clause that violates p, resulting in

t2k (p).
(3) r / ~ = reduced(Ok (p)) (by eliminating subsumptions).
(4) Enumerate the models of q, {m 1, m2 }, using the method

in [11], and, if for some i ~< IPl, mi f[p, or if M(r/)
contains more than IPl elements, then return: "r/is a tightest
k-Horn approximation"; else, return "r/ describes p".

Fig. 3. Algorithm Horn-generation.

from Lemma 3.22 that reduced(q) contains all and only the k-Horn prime
implicates of q, thus proving (4). Finally, (5) follows from (2) and from
the observation that by definition, Ok (p) is the tightest maximal k-Horn of
p. []

Theorem 4.13 implies that algorithm Horn-generation in Fig. 3 which
outputs the formula reduced(Ok(p)), is guaranteed to return the tightest
k-Horn approximation of p relative to Ilk. The algorithm also returns a
statement as to whether the formula found is an exact representation of p.

To summarize:

Corollary 4.14. Algorithm Horn-generation provides a tightest k-Horn ap-
proximation of an arbitrary relation p. Moreover, this approximation equals
the k-Horn prime implicates of p.

Example 4.15. Consider again the relation

p(PQR) = {(100), (010), (001)}

and let k = 2. For this example, it is easier to first list the tightest k-CNF
approximation and then eliminate non-Horn clauses. We have

I-Is2(p) = {(p(P,Q) = {(10), (01), (00)}),

(p(P,R) = {(10), (01), (00)}),

(p(Q,R) = {(10), (01), (00)})},

Structure identification in relational data 263

and P = {0, 1}, Q = {0, 1}, R = {0, 1}. When applying the canonical
transformation to each of these relations, we get the (already reduced)
formula

Fs2(P) = {(-~P v -~Q), (-~Pv -~R), (-,R v-~Q)}.

Since this is a Horn formula, we need not throw any clauses away.
Computing the number of models of this theory yields four models (there
is an additional (0,0,0) tuple), so we conclude that the formula is a tightest
2-Horn approximation of p and that p is not 2-Horn identifiable. If we
generate the 3-Horn approximation for p, we get the same formula (because,
in this case, the 2-Horn approximation already contains all its Horn prime
implicates). Going through algorithm Horn-generation, step (2) yields:

Ok(p) = {(-~P V -,Q v R), (P V -~Q v -~R), (-~P v Q v -~R),

(-~P v -~Q v -~R), (-~P v -~Q), (-~P v -~R),-~R v -~Q)}.

The result of further eliminating subsumptions yields the same formula:

reduced(Ok(p))) = {(-~P v -~Q), (-~P v-~R), (-~RV -~Q)}. (14)

Example 4.15 suggests an anytime variation of the algorithm described in
Fig. 3. Instead of applying the algorithm to all subsets of size k, we first
apply the algorithm to subsets of size 2, then add the result of processing
subsets of size 3, and so on, until we get a satisfying approximation. The
algorithm is given in Fig. 4. Let us denote by S~k) all subsets of size exactly
k and by ~~(k) the set of all Horn clauses of length k that are consistent
with p.

Note that the algorithm always retains the unreduced formula generated
in the previous iteration.

We next assess the complexity of our approximation and the size of its
resulting Horn theory.

Theorem 4.16 (Complexity).
(1) The length (number of clauses) of reduced(Ok(p)) is O (kn k + l).
(2) The complexity of Horn-generation (p, k) is 0 (I P l k nk + 1).

Proof. Since worst-case analysis is unable to distinguish between a maximal
formula and its reduced form, we assume that the algorithm generates the
former.

(1) Since there are i + 1 distinct Horn clauses on a subset of size i and
since there a r e n k+l subsets in scheme Sk, the overall number of
Horn clauses is O (k n k +l).

264 R. Dechter, J. Pearl

Algorithm Anytime-Horn-generation(p, k)

Input: A relation p and a constant k.
Output: A Horn formula describing p or a k-Horn tightest

approximation to p.

