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Normally, constraint networks are undirected, since 
constraints merely tell us which sets of values are 
compatible, and compatibility is a symmetrical rela-
tionship. In contrast, causal models use directed 
links, conveying cause-effect asymmetries. In this 
paper we give a relational semantics to this direc
tionality, thus explaining why prediction is easy 
while diagnosis and planning are hard. We use this 
semantics to show that certain relations possess 
intrinsic directionalities, similar to those characteriz
ing causal influences. We also use this semantics to 
decide when and how an unstructured set of sym
metrical constraints can be configured so as to form 
a directed causal theory. 

1 . I n t r o d u c t i o n

Finding a solution to an arbitrary set of constraints is known 
to be an NP-hard problem. Yet certain types of constraint 
systems, usually those describing causal mechanisms, 
manage to escape this limitation and permit us to construct a 
solution in an extremely efficient way. Consider, for exam
ple, the task of computing the output of an acyclic circuit 
consisting of a large number of logical gates. In theory, 
each gale is merely a constraint that forbids certain input-
output combinations from occurring, and the task of com
puting the output of the overall circuit (for a given combina
tion of the circuit inputs) is equivalent to that of finding a 
solution to a set of constraints. Yet contrary to the general 
constraint problem, this task is remarkably simple; one need 
only trace the flow of causation and propagate the values of 
the intermediate variables from the circuit inputs down to 
the circuit output(s). This forward computation encounters 
none of the difficulties of the general constraint-satisfaction 
problems, thus exemplifying the simplicity inherent to 
causal predictions. 
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The aim of this paper is to identify and characterize the 
features that render this class of problems computationally 
efficient, thus explaining some of the reasons that causal 
models are so popular in the organization of human 
knowledge. Note that this efficiency is asymmetric; it only 
characterizes the forward computation, but fails to hold in 
the backward direction. For instance, the problem of 
finding an input combination that yields a given output (a 
task we normally associate with planning or diagnosis) is as 
hard as any constraint satisfaction problem. Thus, the 
second aim of our analysis is to explain how a system of 
constraints, each defined in terms of the totally symmetric 
relationship of compatibility, can give rise to such profound 
asymmetries as those attributed to cause-effect or input-
output relationships. At first glance, we might be tempted to 
attribute the asymmetry to the functional nature of the con
straints involved. However, functional dependency in itself 
cannot explain the directional asymmetry found in the 
analysis of causal mechanisms such as the logic circuit 
above. Imagine a circuit containing some faulty com
ponents, the output of which may attain one of several 
values. The constraints are no longer functional, yet the 
asymmetry persists; finding an output compatible with a 
given input is easy while finding an input compatible with a 
given output is hard. This asymmetry between prediction 
and planning seems to be a universal feature of all systems 
involving causal mechanisms [Shoham, 1988], a feature we 
must emulate in defining causal theories. 

Our starting point is to formulate a necessary and 
sufficient condition for a system of constraints to exhibit a 
directional asymmetry similar to that characterizing causal 
organizations. Basically, the criterion is that of modularity: 
there should exist an ordering of the variables in the system 
such that imposing constraints on later variables would not 
further constrain earlier variables. Intuitively, it captures the 
understanding that predictions are useless for diagnosis; 
e.g., given a set of findings, we cannot improve the accuracy
of our diagnosis by concentrating our analysis on the
patient's prospects for recovery. Likewise, in the context of
the logic circuit example, modularity asserts that if we wish
to add a new gate, then, as long as we do not connect to its
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output, we can add this gate anywhere in the circuit without 
perturbing the circuit's behavior. Starting with modularity 
as a definition of causal theories (Section 2), we show1 that 
it is tantamount to enabling backtrack-free search (for a 
feasible solution) along any natural ordering of the theory. 
We then explore methods of constructing causal 
specifications for a given relation, that is, specifications that 
permit objects from the relation to be retrieved backtrack-
free along some ordering. Such methods are investigated 
along two dimensions: inductive and pragmatic. Along the 
inductive dimension (Section 3), we observe the tuples of 
some relation p, and we seek to represent this set of obser
vations by a causal theory that is as simple as possible. We 
provide a formal definition of simplicity and show that 
together with the insistence on backtrack-free predictions, it 
leads to a natural definition of intrinsic directionality, 
matching our perception of causal directionality in logical 
circuits and other physical devices. 

