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1. Introduction ^-
^

Vilain and Kautz [1986] presented a rime point algebra for temporal reasoning. The elements of

the algebra are the possible relations that can exist between points of time; they correspond to alf^^

subsets of {<,>,=}, as shown in Figure 1. The singleton subsets of {<,=,>) represent basic re-

lations -precedes, same and follows. The elements of the algebra are disjunctions of these basic

relations. For example, x ^ y represents the disjunction x (precedes or follows) y, or x {<,>} y

in a set notation1.

relation
x ( ) y
x (precedes) y
x (same) y
x (follows) y
x (precedes or same) y
x (follows or same) y
x (precedes or follows) y
x (precedes or same or follows) y
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Figure 1. Elements of the point algebra.

A (binary) constraint network over the point algebra involves a set of variables,

[ X i , . . . ,Xn], each representing a time point, and a set of constraints expressed in the point

algebra. Each constraint is of the form X, R X j , where R is a relation of the algebra. A constraint

network is associated with a directed constraint graph, where node i represents variable X,, and
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1. We shall use symbol and set notation interchangeably.



an arc i —> j represents a constraint, Cy, between X, and Xy; the arc is labeled by the correspond-
/\

ing point algebra element .

Example 1. A constraint network is shown in Figure 2.

Figure 2. A constraint network over the point algebra.

A tuple which satisfies all the constraints is called a solution. The network is consistent

if at least on solution exists. A network whose arcs are labeled only by basic relations is called a

singleton labeling. A consistent label for arc i -> j is a basic relation that labels (' -^ j in some

consistent singleton labeling. The minimal constraint for arc (' —> j is the set of all consistent

labels for i —> j . The minimal network of a given network consists of the minimal constraints

for all arcs.

Given a network G, we consider the following tasks:

1. Determining consistency.

2. Determining whether a given label is consistent for a given arc.

3. Determining consistency of a subset of arc labels; namely, whether they can be extended

to a consistent singleton labeling.

4. Computing the minimal constraint for a given arc.

2. The convention is that arcs labeled by ? (the universal constraint) are omitted. Also, we assume that no arc is
labeled by 0 (in such case the network is trivially inconsistent).
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5. Computing the minimal network.

Some of these tasks were addressed by Vilain and Kautz [1986] and vanBeek [1989]. In

particular, vanBeek [1989] presented an 0(n4) algorithm (three and four consistency) which

computes the minimal network and, as a by product, determines consistency. He also devised an

0 (n2) algorithm to compute minimal arc constraints; however, this algorithm is exact only for a

subset of the point algebra that excludes "^".

This paper presents efficient algorithms for the above tasks. The main results are that

tasks 1-4 can be solved in 0 ( I E I ) time, and task 5 - computing the minimal network - can be

carried out in 0(\E\ \V\1) time. Improvements with respect to existing algorithms are the fol-

lowing:

1.- We can determine consistency in 0 ( I E I ) time, instead of 0 ( I V 14) time using four con-

sistency.

2. We can compute minimal arc constraints in the/till point algebra in 0 ( I E I ) time.

3. We can compute the minimal network in 0 ( I E I I V 12) time, instead of 0 ( I V 14) using

four consistency. This improvement is significant mainly in sparse networks.

The proposed algorithms are easy to implement, as they merely involve a simple graph-based

criterion.

2. Solving Reasoning Tasks in the Point Algebra

We now present an algorithm which determines consistency of a given network in 0 ( I E I ) time.

The algorithm makes use of a precedence graph, which displays precedence relations between

variables. It has the same node set as the input network, and an arc i -» j means that X, precedes

or is the same as X j in any solution to G. Given a network G = (V,E), the precedence graph,



G< = (V,£<), is defined by the construction procedure shown in Figure 3. The precedence graph

of Example 1 is depicted in Figure 4.

Construction of precedence graph

1.E^t-0',
2. for each arc i —> j in E do
3. ifCyis"<"or"^"
4. then add i —> y to £<;
5. ifCyis">"or"S"
6. then add j —> i to Z?<;
7. ifCyis"="
8. then add both i -» j and y -» »' to E <;
9.end;

Figure 3. A Precedence graph construction algorithm.

Figure 4. Precedence graph of Example 1.

The following properties of the precedence graph can be easily verified.

Proposition 1. Let G < be the precedence graph of a given network G. Then,

i. If there exists a directed path from i to j in G <, then X{ <. X , in any solution to G.

ii. If i" and j belong to the same strongly-connected component3 in G<, then Xi =Xj in any

solution to G. If G is consistent, then the minimal constraint for arc i -> j is [=}.

3. Nodes i and j belong to the same strongly-connected component, if there exist directed paths from i to j and from
j to i.
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The next theorem provides a necessary and sufficient condition for consistency in the

point algebra.

