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1. Introduction

The study of causation is central to the understanding of human reasoning.
Inferences involving changing environments require causal theories which
make formal distinctions between beliefs based on passive observations and
those reflecting intervening actions [Geffner, 1989, Goldszmidt and Pearl,
1992, Lifchitz, 1987, Pearl, 1988a, Shoham, 1988]. In applications such as di-
agnosis [Patil et al., 1982, Reiter, 1987, qualitative physics [Bobrow, 1985],
and plan recognition [Kautz, 1987, Wilensky, 1983], a central task is that of
finding a satisfactory ezplanation to a given set of observations, and the

- meaning of explanation is intimately related to the notion. of causation. . .

Most Al works have given the term “cause” a procedural semantics, at-
tempting to match the way people use it in reasoning tasks, but were not
concerned with the experience that prompts people to believe that “a causes
b”, as opposed to, say, “b causes a” or “c causes both a and b.” The
question of choosing an appropriate causal ordering received some atten-
tion In qualitative physics, where certain interactions attain directionality
despite the instantaneous and symmetrical nature of the underlying equa-
tions, as in “the current causes the voltage to drop across the resistor”
[Forbus and Gentner, 1986]. In some systems causal ordering is defined as
the ordering at which subsets of variables can be solved independently of oth-
ers [Iwasaki and Simon, 1986], in other systems it follows the way a distur-
bance is propagated from one variable to others [de Kleer and Brown, 1986].

“This paper is a modified version of one presented at the Second International Conference
conference on the Principles of Knowledge Representation and Reasoning, Cambridge,
Massachusetts, April 1891.
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Yet these choices are made as a matter of convenience, to fit the structure
of a given theory, and do not reflect features of the empirical environment
which compelled the formation of the theory.

An empirical semantics for causation is important for several reasons.
First, an intelligent system attempting to build a workable model of its
environment cannot rely exclusively on preprogrammed causal knowledge,
but must be able to translate direct observations to cause-and-effect rela-
tionships. Second, by tracing empirical origins we stand to obtain an in-
dependent gauge for deciding which of the many logics proposed for causal
reasoning is sound and/or complete, and which provides a proper account of
causal utterances such as “a explains 0”7, “a suggests 0”7, “a tends to cause
b7, and “a actually caused b, etc.

While the notion of causation is often associated with those of necessity
and functional dependence, causal expressions often tolerate exceptions, pri-
marily due to missing variables and coarse description. We say, for example,
“reckless driving causes accidents” or “you will fail this course because of
your laziness”. Suppes [Suppes, 1970] has argued convincingly that most
causal utterances in ordinary conversation reflect probabilistic, not categori-
cal relations'. Thus, probability theory should provide a natural language for
capturing causation [Reichenbach, 1956, Good, 1983]. This is especially true
when we attempt to infer causation from (noisy) observations — probability
calculus remains an unchallenged formalism when it comes to translating
statistical data into a system of revisable beliefs.

However, given that statistical analysis is driven by covariation, not cau-
sation, and assuming that most human knowledge derives from statistical
observations, we must still identify the clues that prompt people to perceive

that emulates this perception.

Temporal precedence is normally assumed essential for defining causa-
tion, and it is undoubtedly one of the most important clues that peo-
ple use to distinguish causal from other types of associations. Accord-
ingly, most theories of causation invoke an explicit requirement that a cause
precedes its effect in time [Good, 1983, Reichenbach, 1956, Shoham, 1988,
Suppes, 1970]. Yet temporal information alone cannot distinguish genuine
causation from spurious associations caused by unknown factors. In fact
the statistical and philosophical literature has adamantly warned analysts
that, unless one knows in advance all causally relevant factors, or unless one
can carefully manipulate some variables, no genuine causal inferences are
possible [Cartwright, 1989, Cliff, 1983, Eells and Sober, 1983, Fisher, 1953,

'See [Dechter and Pearl, 1991] for a treatment of causation in the context of categorical
data.

causal relationships in the data, and we must find a computational model. .
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Gérdenfors, 1988, Holland, 1986, Skyrms, 1980]%. Neither condition is real-
izable in normal learning environments, and the question remains how causal
knowledge is ever acquired from experience.

This paper introduces a minimal-model semantics of causation which pro-
vides a plausible account for how causal models could be inferred from ob-
servations. Using this semantics we show that genuine causal influences
can in many cases be distinguished from spurious covariations and, more-
over, the direction of causal influences can often be determined without
resorting to chronological information. (Although, when available, chrono-
logical information can significantly simplify the modeling task.) Such se-
mantics should be applicable, therefore, to the organization of concurrent
events or events whose chronological precedence cannot be determined with
precision, (e.g. “old age explains disabilities”) in the spirit of Glymour
|Glymour et al., 1987] and Simon [Simon, 1954].