Along the pragmatic dimension (Section 4), we start 
with an unordered collection of constraint specifications, 
which might represent some stable physical laws, and we 
seek an ordering of the variables such that the overall sys
tem constitutes a causal theory. Clearly, not every system 
of constraints can turn causal by a clever ordering of the 
variables. The criterion for the existence of such an ordering 
depends on both the nature of the constraints and the topol
ogy of the subsets of variables upon which the constraints 
are specified. Some constraint systems are amiable to 
causal ordering by virtue of their topology alone, regardless 
of the content of the individual constraints. These are called 
acyclic constraint systems, originally studied in the litera
ture of relational databases, [Beeri et al., 1983]. In contrast, 
Section 4 ascribes causal ordering to a more general set of 
topologies, but imposes special requirements on the charac
ter of the individual constraints. 

Our basic requirement for a k -variable constraint to 
qualify as a description of a primitive causal mechanism, is 
that at least one set of k-1 variables must behave as inputs 
(or causes) relative to the remaining kth variable (to be 
regarded as an output or an effect), that is, no value combi
nation of these k-1 variables can be forbidden, and each 
such combination must be compatible with at least one 
value of the k* variable. Additionally, in order for the sys
tem as a whole to act as a causal system, mechanisms must 
be ordered in a way that prevents conflicts among their 
predictions, hence, we require that no two constraints 
should designate the same variable as an output. We provide 
effective procedures for: (1) deciding if such an ordering 
exists and, (2) identifying such ordering whenever possible. 
The ordering found can be used to facilitate search and 
retrieval, and are similar to those used to describe the opera
tion of physical devices [Kuipers, 1984; Iwasaki and Simon, 
1986; de-Kleer and Brown, 1986]. 

Proofs can be found in [Dechter and Pearl, 1991]. 

2. Definitions and Preliminaries: Constraint 
Specifications and Causal Theories 

Definition 1 (Constraint Specification): A constraint 
specification (CS) consists of a set of n variables X = 

each associated with a finite domain, 
dorrii domn, and a set of constraints  
on subsets of X. Each constraint Ci is a relation on a subset 
of variables namely, it defines a subset 
of the Cartesian product of The 
scheme of a CS is the set of subsets on which constraints 
are defined, scheme 
and each such subset is called a component. A solution of 
a given CS is an assignment of values to the variables in X 
such that all the constraints in the CS are satisfied. A con
straint specification CS is said to define an underlying rela
tion rel (CS), consisting of all the solutions of CS. 

Definition 2 (Causal Theories): Given a constraint 
specification CS, its underlying relation and an 
ordering we say that a CS is a causal 
theory (of p) relative to d if for all we have 

(1) 

where 

(2) 

denotes the projection of p on 
that is, the set of all subtuples for which an 
extension exists in p, and [X] is 
the join operator. Any pair satisfying (1) wi l l be 
called a causal theory (of p). 

Although condition (1) may seem hard to verify in 
practice, it nevertheless provides an operational definition 
for causal theories. To test whether a given CS is causal 
relative to ordering d, we need to find the set of solutions to 
the given CS, project back these solutions on the strings of 
variables , then check whether 
each such projection coincides exactly with the set of solu
tions to a smaller CS, one consisting of only those con
straints that are defined on variables taken from 

In Section 4 we wi l l show that certain types 
of specifications possess syntactic features that render them 
inherently causal, in no need of the elaborate test prescribed 
by (1). For example, the specifications provided by a collec
tion of logic gates always constitutes a causal theory relative 
to any ordering compatible with their standard assembly in 
acyclic circuits (i.e., no variable can serve as an output of 
two different gates). Similarly, linear inequalities and pro-
positional clauses, under certain conditions, can be assem
bled into causal theories by finding appropriate orderings of 
the variables. 