Theorem 1. let G = (V,E) be a constraint network over the point algebra, and let G< = (V,E<)

be its precedence graph. G is consistent if and only if {=) s Cy, for any pair of nodes, i and j ,

that belong to the same strongly-connected component in G<.

Proof. The only if part follows from Proposition 1; we now prove the if part. Assume that

{=} £ Cy for any pair of nodes, i and j , that belong to the same strongly-connected component

in G<. We shall show that G is consistent by constructing a solution.

Consider the reduced graph, Gr, for G< (called the superstructure of G in [Even 1979]);

it represents the interconnections among the strongly-connected components of G<. The nodes

of.Gy are the strongly-connected components, and a directed arc C-i —> Cj implies that there ex-

ists an edge u -> v in G <, where MS C, and ve C j . It is well-known that Gr forms a DAG (direct-

ed acyclic graph). Therefore, its nodes can be topologically ordered; namely, they can be given

distinct weights w, such that if there exists an arc i —> j , then w, < wj. We next show that assign-

ing value Wi to all nodes in component C, yields the desired solution.

We must show that the assignment is permitted by all constraints. Consider an arbitrary

constraint, Cy, in G. There are two cases depending on i and y.

Case 1: Nodes (' and j belong to the same component in G<. Therefore, w,=wy. Since

{=} C Cy, the assignment is permitted by Cy.

Case 2: i and j belong to two distinct components in G<, C, and Cj, respectively. There are four

cases depending on Cy.

Case 2a: Cy is "=". By the construction of G<, i and j belong to the same strongly-connected

component; contradiction.
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Case 2b: Cy is "^" or ?. Since w, ^ wj, the assignment is pennitted by Cy.

Coye 2c: Cy is "<" or "<,". By the construction of G<, Acre exists an arc i —> y in G<, and thus

arc Ci —> Cj in G,.. Hence, w-i < wj, and the assignment is consistent.

Case 2d: Cy is ">" or "^". By the construcdon ofG<, Acre exists an arc j -> i in G<, and thus

arc Cj —> C, in Gr. Hence, wj < w,, and the assignment is consistent.

Since the assignment satisfies all the constraints it constitutes a solution, and thus G is

consistent. D

Consider the precedence graph of Example 1. There are four strongly-connected com-

ponents - C i = { 1,2,3), C2={4), €3 ={5} and €4= {6,7}. Clearly, the condition of

Theorem 1 is satisfied, and thus the network is consistent. To illustrate the construction used in

Theorem 1, consider the reduced graph shown in Figure 5, and the ordering (C\, C^, €3, C^).

The resulting solution is:

{Xi =X2 =Xs = 1, X4 = 2. X s = 3. X6 =X7 =4}.

Figure 5. Reduced graph of Example 1.

Theorem 1 provides an effective test for determining consistency. The test is implement-

ed in algorithm CONS, shown in Figure 6.

Theorem 2. Algorithm CONS determines consistency of a given network, G = (V,E), in

(9 ( I £ I ) time.
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Determining consistency in the point algebra

1. Consistent *- True;
2. construct the precedence graph G<;
3. find the strongly-connected components;
4. for each arc i —> j in E do
5. if i and j belong to the same strongly-connected component then
6. if(Cy n{=))=0then
7. Consistent <— False and exit;
8. end;

Figure 6. CONS - an algorithm to determine consistency in the point algebra.

Proof. The correctness of CONS follows immediately from Theorem 1. The construction of the

precedence graph (Step 1) takes time proportional to the number of edges; finding the strongly-

connected components (Step 3) can be done in time 0(,\E\) [Even 1979]; Steps 4-8 also take

0 ( I E I ) time. Hence, the total running time is 0 ( I E I). D

Having determined consistency, we can now solve the remaining tasks.

1. To test whether a given relation, R, is consistent for arc i —> y, we apply CONS to the

network with arc i —> j labeled by R. Likewise, to determine whether a given partial la-

beling can be extended to a consistent labeling, we apply CONS to the network labeled

with the given relations. Clearly, these tasks require 0 ( I E I ) time.

2. To compute the minimal constraint for arc i -> j , we simply find which of the three basic

relations are consistent for i -> j . Again, this task requires 0 ( I E I ) time.

3. To compute the minimal network, we compute the minimal arc constraints for all pairs of

variables. This task can be carried out in 0 ( I E I I V\2) time.



Algorithm CONS and its derivatives are easy to implement. Compared to four consisten-

cy, they are conceptually meaningful, as they make use of the precedence graph which portrays

temporal precedence relations; the operations of four consistency, on the other hand, are not

given any temporal meaning.

3. Summary

We presented efficient algorithms for solving reasoning tasks in constraint networks over Vilain

and Kautz's point algebra. We reduced the time complexity of determining consistency, finding

minimal arc constraints and testing consistency of arc labels to 0 (\E I), and reduced the com-

plexity of computing the minimal network to 0 ( I E I I VI 2 ) time. The algorithms are conceptual-

ly simple, being based on a simple graph inspection criterion.
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