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Abstract 

In constructing probabilistic networks from hu- 
man judgments, we use causal relationships to 
convey useful patterns of dependencies. The con- 
verse task, that of inferring causal relationships 
from patterns of dependencies, is far less under- 
stood. Th’ 1s paper establishes conditions under 
which the directionality of some interactions can 
be determined from non-temporal probabilistic in- 
formation - an essential prerequisite for attribut- 
ing a causal interpretation to these interactions. 
An efficient algorithm is developed that, given 
data generated by an undisclosed causal polytree, 
recovers the structure of the underlying polytree, 
as well as the directionality of all its identifiable 
links. 

1 Introduction 
The study of causation, because of its pervasive usage 
in human communication and problem solving, is cen- 
tral to the understanding of human reasoning. All rea- 
soning tasks dealing with changing environments rely 
heavily on the distinction between cause and effect. 
For example, a central task in applications such as di- 
agnosis, qualitative physics, plan recognition and lan- 
guage understanding, is that of abduction, i.e., finding 
a satisfactory explanation to a given set of observa- 
tions, and the meaning of explanation is intimately re- 
lated to the notion of causation. 

Most AI works have given the term “cause” a proce- 
dural semantics, attempting to match the way people 
use it in inference tasks, but were not concerned with 
what makes people believe that Ku causes b”, as op- 
posed to, say, “b causes a” or Kc causes both a and 
b.” [de Kleer & Brown 78,Simon 541. An empirical se- 
mantics for causation is important for several reasons. 
First, by formulating the empirical components of cau- 
sation we gain a better understanding of the mean- 
ing conveyed by causal utterances, such as Ku explains 
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b”, “a suggests b”, ‘a tends to cause b”, and “u actu- 
ally caused b”. These utterances are the basic build- 
ing blocks from which knowledge bases are assembled. 
Second, any autonomous learning system attempting 
to build a causal model of its environment cannot rely 
exclusively on procedural semantics but must be able 
to translate direct observations to cause and effect re- 
lationships. 

Temporal precedence is normally assumed essential 
for defining causation. Suppes [Suppes 701, for ex- 
ample, introduces a probabilistic definition of causa- 
tion with an explicit requirement that a cause pre- 
cedes its effect in time. Shoham makes an identical 
assumption [Shoham 871. In this paper we propose a 
non-temporal semantics, one that determines the di- 
rectionality of causal influence without resorting to 
temporal information, in the spirit of [Simon 541 and 
[Glymour at al. 871. Such semantics should be applica- 
ble, therefore, to the organization of concurrent events 
or events whose chronological precedence cannot be de- 
termined empirically. Such situations are common in 
the behavioral and medical sciences where we say, for 
example, that old age explains a certain disability, not 
the other way around, even though the two occur to- 
gether (in many cases it is the disability that precedes 
old age). 

Another feature of our formulation is the appeal to 
probabilistic dependence, as opposed to functional or 
deterministic dependence. This is motivated by the 
observation that most causal connections found in nat- 
ural discourse, for example “reckless driving causes ac- 
cidents” are probabilistic in nature [Spohn 901. Given 
that statistical analysis cannot distinguish causation 
from covariation, we must still identify the asymme- 
tries that prompt people to perceive causal structures 
in empirical data, and we must find a computational 
model for such perception. 

Our attack on the problem is as follows; first, we 
pretend that Nature possesses Ktrue” cause and effect 
relationships and that these relationships can be repre- 
sented by a causal network, namely, a directed acyclic 
graph where each node represents a variable in the do- 
main and the parents of that node correspond to its 
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direct causes, as designated by Nature. Next, we as- 
sume that Nature selects a joint distribution over the 
variables in such a way that direct causes of a variable 
render this variable conditionally independent of all 
other variables except its consequences. Nature per- 
mits scientists to observe the distribution, ask ques- 
tions about its properties, but hides the underlying 
causal network. We investigate the feasibility of recov- 
ering the network’s topology efficiently and uniquely 
from the joint distribution. 

This formulation contains several simplifications of 
the actual task of scientific discovery. It assumes, for 
example, that scientists obtain the distribution, rather 
than events sampled from the distribution. This as- 
sumption is justified when a large sample is available, 
sufficient to reveal all the dependencies embedded in 
the distribution. Additionally, it assumes that all 
relevant variables are measurable, and this prevents 
us from distinguishing between spurious correlations 
[Simon 541 and genuine causes, a distinction that is im- 
possible within the confines of a closed world assump- 
tion. Computationally, however, solving this simplified 
problem is an essential component in any attempt to 
deduce causal relationships from measurements, and 
that is the main concern of this paper. 