This paper is organized as follows. In Section 2 we define the notions of
causal models and causal theories, and describe the task of causal modeling
as an identification game scientists play against Nature. In Section 3 we
introduce the minimal-model semantics of causation and exemplify its oper-
ability and plausibility on a simple example. Section 4 identifies conditions
under which effective algorithms exist that uncover the structure of casual
influences as defined above. One such algorithm (called IC) is introduced
in Section 5, and is shown to be sound for the class of stable distributions,
even when some variables are not observable®. Section 6 extracts from the
IC-algorithm the essential conditions under which causal influences are iden-
tified and proposes these as independent definitions of genuine influences
and spurious associations, with and without temporal information. Section
7 provides an intuitive justification for the definitions proposed in Section
6, showing that our theory conforms to the common understanding of cau-
sation as a stipulation of stable behavior under external interventions. The
definitions are shown to be in line with accepted standards of controlled ex-
perimentation, save for requiring the identification of “virtual” experimental
conditions within the data itself. In Section 8 we invoke the “virtual con-
trol” metaphor to elucidate how causal relationships can still be ascertained
in the absence of temporal iwformation. We then offer an explanation for the
puzzling, yet universal agreement between the temporal and the statistical
aspects of causation.

*Some of the popular quotes are: “No causation without manipulation” [Holland, 1986,
“No causes in, no causes out” [Cartwright, 1989], “No computer program can take account
of variables that are not in the analysis” [CLff, 1983].

*Proofs can be found in [Verma, 1992].
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2. The causal modeling framework

We view the task of causal modeling as an identification game which
scientists play against Nature. Nature possesses stable causal mechanisms
which, on a microscopic level are deterministic functional relationships be-
tween variables, some of which are unobservable. These mechanisms are
organized in the form of an acyclic schema which the scientist attempts to
identify.

DEFINITION 1 A causal model of a set of variables U is a directed acyclic
graph (dag), in which each node corresponds to a distinct element of U.

The nodes of the dag correspond to the variables under analysis, while the
links denote direct causal influences among the variables. The causal model
serves as a blue print for forming a “causal theory” — a precise specification
of how each variable is influenced by its parents in the dag. Here we as-
sume that Nature is at liberty to impose arbitrary functional relationships
between each effect and its causes and then to perturb these relationships by
introducing arbitrary (vet mutually independent) disturbances. These dis-
turbances reflect “hidden” or unmeasurable conditions and exceptions which
Nature chooses to govern by some undisclosed probability function.

DEFINITION 2 A causal theory is a pair T = <D,@p> consisting of a
causal model D and a set of parameters ©p compatible with D. ©p assigns
a function z; = f;[palz;), ;] and a probability measure g;, to each z; € U,
where pa(z;) are the parents of z; in D and each ¢; is a random disturbance
distributed according to g;, independently of the other ¢’s and of any pre-
ceding variable z; : 0 < j <. (The variables are assumed ordered such that
all arcs point from lower to higher indices.) ‘ ' o

This requirement of independence renders each disturbance “local” to one
parents-child family; disturbances that influence several families simultane-
ously will be treated explicitly as “latent” variables (see Definition 3).

Once a causal theory T is formed, it defines a joint probability distribution
P(T) over the variables in the system, and this distribution reflects some
features of the causal model (e.g., each variable must be independent of
its grandparents, given the values of its parents). Nature then permits the
scientist to inspect a select subset O C U of “observed” variables, and to
ask questions about Py, the probability distribution over the observables,
but hides the underlying causal theory as well as the structure of the causal
model. We investigate the feasibility of recovering the topology of the dag,
D, from features of the probability distribution.*

4This formulation invokes several idealizations of the actual task of scientific discovery.
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3. Model preferences (Occam’s razor)

In principle, U being unknown, there is an unbounded number of models
that would fit a given distribution, each invoking a different set of “hidden”
variables and each connecting the observed variables through different causal
relationships. Therefore with no restriction on the type of models considered,
the scientist is unable to make any meaningful assertions about the structure
underlying the phenomena. Likewise, assuming U = O but lacking temporal
information, he/she can never rule out the possibility that the underlying
model is a complete (acyclic) graph; a structure that, with the right choice
of parameters can mimic (see Definition 4) the behavior of any other model,
regardless of the variable ordering. However, following the standard method
of scientific induction, it is reasonable to rule out any model for which we
find a simpler, less expressive model, equally consistent with the data (see
Definition 6). Models that survive this selection are called “minimal models”
and with this notion, we can construct our definition of inferred causation:

“A variable X is said to have a causal influence on a variable Y if a strictly
directed path from X to Y exists in every minimal model consistent with
the data”

DEeFINITION 3 Given a set of observable variables O C U, a latent struc-
ture is a pair L = <D, 0> where D is a causal model over U.

DEeFINITION 4 One latent structure L = <D,0> is preferred to another
L' = <D',O> (written L < L') iff D" can mimic D over O, i.e. for every
©p there exists a O’ s.t. Poj(<D’, ©h>) = Po)(<D,0p>).

Two latent structures are equivalent, written L' = L, iff L < L' and
L>=1L.