Dechter and Pearl 1165 



From a conceptual viewpoint, Definition 2 formalizes 
the notion of modularity (see Introduction) and can be given 
the following temporal interpretation. If we view the vari-
ables as past events, the variables 

as future events, and the constraints as physi
cal laws, then Eq. (1) asserts that the permissible set of past 
scenarios is not affected by laws that pertain only to future 
events. In other words, the set of scenarios we get by ignor
ing future constraints wi l l remain valid after including such 
constraints in the analysis. This interpretation is indeed at 
the very heart of the notion of causation, and is closely 
related to the principle of chronological ignorance 
described in [Shoham, 1988], although Shoham's definition 
of causal theories insists on functional dependencies. 

We shall now show that causal theories as defined by 
(1) yield a computationally effective scheme of encoding 
relations; it guarantees that the tuples of these relations can 
be generated systematically, without search, by simply 
instantiating variables along the natural ordering of the 
theory. 

Definition 3 is an extension of the standard notion of 
backtrack-free originally stated for binary constraints 
[Freuder, 1982], and later related to directional consistency 
[Dechter, 1990J. Note that, given a constraint Ci on a subset 
Sj of variables, definition 3 does not allow testing whether 
some partial instantiation of Sj is compatible with Cj. It is 
possible to weaken this restriction by considering all the 
constraints projections as part of the problem's scheme. In 
this paper we do not consider such projections; nevertheless, 
our analysis is extensible to that case as well. 

Theorem 1: A constraint specification CS is backtrack-free 
along an ordering d if and only if it is causal relative to d. 

In the practice of causal modeling, it is common to dep
ict the structure of causal theories using directed acyclic 
graphs (dags), not total orders. Each such dag, called a 
causal model, indicates the existence of direct causal 
influences among sets of variables, but does not specify the 
precise nature of the influences. We wi l l next give a formal 
definition of such models, and then explore what properties 
of the underlying relation are portrayed by the topology of 
the dag. 

Definition 4 (Dags and Families): Given a directed acyclic 
graph (dag) D, we say that an ordering  
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3. Synthesizing Causal Theories and 
Uncovering Causal Directionality 

Our ultimate goal is to construct causal theories for the 
information we possess. In this section we analyze two 
tasks. First, we assume that the information we have is a 
database tabulating explicitly the tuples of some relation p, 
and our task is to replace the table by a more economical 
representation, one that enjoys the computational advantage 
of causal organizations. Such a task would be useful in 
machine learning applications, where the tuples represent a 
stream of observations and the causal theory forms a con
venient model of the environment, facilitating modular 
organization and fast predictions. In our second task, the 
information wi l l be given in the form of a preformulated 
constraint specification CS, and the problem wil l be to con
struct a causal theory without explicating the underlying 
relation of CS. 

Task 1: (decomposition) Given a relation p and an ordering 
d, find a causal theory for p along d. 

Barring additional requirements, a causal theory can be 
obtained by a trivial construction. For instance, the com
plete dag generated by directing an edge from each lower 
variable to every higher variable is clearly a causal model of 
p, and the desired causal theory can be obtained by project
ing p onto the complete families 
We next present a scheme for constructing a causal theory 
on top of an edge-minimal model of p, that is, a dag D 
from which no edge can be deleted without destroying its 
capability to support a causal theory of p. 

The algorithm that follows constructs an edge-minimal 
causal model of p. 

To form a causal theory, we simply pair this dag with the 
projections of p on its families. 