It is not hard to see that if Nature were to assign 
totally arbitrary probabilities to the links, then some 
distributions would not enable us to uncover the struc- 
ture of the network. However, by employing additional 
restrictions on the available distributions, expressing 
properties we normally attribute to causal relation- 
ships, some structure could be recovered. The basic 
requirement is that two independent causes should be- 
come dependent once their effect is known [Pearl 881. 
For example, two independent inputs for an AND gate 
become dependent once the output is measured. This 
observation is phrased axiomatically by a property 
called Marginal Weak Transitivity (Eq. 9 below). This 
property tells us that if two variables z and y are mu- 
tually independent, and each is dependent on their ef- 
fect c, then II: and y are conditionally dependent for 
at least one instance of c. Two additional properties 
of independence, intersection and composition (Eqs. 7, 
and 8 below ), are found useful. Intersection is guar- 
anteed if the distributions are strictly positive and is 
justified by the assumption that, to some extent, all 
observations are corrupted by noise. Composition is 
a property enforced, for example, by multivariate nor- 
mal distributions, stating that two sets of variables X 
and Y are independent iff every it; E X and y E Y 
are independent. In common discourse, this property 
is often associated with the notion of “independence”, 
yet it is not enforced by all distributions. 

The theory to be developed in the rest of the paper 
addresses the following problem. We are given a dis- 
tribution P and we know that P is represented as a 
singly-connected d,ag D whose structure is unknown 
(such a dag is also called a Polytree [Pearl 881). What 

properties of P allow the recovery of D ? It is shown 
that intersection composition and marginal weak tran- 
sitivity are sufficient properties to ensure that the dag 
is uniquely recoverable (up to isomorphism) in polyno 
mial time. The recovery algorithm developed consid- 
erably generalizes the method of Rebane and Pearl for 
the same task, as it does not assume the distribution to 
be dag-isomorph [Pearl 88, Chapter 81. The algorithm 
implies, for example, that the assumption of a multi- 
variate normal distribution is sufficient for a complete 
recovery of singly-connected dags. 

2 Probabilistic Dependence: 
Background and Definitions 

Our model of an environment consists of a finite set 
of variables U and a distribution P over these vari- 
ables. Variables in a medical domain, for example, 
represent entities such as “cold”, Kheadache”, ‘fever”. 
Each variable has a domain which is a set of permis- 
sible values. The sample space of the distribution is 
the Cartesian product of all domains of the variables 
in U. An environment can be represented graphically 
by an acyclic directed graph (dag) as follows: We se- 
lect a linear order on all variables in U. Each variable 
is represented by a node. The parents of a node v 
correspond to a minimal set of variables that make v 
conditionally independent of all lesser variables in the 
selected order. Each ordering may produce a differ- 
ent graph, for example, one representation of the three 
variables above is the chain headache +- cold -+ fever 
which is produced by the order cold, headache and 
fever (assuming fever and headache are independent 
symptoms of a cold). Another ordering of these vari- 
ables: fever, cold, and heuduche would yield the dag 
headache + cold c- fever with an additional arc be- 
tween fever and headache. Notice that the directional- 
ity of links may differ between alternative representa- 
tions. In the first graph directionality matches our per- 
ception of cause-effect relationships while in the second 
it does not, being merely a spurious by-product of the 
ordering chosen for the construction. We shall see that, 
despite the arbitrariness in choosing the construction 
ordering, some directions will be preferred to others, 
and these can be determined mechanically. 

The basis for differentiating alternative representa- 
tions are the dependence relationships encoded in the 
distribution describing the environment. We regard a 
distribution as a dependency model, capable of answer- 
ing queries of the form UAre X and Y independent 
given 2 ?” and use these answers to select among 
possible representations. The following definitions and 
theorems provide the ground for a precise formulation 
of the problem. 

Definition [Pearl & Paz 891 A dependency model M 
over a finite set of elements U is any subset of triplets 
(X, 2, Y) where X, Y and Z are disjoint subsets of U. 

The interpretation of (X, 2, Y) E M is the sentence 
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“X is independent of Y, given 2” , denoted also by 
1(X, 2, Y). When speaking about dependency mod- 
els, we use both set notations and logic notations. If 
(X, 2, Y) E M, we say that the independence stute- 
ment 1(X, 2, Y) holds for M. Similarly, we either say 
that M contains a triplet (X, 2, Y) or that M satisfies 
a statement 1(X, 2, Y). An independence statement 
1(X, 2, Y) is called an independency and its negation 
is called a dependency. Every probability distribution 
defines a dependency model: 

Definition [Pearl & Paz 891: Let U be a finite set of 
variables. A Probabilistic Dependency Model Mp is 
defined in terms of a probability distribution P with 
a sumpbe space nUiEU d(q), the Cartesian product of 
d(ui), where d(u;) is the domain of w. If X, Y and 
Z are three disjoint subskts of U, and X, Y and Z 
are any instances from the domains of the variables in 
these subsets, then by definition (X, Z, Y) E Mp i# 

P(X, Y IZ) = P(XIZ) . P(Y IZ) (1) 

The definition above is suitable also for normal distri- 
butions, in which case the distribution function P in 
Eq. (1) is replaced by the normal density functions. 
The conditional density functions are well defined for 
normal distributions if all variances are finite. 