Note that the preference for simplicity imposed by Definition 4 is gauged
by the expressive power of a model, not by its syntactic description. For ex-
ample, one latent structure L1 may invoke many more parameters than L2
and still be preferred, if L2 is capable of accommodating a richer set of proba-
bility distributions over the observables. One reason scientists prefer simpler
models is that such models are more constrained, thus more falsifiable; they

It assumes, for example, that the scientist obtains the distribution directly, rather than
events sampled from the distribution. This assumption is justified when a large sample
is available, sufficient to reveal all the dependencies embedded in the distribution. Ad-
ditionally, we assume that the observed variables actually appear in the original causal
theory and are not some aggregate thereof. Aggregation might result in feedback loops
which we do not discuss in this paper. Our theory also takes variables as the primitive en-
tities in the language, not events which permits us to include “enabling” and “preventing”
relationships as part of the mechanism.
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provide the scientist with less opportunities to overfit the data hindsightedly
and, therefore attain greater credibility [Pearl, 1978, Popper, 1959].

We also note that the set of dependencies induced by a causal model pro-
vides a measure of its expressive power, i.e., its power of mimicing other
models. Indeed, L1 cannot be preferred to L2 if there is even one observ-
able dependency that is induced by L1 and not by L2. Thus, tests for
preference and equivalence can often be reduced to tests of induced depen-
dencies which, in turn, can be determined directly from the topology of the
dags, without ever concerning ourselves with the set of parameters. (For
example, see Theorem 1 below and [Frydenberg, 1989, Pearl et al., 1989,
Verma and Pearl, 1990]).

DEFINITION 5 A latent structure L is minimal with respect to a class L
of latent structures iff for every L' € £, L = L' whenever L' < L.

DEFINITION 6 L = <D, 0> is consistent with a distribution P over O if
D can accommodate some theory that generates P, i.e. there exists a Gp

s5.t. P[O}(<D,@D>> =P

Clearly, a necessary (and often sufficient) condition for L to be consistent
with P, is that the structure of L can account for all the dependencies
embodied in P.

DEFINITION 7 (INFERRED CAUSATION) Given P, a variable C has a
causal influence on E iff there exists a directed path C —* E in every
minimal latent structure consistent with P.

" We view this definition as normative, because itis based onone of the least
disputed norms of scientific investigation: Occam’s razor in its semantical
casting. However, as with any scientific inquiry, we make no claims that
this definition is guaranteed to always identify stable physical mechanisms
in nature; it identifies the only mechanisms we can plausibly infer from
non-experimental data.

As an example of a causal relation that is identified by the definition
above, imagine that observations taken over four variables {a,b,c,d} reveal
two vanishing dependencies: “a is independent of ” and “d is independent
of {a,b} given ¢”. Assume further that the data reveals no other indepen-
dence, except those that logically follow from these two. This dependence
pattern would be typical for example, of the following variables: a = having
cold, b = having hay-fever, ¢ = having to sneeze, d = having to wipe ones
nose. It is not hard to see that any model which explains the dependence
between ¢ and d by an arrow from d to ¢, or by a hidden common cause
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(d) (e)

Figure 1: Causal models illustrating the soundness of ¢ — d. The node ()
represents a hidden variable.

() between the two, cannot be minimal, because any such model would be
able to out-mimic the minimal model shown in Figure 1(a) (or the one in
Figure 1(b)) which reflects all observed independencies. For example, the
model of Figure 1(c), unlike that of Figure 1(a), accommodates distribu-
tions with arbitrary relations between a and b. Similarly, Figure 1(d) is not
minimal as it fails to impose the conditional independence between d and
{a,b} given c. In contrast, Figure 1(e) is not consistent with the data since
it imposes a marginal independence between {a,b} and d, which was not
observed. (For theory and method of identifying conditional independencies
in causal graphs see [Pearl, 1988b] and [Pearl et al., 1989])

4. Proof theory and stable distributions

It turns out that while the minimality principle is sufficient for forming a
normative and operational theory of causation, it does not guarantee that
the search through the vast space of minimal models would be computa- -
tionally practical. If Nature truly conspires to conceal the structure of the
underlying model she could still annotate that model with a distribution
that matches many minimal models, having totally disparate structures. To
facilitate an effective proof theory, we rule out such eventualities, and impose
a restriction on the distribution called “stability” (or “dag-isomorphism” in
[Pearl, 1988b]). It conveys the assumption that all vanishing dependencies
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are structural, not formed by incidental equalities of numerical parameters®.

DEFINITION 8 Let I(P) denote the set of all conditional independence
relationships embodied in P. A causal theory T = <D,©Op> gener-
ates a stable distribution iff it contains no extraneous independences, i.e.
I(P(<D,0p>)) C I(P(<D,®,>)) for any set of parameters ©'.

With the added assumption of stability, every distribution has a unique
causal model (up to equivalence), as long as there are no hidden variables.
This uniqueness follows from the fact that the structural constraints that an
underlying dag imposes upon the probability distribution are equivalent to a
finite set of conditional independence relationships asserting that, given its
parents, each variable is conditionally independent of all its non-descendents
[Pearl et al., 1989]. Therefore two causal models are equivalent (i.e. they can
mimic each other) if and only if they relay the same dependency information.
The following theorem, which is founded upon the dependency information,
states necessary and sufficient conditions for equivalence of causal models
which contain no hidden variables.

THEOREM 1 [VERMA AND PEARL, 1990] When U = O, two causal mod-
els are equivalent iff their dags have the same links and same set of uncoupled
head-to-head nodes®.