The construction above shows that a causal theory can 
be found for any arbitrary ordering. However, we wi l l next 
show that certain orderings possess features that render 
them more natural for a given relation. It is these features, 
we conjecture, which give rise to the perception that certain 
relations possess "intrinsic" directionalities. 

Definition 7 (Model Preference): A causal model D2 is 
said to be at least as expressive as D1, denoted if 
for any causal theory there exists a causal 
theory such that A dag D 
is said to be a minimal causal model of p if it is not strictly 
more expressive than any other causal model of p. In other 
words, the set of relations modeled by D is not a superset of 
any set of relations, containing p, that can be modeled by 
some other dag. 

Clearly, every minimal model must be edge-minimal, 
but not the converse. For example, the complete dag 

is an edge-minimal causal model 
of the relation given by the formula , but it is not 
a minimal model, because it is strictly more expressive than 
the dag the latter can model only relations 
where X does not constrain Y. Polynomial graphical 
methods for testing preference and equivalence between 
causal models are described in [Pearl et al., 1990J. How
ever, finding a minimal model for a given relation may be 
exponentially hard. 

Definition 8 (Intrinsic Directionality): Given a relation p, 
a variable X is said to be a direct cause of variable Y, if 
there exists a directed edge from X to Y in all minimal 
causal models of p. 

Example 1. Consider a relation p specified by the table of 
Figure 2(a). The table is small enough to verify that the dag 
in 2(b) is the only minimal causal model of p. For example, 
the arrow from X to Z cannot be reversed, because p cannot 
be expressed as a set of constraints on the families of the 
resulting dag, {YZ,ZX,XYW). Adding an arc Y --->X to 
the resulting dag would permit a representation of p (using 
the scheme [YZ,YZXY,YXW)), but would no longer be 
minimal. It is strictly more expressive than the one in 2(b), 
because, unlike the latter, it also models relations in which 
some X Y pairs are forbidden. The causal theory 
corresponding to the dag of 2(b) is shown in 2(c), matching 
our intuition about the causal relationships embedded in 
2(a). Note that the same minimal model ensues (though not 
the same theory) were we to destroy the functional depen
dencies by adding the tuple 1100 to the table in 2(a). How
ever, it is no longer unique. 
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(a) (b) (c) 

Figure 2: The directionality shown in (b) is intrinsic to the relation 
in (a), because (b) is a unique minimal causal model of (a). 

Verma and Pearl [1990] have used minimal model 
semantics to construct a probabilistic definition of causal 
directionality. They have also developed a proof theory 
which, under certain conditions provides efficient algo
rithms for determining causal directionality without examin-
ing the vast space of minimal models [Pearl and Verma, 
1991]. Whether similar conditions exist in the relational 
framework remains an open problem. 

Task 2: Given a constraint specification CS, find a dag D 
and a constraint specification is a causal 
theory of rel(CS). 

This task can be solved by executing algorithm 
Adaptive-consistency [Dechter and Pearl, 1987] along an 
arbitrary ordering d: 

build-causal-2 (CS,d) 
1. Begin 

2. Execute adaptive-consistency w.r.t order d. 
3. Take the graph induced by adaptive consistency 

and direct edges from lower to higher 
variables, Call this dag D. 

4. Return the set of constraints CS' 
induced by adaptive consistency. 

5. End 

The resulting pair is a causal theory of CS. 
Algorithm adaptive-consistency is known to be exponential 
in the induced width W* of scheme(CS) [Dechter and Pearl, 
1987], hence, it is a practical procedure only for sparse con
straint topologies. 

4. Finding Causal Ordering 

In this section we characterize sufficient conditions under 
which causal theories can be assembled from pre-existing 
constraint specifications. Part of these conditions relate to 
the nature of the individual constraints; each must permit a 
causal relationship to exist between variables designated as 
inputs and that designated as the output. Additionally, to 
avoid conflicts in assembling the overall theory, we shall 
insist that no two constraints designate the same variable as 
their output. Whether a given CS can comply with the 

latter restriction depends only on the topological property of 
scheme(CS) and is captured in the notion of an ordered CS. 