(1) zr ~ = C2(l)(p)
(2) For i = 2, while i ~< k, do

• z~ ~ = z~ U C2(i) (p)
• rl ~ = r e d u c e d (z c)

• i f IMO1)I equals Ipl, then return "~/descr ibes p ' .
(3) endwhi le.
(4) Return fl and a statement "q is a tightest k-Horn approxi-

mation of p".

Fig. 4. Algorithm Anytime-Horn-generation.

(2) Generating all possible Horn clauses over Sk not in conflict with
p takes O([p[kn k+l). Eliminating subsumption may take additional
O((2n)k) , resulting in an overall time complexity of O(([p[+ k n +
2 k)n k). Finally, computing the number of models of a Horn theory
is linear in the theory size and the number of models [11]. There-
fore, testing whether this number exceeds [p[takes O(knk+l[p[))
steps. []

Corollary 4.17. The class of k-Horn theories is strongly identifiable in
O(Ipl M+I) time.

Interestingly, algorithm Horn-generation can easily be converted into an
on-line version, which is useful for stream processing. Assume the tuples of
p are not available all at once, but are obtained sequentially as a stream of
observations, normally containing many repetitions. In this case it might be
advantageous to store a parsimonious theory of past data, rather than the
data itself, and to update the theory incrementally whenever an observation
arrives that contradicts the theory. If storage space permits, the update can
be made particularly easy if in addition to the reduced approximation q
we also keep the maximal tightest Horn approximation ~z. Then, whenever
a new tuple arrives, all clauses in zc that conflict with it are eliminated,
and the resulting theory can now be reduced to form a new t/ so as to
facilitate query answering. When the size of z~ is much larger than that of
r/, it might be advantageous to store only ~/and compute the maximal zc on

Structure identification in relational data 265

the fly, update n to conform with the new tuple and reduce it back to more
economical form. The time it takes for this operation is O(n k) per update.

5. Conclusions

This paper summarizes several investigations into the prospects for identi-
fying meaningful structures in empirical data. The central aim is to identify
a computationally attractive description, in cases where the observed data
possess such a description and a best approximate description otherwise.
The feasibility of performing this task in reasonable time has been given
a formal definition through the notion of identifiability, which is normally
weaker (if C' = C) than that of learnability.

In exploring the decomposition of data into a given scheme of smaller rela-
tions, it was shown that, whereas a best approximation can always be found,
it is only in cases where the scheme is tractable that we can (tractably)
decide whether the resulting approximation constitutes an exact representa-
tion of the data. It is worth noting that the difficulty associated with this
decision can be mitigated by allowing approximation through sampling. It
is a known result by Angluin [1] that polynomial-time algorithms for exact
identification of concepts using equivalence and membership queries can
be transformed into polynomial-time PAC learning algorithms using mem-
bership queries only. In our case, the difficulty associated with confirming
the exactness of the tightest theory amounts to that of answering an equiv-
alence query, and hence, it can be transformed to answering a sequence of
(randomly sampled) membership queries, yielding an approximately correct
confirmation of the exactness of the output theory. 6

The decomposition of data into a structure taken from a class of schemes
turned out to be a harder task, one that is intractable even in cases where
each individual member of the class is tractable. The class of tree structured
schemes is an exception. Here it was shown that an effective procedure
exists for determining whether a given relation is decomposable into a tree
of binary relations and, if the answer is positive, identifying the topology
of such a tree. The procedure runs in time proportional to the size of the
relation, but whether it provides a tightest tree-structured approximation in
cases where the answer is negative is still an open question.

Focusing on bivalued data, we then explored the identification of de-
scriptions whose tractability stems from syntactic rather than structural
features. In particular, we showed that Horn theories can be identified in
input-polynomial time, that is, one can decide whether the input data pos-
sesses an exact Horn description and find such a description (whenever

6For further detail see [17].

266 R. Dechter, 3. Pearl

possible) in time polynomial with the length of the input. The strong iden-
tifiability of Horn theories, that is, the problem of finding a tightest Horn
approximation, remains open. Since there are small sets of models with ex-
ponentially long tightest Horn approximations [17], the best one can hope
for is an output-polynomial algorithm for generating such approximations.
So far, only sampling algorithms are known for this task, namely, algorithms
which guarantee that the output theory is "probably almost tightest", thus
rendering Horn theories "strongly PAC-identifiable". Whether there is an
output-polynomial algorithm that returns the tightest Horn approximation
is still an open question.