The search for the minimal model then boils down to recovering the struc-
“ture of the underlying dag from queries about the dependencies portrayed in-
that dag. This search is exponential in general, but simplifies significantly
when the underlying structure is sparse (see [Spirtes and Glymour, 1991,
Verma and Pearl, 1990] for such algorithms).

Unfortunately, the constraints that a latent structure imposes upon the
distribution cannot be completely characterized by any set of dependency
statements. However, the maximal set of sound constraints can be identified
[Verma and Pearl, 1990] and it is this set that permits us to recover sound
fragments of latent structures.

31t is possible to show that, if the parameters are chosen at random from any reason-
able distribution, then any unstable distribution has measure zero [Spirtes et al., 1989].
Stability precludes deterministic constraints. Less restrictive assumptions are treated in
[Geiger et al., 1990].

%i.e. converging arrows emanating from non-adjacent nodes, such as @ — ¢ « b in Figure

1(a).
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5. Recovering latent structures

When Nature decides to “hide” some variables, the observed distribution P
need no longer be stable relative to the observable set O, i.e. P may result
from many equivalent minimal latent structures, each containing any num-
ber of hidden variables. Fortunately, rather then having to search through
this unbounded space of latent structures, it turns out that for every latent
structure L, there is a dependency-equivalent latent structure called the pro-
jection of L on O in which every unobserved node is a root node with exactly
two observed children:

DEFINITION 9 A latent structure Lio) = <Djp}, O> Is a projection of an-
other latent structure L iff

1. Every unobservable variable of Digj Is a parentless common cause of
exactly two non-adjacent observable variables.

2. For every stable distribution P generated by L, there exists a stable
distribution P' generated by Loy such that I(Fo)) = I(P/g).

THEOREM 2 [VERMA, 1992] Any latent structure has at least one projec-
tion. :

It is convenient to represent projections by bi-directional graphs with only
the observed variables as vertices (i.e., leaving the hidden variables implicit).
Fach bi-directed link in such a graph represents a common hidden cause of
the variables corresponding to the link’s end points.

Theorem 2 renders our definition of inferred causation (Definition 7) op-
erational; we will show (Theorem 3) that if a certain link exists in a distin-
guished projection of any minimal model of P, it must indicate the existence
of a causal path in every minimal model of P. Thus the search reduces to
finding a projection of any minimal model of P and identifying the appropri-
ate links. Remarkably, these links can be identified by a simple procedure,
the IC-algorithm, that is not more complex than that which recovers the
unique minimal model in the case of fully observable structures.

IC-Algorithm (Inductive Causation)
Input: P a sampled distribution.

A

Output: core(P) a marked hybrid acyclic graph.

~

isin I(P), namely a and b are independent in P, conditioned on Sg.
If there is no such S,;, place an undirected link between the variables,
a—b.

1. For each pair of variables a and b, search for a set S, such that (a, Sy, b)
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2. For each pair of non-adjacent variables a and b with a common neighbor
c, check if c € Sy.
If it is, then continue.
If it is not, then add arrowheads pointing at ¢, (i.e. a — ¢ « b).

~

3. Form core(P) by recursively adding arrowheads according to the following
two rules:”
If there is a directed path from a to b and, in addition there is an edge
between a and 0, then add an arrowhead to that edge pointing toward b.
If a and b are not adjacent but there exists a node ¢ that is adjacent to

both @ and b such that ac and ¢ — b, then direct ¢ — b.
4. If o and b are not adjacent but EE and ¢ — b, then mark the link ¢ — b.

The result of this procedure is a substructure called core(P) in which every
marked uni-directed arrow X — Y stands for the statement: “X has a
causal influence on Y (in all minimal latent structures consistent with the
data)”. We call these relationships “genuine” causal influences (e.g. ¢ — d
in previous Figure 1a).

DEFINITION 10 For any latent structure L, core(L) is defined as the hybrid
graph® satisfying (1) two nodes are adjacent in core(L) iff they are adjacent
or they have a common unobserved cause in every projection of L, and (2)
a link between a and b has an arrowhead pointing at b iff @ — b or a and b
have a common unobserved cause in every projection of L.

THEOREM 3 (soundness) For any latent structure L = <D,0> and an
~associated theory T = <D,Op> if P(T) is stable then every arrowhead
identified by IC is also in core(L).

COROLLARY 1 If every link of the directed path C' —* AE is marked in
core(P) then C has a causal influence on E according to P.

6. Probabilistic definitions for causal relations

The IC-algorithm takes a distribution P and outputs a dag, some of its links
are marked uni-directional (denoting genuine causation), some are unmarked
uni-directional (denoting potential causation), some are bi-directional (de-
noting spurious association) and some are undirected (denoting relation-
ships that remain undetermined). The conditions which give rise to these

=
ab denotes either a — b or a «+ b, and a — b denotes an undirected edge.

8In a hybrid graph links may be undirected, uni-directed or bi-directed.