Dependency models can also be encoded in graph- 
ical forms. The following graphical definition of de- 
pendency models is motivated by regarding directed 
acyclic graphs as a representation of causal relation- 
ships. Designating a node for every variable and as- 
signing a link between every cause to each of its di- 
rect consequences defines a graphical representation of 
a causal hierarchy. For example, the propositions “It 
is raining” (r), “the pavement is wet” (w) and ‘John 
slipped on the pavement” (s) are well represented by a 
three node chain, from r through t.u to s ; it indicates 
that rain and wet pavement could cause slipping, yet 
wet pavement is designated as the direct cause; rain 
could cause someone to slip if it wets the pavement, 
but not if the pavement is covered. Moreover, knowing 
the condition of the pavement renders “slipping” and 
‘raining” independent, and this is represented graph- 
ically by showing node r and s separated from each 
other by node w. Furthermore, if we assume that Ubro- 
ken pipe” (b) is another direct cause for wet pavement, 
as in Figure 1, then an induced dependency exists be- 
tween the two events that may cause the pavement to 
get wet: KrainB and Gbroken pipe”. Although they 
appear connected in Figure 1, these propositions are 
marginally independent and become dependent once 
we learn that the pavement is wet or that someone 
broke his leg. An increase in our belief in either cause 
would decrease our belief in the other as it would Kex- 
plain away” the observation. 

The following definition of &separation permits us 
to graphically identify such induced dependencies from 
the network. A preliminary definition is needed. 

Definition A trail in a dug is a sequence of links 
that form a path in the underlying undirected graph. A 
trail is said to contain the nodes adjacent to its Kinks. 
A node b is called a head-to-head node with respect to 
a trail t if there are two consecutive links a -+ b and 
b + c on t. A node that starts or ends a trail t is not 
a head-to-head node with respect to t’ . 

Definition [Pearl 881 Ij X, Y, and Z are three dis- 
joint subsets of nodes in a dug D, then Z is said to 
d-separate X from Y, denoted I(X, Z, Y),, a# there 
exists no trail t between a node in X and a node in 
Y along which (1) every head-to-head node (wrt t) ei- 
ther is or has a descendent in Z and -(2) every node 
that delivers an arrow along t is outside Z. A trail 
satisfying the two conditions above is said to be active. 
Otherwise, it is said to be blocked (by Z). 

0 s slipping 

Figure 1 

Definition A Dag Dependency Model MD is defined 
in terms of a directed acyclic graph D. If X, Y and Z 
are three disjoint sets of nodes in D, then, by defini- 
tion, (X, Z,Y) E MD ifl there is no active trail by Z 
between nodes in X and Y. 

For example, in Figure 1, (r, 0, b) E MD, (r, s, b) $ 
MD, (r, {w,s),b) 4 MD, and (vv) E MD- 

These two distinct types of dependency mod- 
els: graphical and probabilistic provide different for- 
malisms for the notion of “independent”. The similar- 
ity between these models is summarized axiomatically 
by the following definition of graphoids. 

Definition [Pearl & Paz 891 A graphoid is any depen- 
dency model M which is closed under the following in- 
ference rules, considered us axioms’: 

Trivial Independence 

Symmetry 

WC z, 0) (2) 

qx, z, Y) * v-9 z, X) (3) 

‘The definitions of undirected graphs, acyclic graphs, 
trees, paths, adjacent links and nodes can be found in any 
text on graph algorithms (e.g., [Even 791). 