By contrast, k-Horn theories were shown to be strongly identifiable in
polynomial time, when k is bounded. Both anytime and on-line algorithms
where discussed for identifying these theories.

An important issue not dealt with in this paper is assessment of the
goodness of the approximations provided by Horn theories. Another issue
is the feasibility of constructing both an upper bound and a lower bound
approximations of p, in the manner discussed in [27] and also in [9].
Finally, we should mention that the methods presented in this paper will
also handle partial observations, namely, observations of truncated tuples of
p.

Appendix A. Proof of Theorem 4.10

In this appendix we prove the two assertions stated in Theorem 4.10,
Section 4.2:7

(1) Every Horn formula with K models has an equivalent Horn formula
that employs at most Kn 2 clauses.

(2) Given a relation p, closed under intersection, it is possible to find a
Horn description of p in time O(Ip[2n2).

Let x and y be two arbitrary tuples. We say that x is an ancestor of y
(equivalently, y is a descendant of x) if t rue(x) ~ true(y); we say that x is
a parent of y (equivalently, y is a child of x) if x is an ancestor of y and
t t rue(x) I = [true(y) + 1 [. Let p be a set of tuples closed under intersection,
we say that x is a least ancestor o f y (relative to p) i f x is in p and y has
no other ancestor z in p such that true(z) c true(x) . Note that if y is not
in p, then it either has a unique least ancestor (since the intersection of any
two ancestors in p yields another ancestor in p), or it has no ancestor in p,
in which case we say that the least ancestor of y is ~.

7We are indebted to Dana Angluin for outlining the method used in this proof.

Structure identification in relational data 267

Define the envelope E (p) of p as the set of tuples not in p that either
have a child in p or have no child at all (the latter corresponds to the tuple
containing all zeros) . Clearly, there are at most nip I elements in E (p) . Also,
every tuple that is not in E (p) must ei ther be in p or have a descendant in

E(p) .
Let e be an element in E (p) and let e' be the (unique) least ancestor

o f e in p (possibly 0). Attach to every pair (e , e ') a Horn theory H(e ,e ')
containing one clause, c~ = antecedent ~ vi for every variable vi in true(e') -
true(e), where antecedent stands for the conjunct ion of all positive literals
o f true(e). 8 I f true(e) = {0}, then ci = vi and i f e' = 0, then vi = O. Note
that H(e ,e ') excludes those and only those tuples that are ancestors o f e

and not of e'.

Lemma A.1. Let p be a relation closed under intersection and let H (p) be
the Horn formula formed by collecting the clauses from all the subtheories
H (e, e'), where e ranges over all elements o f E (p). Then H (p) constitutes
a precise description o f p, and contains at most Ipln 2 clauses.

Proof. It is easy to show that every tuple in p is a model of H(p) . For if
a tuple x in p conflicts with any H(e ,e ') then x must be an ancestor of e
and not of e', and then the intersection x n e' which is in p would also be

an ancestor of e with a smaller number of ones than e' . Hence e' cannot be
the least ancestor o f e in p.

To prove that every model of H (p) is in p we show that the opposite
al ternative leads to a contradict ion. Suppose there is a model y of H (p) that
is not in p. Since H (p) excludes all tuples in E(p) , it is clear that y cannot
be in E(p) . Since y itself is not in p or in E(p) , there must be at least one
descendant o f y that is in E (p) ; let z be a maximal such descendant (i.e.,
there is no x E E (p) that is an ancestor o f z and a descendant o f y. Being
in E(p) , z must contr ibute a set of clauses H (z , z') to H, where z' is the
least ancestor of z in p and H (z , z') excludes all ancestors o f z unless they
are also ancestors o f z'. Thus, i f y is a model of H, it must be that y is also
an ancestor o f z'. Now consider any descending path P from y to z (i.e.,
every pair o f successive elements along P consists of a parent followed by
its child). Since y is not in E (p) and z' is in p, P must contain an element
z" ~ E (p) such that z" is an ancestor of z' and a descendant o f y. But
this contradicts our assumption that z is the maximal descendant o f y in
E(p) . []

SFor example, for variables a, b, c, d, and e = (1,0,1,0), e' = (1,1,1,1), we have
true(e) = {a, c}, true(e') = {a, b, c, d}, and H(e, e') = {a A c --* b, a A c ~ d}.