799

labelings constitute operational definitions for the various kinds of causal
relationships. In this section we present explicit definitions of potential and
genuine causation, as they emerge from Theorem 3 and the IC-algorithm.
Note that in all these definitions, the criterion for causation between two
variables, X and Y, will require that a third variable Z exhibit a specific
pattern of interactions with X and Y. This is not surprising, since the very
essence of causal claims is to stipulate the behavior of X and Y under the
influence of a third variable, one that corresponds to an external control
of X. Therefore, our definitions are in line with the paradigm of “no cau-
sation without manipulation” [Holland, 1986]). The difference is only that
the variable Z, acting as a virtual control of X, must be identified within
the data itself. The IC-algorithm provides a systematic way of searching for
variables Z that qualify as virtual controls.

Detailed discussions of these definitions in terms of virtual control are
given in Sections 7 and 8.

DEFINITION 11 (POTENTIAL CAUSE) A variable X has a potential causal
influence on another variable Y (inferable from P), if

1. X and Y are dependent in every context.
2. There exists a variable Z and a context S such that

(i) X and Z are independent given S
(ii) Z and Y are dependent given S

By “context” we mean a set of variables tied to specific values. Note that
this definition precludes a variable X from being a potential cause of itself
or of any other variable which functionally determines X.

DEFINITION 12 (GENUINE CAUSE) A variable X has a genuine causal
influence on another variable Y if there exists a variable Z such that:

1. X and Y are dependent in any context and there exists a context S
satisfying:

(i) Z is a potential cause of X
(ii) Z and Y are dependent given S.
(iii) Z and Y are independent given SU X,

or,

2..X and Y are in the transitive closure of rule 1.
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DEFINITION 13 (SPURIOUS ASSOCIATION) Two variables X and Y are
spuriously associated if they are dependent in some context S and there
exists two other variables Z, and Z, such that:

1. Z; and X are dependent given S
2. Zy and Y are dependent given S
3. Z; and Y are independent given S

4. Zy and X are independent given S

Succinctly, using the predicates [ and —/ to denote independence and
dependence respectively, the conditions above can be written:

1. =I(Z,, X|S)
2. ~I(Zs,Y]S)
3. I(Z1,Y]S)
4. 1(Zy, X|S)

Definition 11 was formulated in [Pearl, 1990] as a relation between events
(rather than variables) with the added condition P(Y|X) > P(Y) in the
spirit of [Good, 1983, Reichenbach, 1956, Suppes, 1970]. Condition 1(i) in
Definition 12 may be established either by statistical methods (per Defi-
nition 11) or by other sources of information e.g., experimental studies or
temporal succession (i.e. that Z precedes X in time).
~ When temporal information is available, as it is assumed in most theo-
ries of causality ([Granger, 1988, Spohn, 1983, Suppes, 1970}), then Defini-
tions 12 and 13 simplify considerably because every variable preceding and
adjacent to X now qualifies as a “potential cause” of X. Moreover, adja-
cency (i.e. condition 1 of Definition 11) is not required as long as the context
S is confined to be earlier than S. These considerations lead to simpler con-
ditions distinguishing genuine from spurious causes as shown next.

DEFINITION 14 (GENUINE CAUSATION WITH TEMPORAL INFORMATION)
A variable X has a causal influence on Y if there is a third variable Z and
a context S, both occurring before X such that:

1. =I1(Z,Y]S)
2. I(Z,Y|SUX)
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DEFINITION 15 (SPURIOUS ASSOCIATION WITH TEMPORAL INFOR-
MATION) Two variables X and Y are spuriously associated if they are
dependent in some context S, X precedes Y and there exists a variable Z
satistying:

1. 1(2,Y|S)
2. ~1(Z,X|9)

7. Causal intuition and virtual experiments

This section explains how the formulation introduced above conforms to
common intuition about causation and, in particular, how asymmetric prob-
~abilistic dependencies can be transformed into judgements about asymmet-
ric causal influences. We shall first uncover the intuition behind Definition
14, assuming the availability of temporal information, then (in Section 8)
generalize to non temporal data, per Definition 12.

The common intuition about causation is captured by the heuristic def-
inition [Rubin, 1989]: “X is a cause for Y if an external agent interfering
only with X can affect Y7 .

Thus, causal claims are much bolder than those made by probability state-
ments; not only do they summarize relationships that hold in the distribu-
tion underlying the data, but they also predict relationships that should
hold when the distribution undergoes changes, such as those inferable from
external intervention. The claim “X causes Y7 asserts the existence of a
stable dependence between X and V', one that cannot be attributed to some
prior cause common to both, and one that should be preserved when an
exogenous control is applied to X.

This intuition requires the formalization of three notions:

1. That the intervening agent be “external” (or “exogenous”)
2. That the agent can “affect” YV
3. That the agent interferes “only” with X

If we label the behavior of the intervening agent by a variable Z, then
these notions can be given the following probabilistic explications:

1. Externality of Z: Variations in Z must be independent of any factors
W which precede X, i.e.,

HZ,W) Vv W:ty <ty (1)
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2. Control: For Z to effect changes in YV (via X)) we require that Z and

Y be dependent, written:
~I1(Z,Y) (2)

3. Locality: To ensure that Z interferes “only” with X, i.e., that its en-
tire effect on Y is mediated by X, we use the conditional independence
assertion:

I(Z,Y]X) (3)
to read “Z is independent of ¥, given X7.