Definition 9: An ordered constraint specification (OCS) 
is a pair (D,CS) consisting of a dag D, and a constraint 
specification CS in which every component is a family of 
D. 

For example, a CS with constraints defined on 
[AB,AC,BCD,CE,DEF) forms an OCS with the dag of 
Figure 1. However, if instead of BCD, we had two separate 
constraints, on BD and CD, this dag could no longer be 
paired with the CS to form an OCS and, in fact, no such 
dag exists. 

A Scheme that permits the formation of an OCS is 
called a WEB and can be identified in quadratic time [Dal-
key, 1991]. The following procedure1 for identifying 
OCS's parallels the notion of WEB's unfolding in [Dalkey, 
1991]: 

Procedure buitd-dag-3 (CS) 
1. While scheme (CS) is non-empty do 

2. If there is a component S scheme (CS) 
containing a lonely variable X (i.e., one that 
participates in only one constraint), then 

3. direct edges from all variables in S- X 
towards X, and remove S from scheme (CS ). 

4. else, return failure. 
5. end while 
6. return the dag D generated. 

Theorem 2: Procedure build-dag-3 (CS) returns a dag D 
i f f (D, CS) is an OCS, else, no such dag exists.  

Task 3: Given a CS, find, whenever possible, a dag D s.t. 
is a causal theory of rel (CS ). 

In general, this task may require insurmountable 
amount of computations. The task becomes easier when the 
CS can be paired with a dag D to form an OCS by the pro
cedure above. Stil l, not every OCS pair (D,CS) 
corresponds to a causal theory according to cri
terion (1). We next show that if the constraints residing in a 
given OCS meet certain conditions, then the OCS always 
yields a causal theory. Such constraints wi l l be called 
causal. 

Definition 10 (Causal constraints): A constraint, C, on a 
set of variables is said to be causal 
with respect to a subset O of its variables if the following 
two conditions are met: 

i). Any assignment of values to is legal. Formally, if 
then 

1A similar procedure was used to order variables in ThinkLab 
[Boming, 1981]. 
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In case algorithm legal-dag-4, fails, we know that the 
specifications do not lend themselves to causal modeling by 
straightforward variable ordering. It is still feasible though 
that causal theories could be formed by treating clusters of 
variables as single objects. For example, the ordering 
scheme of [Iwasaki and Simon, 1986] illustrates how such 
clusters can be organized systematically (and uniquely) 
whenever the constraints are linear equalities having a 
unique solution. The basic build-dag-3 algorithm can be 
used to identify promising candidates of variable clusters, 
and to assemble more general causal theories than those 
treated in this paper. 

5. Conclusions 

This paper presents a relational semantics for the direc
tionality associated with cause-effect relationships, explain
ing why prediction is easy while diagnosis and planning are 
hard. We used this semantics to show that certain relations 
possess intrinsic directionalitics, similar to those character
izing causal influences. We also provided an effective pro
cedure for deciding when and how an unstructured set of 
constraints can be configured so as to form a directed causal 
theory. 

These results have several applications. First, it is often 
more natural for a person to express causal relationships as 
directional, rather than symmetrical constraints. The 
semantics presented in this paper permits us to interpret and 
process directional relationships in a consistent way and to 
utilize the computational advantages latent in causal 
theories. Second, the notion of intrinsic directionality sug
gests automated procedures for discovering causal struc
tures in raw observations or, at the very least, for organizing 
such observations into structures that enjoy the characteris
tics of causal theories. Finally, the set of constraint 
specifications that can be configured to form causal theories 
constitutes another "island of tractability" in constraint satis
faction problems. The procedure provided for identifying 
such specifications can be used to order computational 
sequences in qualitative physics and scheduling applica
tions. 
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