268 R. Dechter, J. Pearl

Theorem A.2. Every Horn formula with K models has an equivalent Horn
formula that employs at most Kn 2 clauses.

Proof. The proof follows immediately from Lemma A. 1. If p stands for the
models of a Horn formula H', then p must be closed under intersection and
contain precisely K models. From Lemma A. 1, an equivalent Horn formula
H can be constructed from the elements of E(p) that describes p precisely
and employs at most n[E(p)[clauses. Since, each of the K elements in p
can contribute at most n elements to E(p) , we conclude that the number
of clauses in H is at most Kn 2. []

We will now prove the second claim by analyzing the complexity of
constructing H.

Theorem A.3. Given a relation p, closed under intersection, it is possible to
find a Horn description of p in time O([p[Zn2).

ProoL Assume [p[= K. The construction of H consists of three parts:

(a) identifying the elements of the envelope E (p),
(b) identifying the pair (e ,e ') for every element in E(p) , and
(c) constructing the formulas H(e, e') for every pair found in (b).

Part (a) can be done in O(nKlogK) time, simply testing which of the n
parents of each member of p is not in p.

Part (b) requires the identification of the least ancestor e' ~ p for each
member e ~ E(p) . Clearly, there are at most nK elements e in E(p) , and
identifying e' requires at most 2nK steps (i.e., taking each element of p and
testing whether it is an ancestor of e, then taking its intersection with that
of previously found ancestors of e). This takes a total of at most 2n2K 2
operations.

Part (c) requires at most n operations for each of the (e ,e ') pairs, of
which there are at most nK. This gives a total of n2K operations.

The dominant effort is clearly part (b) , yielding a total of O (K2n 2) steps,
thus confirming the theorem. []

We remark that while the envelope-based algorithm described in the proof
of Theorem A.3 yields a theory of size O ([p[n 2) and the HORN simulation
algorithm produces a theory of size O([pln3), the latter has the advantage
of always producing theories that lie within a factor (n + 1) of the shortest
possible theory representing p. Thus, in cases where a long p is suspected of
having a short Horn description, it is worth running HORN instead of the
envelope-based algorithm. Alternatively, it is possible in such cases to run
the HORN algorithm directly on the theory H found by the envelope-based

Structure identification in relational data 269

algorithm, so as to reduce its length. Given any Horn theory H, if we use
H to answer the queries of HORN, then HORN is guaranteed to yield a
theory equivalent to H, whose length is within a factor n + 1 of Hmin, the
shortest Horn equivalent of H. This simplification procedure runs in time
proportional to n lHI21Hminl.

Acknowledgement

We are indebted to many colleagues for most generous assistance. We
deeply appreciate the insightful comments of three anonymous referees,
who were responsible for many improvements and for illustrating how we
could use the HORN algorithm. Conversations with Henry Kautz, Michael
Kearns, and Bart Selman have pushed us toward many of the results in
Sections 4.1 and 4.2, and the ideas of Dana Angluin were responsible for
the claims and proof of Theorem 4.10. Jeff Ullman has been most helpful
in generating a proof of Lemma 3.8, and Itay Meiri and Amir Weinstein
contributed several ideas in the early stages of this paper.

References

[1] D. Angluin, Queries and concept learning, Mach. Learn. 2 (1988) 319-342.
[2] D. Angluin, M. Frazier and L. Pitt, Learning conjunctions of Horn clauses, in: Proceedings

31st Annual Symposium on Foundations of Computer Science, VoL I (IEEE Computer
Society Press, St. Louis, MO, 1990).

[3] S. Arnborg, Efficient algorithms for combinatorial graphs with bounded decom-
posability--a survey, BIT 25 (1985) 2-23.

[4] C. Beeri, R. Fagin, D. Maier and M. Yannakakis, On the desirability of acyclic database
schemes, J. ACM 30 (1983) 479-513.