Note that (1) and (2) imply (by the axioms of conditional independence
[Pearl, 1988b]) that X and Y are dependent, namely, =7(X, Y).

Conditions (1) through (3) constitute the traditional premises behind con-
trolled statistical experiments, with Z representing the decision to adminis-
ter condition X = x to a given unit (or a given subject), and (1) reflecting the
requirement that units selected for the experiment be assigned at random to
the various experimental conditions. They guarantee that any dependency
observed between X and Y cannot be explained away by holding fixed some
factor W preceding X (as in Figure 3), hence it must be attributed to gen-
uine causation (as in Figure 2). The sufficiency of these premises is clearly
not a theorem of probability theory, as it relies on temporal relationships
among the variables. However, it can be derived from probability theory
together with Reichenbach’s principle [Reichenbach, 1956], stating that ev-
ery dependence —/(X,Y") requires a causal explanation, namely either one
of the variables causes the other, or there must be a variable W preceding
X and Y such that I(X,Y|W) (see Figure 2). Indeed, if there is no back
path from Z to Y through-W (Eq. (1)) -and-no-direct path from-Z to YV
avoiding X (Eq. (3)) then there must be a causal path from X to Y that is
responsible for the dependence in Eq. (2)°.

In non-experimental situations it is not practical to detach X completely
from its natural surrounding and to subject it to the exclusive control of an
exogenous (and randomized) variable Z. Instead, one could view some of
X’s natural causes as “virtual controls” and, provided certain conditions are
met, use the latter to reveal non-spurious causal relationship between X and
Y. In so doing we compromise, of course, condition (1), because we can no
longer guarantee that those natural causes of X are not themselves affected
by other causes which, in turn, might influence Y (see Figure 3). However,
it turns out that for stable distributions, conditions (2) and (3) are sufficient
to guarantee that the association between X and Y is non-spurious, thus
justifying Definition 14 for genuine causation.

?Cartwright [Cartwright, 1989] offers a sufficiency proof in the context of linear models.
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o N,
Y

Figure 2 Figure 3

The intuition goes as follows (see Figure 3): If the dependency between
Z and Y (and similarly, between X and Y) is spurious, namely, X and
Y are merely manifestations of some common cause W, there is no reason
then for X to screen-off Y from Z, and condition (2) should be violated. In
case condition (2) is accidentally satisfied by some strange combination of
parameters, it is bound to be “unstable”, as it will be perturbed with any
slight change of expiremental conditions.

Conditions (2) and (3) are identical to those in Definition 14, save for the
context S which is common to both. The inclusion of the fixed context S is
legitimized by noting that if P(X,Y,Z) is a marginal of a stable distribu-
tion, then so is the conditional distribution P(X,Y, Z|S = s), as long as S
corresponds to variables which precede X.

Definition 14 constitutes an alternative way of recovering causal struc-
tures, more flexible than the IC-algorithm; we search the data for three
variables Z, X, Y (in this temporal order) that satisfy the two conditions in
some context S = s, and when such a triple is found, X is proclaimed to have
a genuine causal influence on Y. Clearly, permitting an arbitrary context
S increases the number of genuine causal influences that can be identified
in any given data; marginal independencies and even 1-place conditional
independencies are rare phenomenon.

Note that failing to satisfy the test for genuine causation does not mean
that such relationship is necessarily absent between the quantities under
study. Rather, it means that the data available cannot substantiate the claim
of genuine causation. To further test such claims one may need to either
conduct experimental studies, or consult a richer data set where virtual
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control variables are found.

In testing this modeling scheme on real life data, we have examined the
observations reported in Sewal Wright’s seminal paper “Corn and Hog Cor-
relations” [Wright, 1925]. As expected, corn-price (X) can clearly be iden-
tified as a cause of hog-price (Y'), not the other way around. The reason
lies in the existence of the variable corn-crop (Z) that, by satisfying the
conditions of Definition 14 (with S = ), acts as a virtual control of X (see
Figure 2). To test for the possibility of reciprocal causation, one can try to
find a virtual controller for Y, for example, the amount of hog-breeding (Z').
However, it turns out that Z’ is not screened off from X by Y (possibly be-
cause corn prices exert direct influence over farmer’s decision to breed more
hogs), hence, failing condition 3, ¥ disqualifies as a genuine cause of X.
Such distinctions are important to policy makers in deciding, for example,
which commodity, corn or hog, should be subsidized or taxed.

8. Non-temporal causation and statistical time

When temporal information is unavailable the condition that Z precede
X (Definition 14) cannot be tested directly and must be replaced by an
equivalent condition, based on dependence information. As it turns out, the
only reason we had to require that Z precede X is to rule out the possibility
that Z is a causal consequence of X; if it were a consequence of X then the
dependency between Z and Y could easily be explained away by a common
cause W of X and Y (see Figure 2).

The information that permits us to conclude that one variable is not a
causal consequence of another comes in the form of an “intransitive triplet”,
such as the variables a, b and ¢ in Figure 1(a) satisfying: I(a,b), ~I(a,c) and
=1(b,c). The argument goes as follows: If we create conditions (fixing Sy;)
where two variables, a and b, are each correlated with a third variable ¢ but
are independent of each other, then the third variable cannot act as a cause of
a or b, (recall that in stable distributions, common causes induce dependence
among their effects); it must be either their common effect, a — ¢ < b, or
be associated with @ and b via common causes, forming a pattern such as
a < ¢ < b. This is indeed the eventuality that permits our algorithm to
begin orienting edges in the graph (step 2), and assign arrowheads pointing
at ¢. It is also this intransitive pattern which is used to ensure that X is
not a consequence of Y (in Definition 11) and that Z is not a consequence
of X (in Definition 12). In definition 14 we have two intransitive triplets,
(71, X,Y) and (XY, Z3), thus ruling out direct causal influence between
X and Y, implying spurious associations as the only explanation for their
dependence.
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This interpretation of the intransitive triple is in line with the “virtual
control” view of causation. For example, one of the reasons people insist that
the rain causes the grass to become wet, and not the other way around, is
that they can find other means of getting the grass wet, totally independent
of the rain. Transferred to our chain a — ¢ —b, we can preclude ¢ from being
a cause of a if we find another means (b) of potentially controlling ¢ without
affecting a [Pearl, 1988a, p. 396].

Determining the direction of causal influences from nontemporal data
raises some interesting philosophical questions about the nature of time and
causal explanations. For example, can the orientation assigned to the arrow
X — Y in Definition 14 ever clash with temporal information (say by a
subsequent discovery that Y precedes X)? Alternatively, since the ratio-
nale behind Definition 14 is based on strong intuitions about how causal
influences should behave (statistically), it is apparent that such clashes, if
they occur, are rather rare. The question arises then, why? Why should
orientations determined solely by statistical dependencies have anything to
do with the flow of time?

In human discourse, causal explanations indeed carry two connotations,
temporal and statistical. The temporal aspect is represented by the con-
vention that a cause should precede its effect. The statistical aspect ex-
pects causal explanations (once accounted for) to screen off their effects,
i.e., render their effects conditionally independent!®. More generally, causal
explanations are expected to obey many of the rules that govern paths in
a directed acyclic graphs (e.g., the intransitive triplet criterion for potential
causation, Section 7). This leads to the observation that, if agreement is
to hold between the temporal and statistical aspects of causation, natural
statistical phenomena must exhibit some basic temporal bias. Indeed, we
often encounter phenomenon where knowledge of a present state renders the
variables of the future state conditionally independent (e.g., multi-variables
economic time series as in Eq. (4) below). We rarely find the converse
phenomenon, where knowledge of the present state would render the com-
ponents of the past state conditionally independent. The question arises

10This principle, known as Reichenbach’s “conjunctive fork” or “common-cause” cri-
terion [Reichenbach, 1956, Suppes and Zaniotti, 1981] has been criticized by Salmon
[Salmon, 1984], who showed that some events would qualify as causal explanations though
they fail to meet Reichenbach’s criterion. Salmon admits, however, that when a conjunc-
tive forks does occur, the screening off variable is expected to be the cause of the other
two, not the effect [Salmon, 1984, p. 167]. He notes that it is difficult to find physi-
cally meaningful examples where a response variable renders its two causes conditionally
independent (although this would not violate any axiom of probability theory). This
asymmetry is further evidence that humans tend to reject causal theories that yield un-
stable distributions.
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whether there is any compelling reason for this temporal bias.
A convenient way to articulate this bias is through the notion of “Statis-
tical Time”.

DEFINITION 16 (STATISTICAL TIME) Given an empirical distribution P, a
statistical time of P is any ordering of the variables that agrees with at least
one minimal causal model consistent with P.

We see, for example, that a scalar Markov-chain process has many statis-
tical times; one coinciding with the physical time, one opposite to it and the
others correspond to any time ordering of the variables away from some cho-
sen variable. On the other hand a process governed by two coupled Markov
chains,

XL‘ - O[Xt—l + /8§/t~—1 + gt (4)
Yi=~vXs +0Yi1 + &,

has only one statistical time — the one coinciding with the physical time!!.
Indeed, running the IC-algorithm on samples taken from such a process,
while suppressing all temporal information, quickly identifies the compo-
nents of X, ; and Y,_; as genuine causes of X, and Y;. This can be seen
from Definition 11, where X,_, qualifies as a potential cause of X,_; using
Z =Yy and S = {X;_3,Y; 3}, and Definition 12, where X,_; qualifies as
a genuine cause of X; using Z = X; 5 and S = {V;_1} of X;.
The temporal bias postulated earlier can be expressed as follows:

CONJECTURE 1 (TEMPORAL B1AS) In most natural phenomenon, the
physical time coincides with at least one statistical time.

Reichenbach [Reichenbach, 1956] attributed the asymmetry associated

with his conjunctive fork to the second law of thermodynamics. We are
not sure at this point whether the second law can provide a full account of
the temporal bias as defined above, since the influence of the external noise &
and ¢} renders the process in (4) nonconservative'>. What is clear, however,
is that the temporal bias is language dependent. For example, expressing
Eq.(4) in a different coordinate system (say, using a unitary transforma-
tion (X,,Y)) = U(X, Y:)), it is possible to make the statistical time (in the
(X',Y") representation) run contrary to the physical time. This suggests
that the apparent agreement between the physical and statistical times is
a byproduct of human choice of linguistic primitives and, moreover, that
the choice is compelled by a survival pressure to facilitate predictions at the
expense of diagnosis and planning.