[5] A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth, Learnability and the
Vapnik-Chervonenkis dimension, J. ACM 36 (1989) 929-965.

[6] R.K. Brayton, G.D. Hachtel and A.L. Sangiovanni-Vincentelli, Multilevel logic synthesis,
Proc. 1EEE 78 (2) (1990).

[7] C.K. Chow and C. N. Liu, Approximating discrete probability distributions with
dependence trees, IEEE Trans. Inf. Theor. 14 (1968) 462-467.

[8] S.A. Cook, The complexity of theorem-proving procedures, in: Proceedings 3rd Annual
A CM Symposium on the Theory of Computing, New York (1971) 151-158.

[9] R. Dechter, Decomposing a relation into a tree of binary relations, J. Comput. Syst. Sci.
41 (1990) 2-24 (Special Issue on the Theory of Relational Databases).

[10] R. Dechter, Constraint networks, in: Encyclopedia of Artificial Intelligence (Wiley, New
York, 2nd ed., 1992) 276-285.

[11] R. Dechter and A. Itai, The complexity of finding all solutions, UCI Rept., University
of California, Irvine, CA (1991).

[12] R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems,
Artif. Intell. 34 (1) (1987) 1-38.

[13] R. Dechter and J. Pearl, Tree clustering for constraint networks, Artif. Intell. 38 (3)
(1989) 353-366.

[14] W.F. Dowling and J.H. Gallier, Linear time algorithms for testing the satisfiability of
propositional Horn formula, J. Logic Program. 3 (1984) 267-284.

270 R. Dechter, J. Pearl

[15] E.C. Freuder, Complexity of k-structured constraint satisfaction problems, in: Proceedings
AAAI-90, Boston, MA (1990) 4-9.

[16] C. Glymour, R. Scheines, P. Spines and K. Kelly, Discovering Causal Structure (Academic
Press, Orlando, FL 1987).

[I 7] H.A. Kautz, M. Kearns and B. Selman, Horn Approximations of Empirical Data, AT&T
Bell Laboratories (1992).

[18] P.F. Lazarsfeld, Latent structure analysis, in: S.A. Stouffer, L. Guttman, E.A. Suchman,
P.F. Lazarsfeld, S.A. Star and J.A. Claussen, eds., Measurement and Prediction (Wiley,
New York, 1966).

[19] D. Maier, The Theory of Relational Databases (Computer Science Press, Rockville, MD,
1983).

[20] I. Meiri, R. Dechter and J. Pearl, Tree decomposition with applications to constraint
processing, in: Proceedings AAAI-90, Boston, MA (1990) 10-16.

[21] U. Montanari, Networks of constraints, fundamental properties and applications to
picture processing, Inf. Sci. 7 (1974) 95-132.

[22] U. Montanari and F. Rossi, Fundamental properties of networks of constraints: a new
formulation, in: L. Kanal and V. Kumar, eds,, Search in Artificial Intelligence (Springer,
New York, 1988) 426-449.

[23] B.K. Natarajan, On learning Boolean functions, in: Proceedings 19th Annual ACM
Symposium on Theory of Computation, New York (1987) 296-304.

[24] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(Morgan Kaufmann, San Mateo, CA, 1988).

[25] J. Pearl and T. Verma, A theory of inferred causation, in: J.A. Allen, R. Fikes and
E. Sandewall, eds., Principles of Knowledge Representation and Reasoning: Proceedings
Second International Conference (Morgan Kaufmann, San Mateo, CA, 1991) 441-452.

[26] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81-106.
[27] B. Selman and H.A. Kautz, Knowledge compilation using Horn approximation, in:

Proceedings AAAI-91, Anaheim, CA (1991).
[28] B. Selman and H.A. Kautz, Tractability through theory approximation, AI Tech. Rept.,

AT&T Bell Laboratories, Murray Hill, NJ (1992).
[29] J. Ullman, Personal communication (1991).
[30] L.G. Valiant, A theory of the learnable, Commun. ACM 27 (11 (1984) 1134-1142.
[31] M.A. van Emden and R.A. Kowalski, The semantics of the predicate logic as a

programming language, J. ACM 23 (1976) 733-742.