11¢, and & are assumed to be two independent, white noise time series. Also a # § and

v # B. :

12We are grateful to Seth Lloyd for this observation.
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9. Conclusions

The theory presented in this paper should dispel the belief that statistical
analysis can never distinguish genuine causation from spurious covariation.
This belief, shaped and nurtured by generations of statisticians [Fisher, 1953,
Keynes, 1939, Ling, 1983, Niles, 1922] has been a major hindrance in the way
of developing a satisfactory, non-circular account of causation. In the words
of Gérdenfors [Gérdenfors, 1988, page 193]:

In order to distinguish genuine from spurious causes, we must
already know the causally relevant background factors. ... Fur-
ther, the extra amount of information is substantial: In order to
determine whether C is a cause of E, all causally relevant back-
ground factors must be available. It seems clear that we often
have determinate beliefs about causal relations between events,
even if we do not know exactly which factors are causally relevant
to the events in question'?.

This paper shows that such extra information is often unnecessary: Under
the assumptions of model-minimality (and/or stability), there are patterns
of dependencies that should be sufficient to uncover genuine causal relation-
ships. These relationships cannot be attributed to hidden causes lest we
violate one of the basic maxims of scientific methodology: the semantical
version of Occam’s razor. Adherence to this maxim may explain why hu-
mans reach consensus regarding the directionality and nonspuriousness of
causal relationships, in the face of opposing alternatives, perfectly consis-
tent with experience. Echoing Cartwright [Cartwright, 1989] we summarize
our claim with the slogan “No Causes In, Some Causes Out”.

From a methodological viewpoint, our theory should settle some of the on-
going disputes regarding the validity of path-analytic approaches to. causal
modeling in the social sciences [Freedman, 1987, Ling, 1983]. It shows that
the basic philosophy governing path-analytic methods is legitimate, faith-
fully adhering to the traditional norms of scientific investigation. At the
same time our results also explicate the assumptions upon which these meth-
ods are based, and the conditions that must be fulfilled before claims made
by these methods can be accepted. Specifically, our analysis makes it clear
that causal modeling must begin with vanishing (conditional) dependencies
(i.e. missing links in their graphical representations). Models that embody
no vanishing dependencies contain no virtual control variables, hence, the
causal component of their claims cannot be substantiated by observational

13See also Cartwright [Cartwright, 1989] for a similar position, and for a survey of the
literature.
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studies. With such models, the data can be used only for estimating the
parameters of the causal links once we are absolutely sure of the causal
structure, but the structure itself, and especially the directionality of the
links, cannot be inferred from the data. Unfortunately, such models are
often employed in the social and behavioral sciences e.g. [Kenny, 1979].

On the practical side, we have shown that the assumption of model mini-
mality, together with that of “stability” (no accidental independencies) lead
to an effective algorithm of structuring candidate causal models capable of
generating the data, transparent as well as latent. Simulation studies con-
ducted at our laboratory show that networks containing tens of variables
require less than 5000 samples to have their structure recovered by the al-
gorithm. For example, 1000 samples taken from the process shown in Eq.
(5), each containing ten successive XY pairs, were sufficient for recovering
its double-chain structure (and the correct direction of time). The greater
the noise, the quicker the recovery (up to a point).

Another result of practical importance is the following: Given a proposed
causal theory of some phenomenon, our algorithm can identify in linear
time those causal relationships that could potentially be substantiated by
observational studies, and those whose directionality and non-spuriousness
can only be determined by controlled, manipulative experiments.

It should also be interesting to explore how the new criteria for causa-
tion could benefit current research in machine learning. In some sense, our
method resembles a search through a space of hypotheses [Mitchell, 1982]
where each hypothesis stands for a causal theory. Unfortunately, this is
where the resemblance ends. The prevailing paradigm in the machine learn-
ing literature has been to define each hypothesis (or theory, or concept) as a
subset of observable instances: once we observe the entire extension of this
subset, the hypothesis is defined unambiguously. This is not the case in
causal modeling. Even if the training sample exhausts the hypothesis subset
(in our case, this corresponds to observing P precisely), we are still left with
a vast number of equivalent causal theories, each stipulating a drastically
different set of causal claims. Fitness to data, therefore, is an insufficient cri-
terion for validating causal theories. Whereas in traditional learning tasks
we attempt to generalize from one set of instances to another, the causal
modeling task is to generalize from behavior under one set of conditions to
behavior under another set. Causal models should therefore be chosen by
a criterion that challenges their stability against changing conditions, and
these show up in the data in the form of virtual control variables. Thus, the
dependence patterns identified by definition 11 through 14 constitute islands
of stability as well as virtual validation tests for causal models. It would be
interesting to examine whether these criteria, when incorporated into ex-
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isting machine learning programs would improve the stability of theories
discovered by such programs.
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