2This definition differs slightly from that given in 
[Pearl & Paz 891 where axioms (3) through (6) define semi- 
graphoid and dependency models obeying also (7) are 
called graphoids. Axiom (2) is added for future clarity. 
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Decomposition 

1(X, 2, Y u W) * 1(X, 2, Y) (4) 
Weak union 

I(X,Z,Y UW) =s I(X,ZlJW,Y) 
Contraction 

(5) 

1(X, 2, Y) & 1(X, Z U Y, w) ==F 1(X, 2, Y U W) (6) 

Intuitively, the essence of these axioms lies in Eqs. 
(5) and (6). If we associate dependency with infor- 
mational relevance, these equations assert that when 
we learn an irrelevant fact, all relevance relation- 
ships among other variables in the system should re- 
main unaltered; any information that was relevant 
remains, relevant and that which was irrelevant re- 
mains irrelevant. These axioms are very similar to 
those assembled by Dawid [Dawid 791 for probabilis- 
tic conditional independence, those proposed by Smith 
[Smith 891 for G eneralized Conditional Independence 
and those used by Spohn [Spohn 801 in his exploration 
of causal independence. We shall henceforth call ax- 
ioms (2) through (6) graphoid axioms. It can readily 
be shown that the two dependency models presented 
thus far, the probabilistic and the graphical, are both 
graphoids. Several additional graphoids are discussed 
in [Pearl & Paz 89,Pearl & Verma 871. 

Definition A dag is an independence-map (I-map) 
of a graphoid M if whenever X and Y are d-separated 
by Z in D, then I(X, 2, Y) holds for M. In other 
words, MD C M, where MD is the dependency model 
defined by D. A dag D as a minimal-edge I-map of M 
if deleting any edge of D would make D cease to be an 
I-map of M. 

Definition [Pearl 881 A dag D is called a Causal net- 
work of a dependency model M, if D is a minimal-edge 
l-map of M. 

The task of finding a dag which is a minimal- 
edge I-map of a given distribution P was solved in 
[Pearl & Verma 87,Verma & Pearl 881. The algorithm 
consists of the following steps: assign a total ordering 
d to the variables of P. For each variable ai of P, 
identify a minimal set of predecessors I that ren- 
ders ai independent of all its other predecessors in the 
ordering of the first step. Assign a direct link from 
every variable in I to ui. The resulting dag is 
an I-map of P, and is minimal in the sense that no 
edge can be deleted without destroying its Emapness. 
The input L for this construction consists of n condi- 
tional independence statements, one for each variable, 
all of the form I(ai, ?r(ai), V(ui) - r(q)) where U(ui) 
is the set of predecessors of oi and r(ai) is a subset 
of U(ai) that renders ai conditionally independent of 
all its other predecessors. This set of conditional inde- 
pendence statements is said to generate a dag and is 
called a recursive basis drawn from P. 

The theorem below summarizes the discussion 
above. 

Theorem 1 [Verma & Pearl 881 If M is a graphoid, 
and L is any recursive basis drawn from M, then the 
dag generated by L is an I-map of M. 

Note that a probability model may possess many 
causal networks each corresponding to a different or- 
dering of its variables in the recursive basis. If tempo- 
ral information is available, one could order the vari- 
ables chronologically and this would dictate an almost- 
unique dag representation (except for the choice of 
n(ai)). However, in the lack of temporal information 
the directionality of links must be extracted from ad- 
ditional requirements about the graphical representa- 
tion. Such requirements are ‘identified below. 

3 Reconstructing Singly Connected 
Causal Networks 

We shall restrict our discussion to singly connected 
causal networks, namely networks where every pair of 
nodes is connected via no more then one trail and to 
distributions that are close to normal (Gausian) in the 
sense that they adhere to axioms (7) through (9) be- 
low, as do all multivariate normal distributions with 
finite variances and non-zero means. 

Lemma 2 The following axioms are satisfied by nor- 
mal distributions. 

Intersection 

1(X, mu, W) &1(X, zuw, Y) * 1(X, 2, Y UW) (7) 

Composition 

1(X, 2, Y) & 1(X, 2, W) * 1(X, 2, Y u W) (8) 
Marginal Weak Transitivity 

I(X,0,Y) &I(X,c,W) 3 1(X,0+) orI(c,0,Y) (9) 

Definition A graphoid (e.g., a distribution) is called 
intersectional if it satisfies 0, semi-normal if it satis- 
fies (7) and (8), and pseudo-normal if it satisfies (7) 
through (9). 

Definition A singly-connected dag (or a polytree) is 
a directed acyclic graph with at most one trail connect- 
ing any two nodes. A dag is non-triangular if any two 
parents of a common node are never parents of each 
other. Polytrees are examples of non-triangular dags. 
The skeleton of a dag D, denoted skeleton(D), is the 
undirected graph obtained from D if the directionality 
of the links is ignored. The skeleton of a polytree is a 
tree. 

Definition A Markov network GO of an intersectional 
graphoid M is the network formed by connecting two 
nodes, a and b, if and only if (a, U \ (a, b), b) 4 M. A 
reduced graph GR of M is the graph obtained from Go 
by removing any edge a - b for which (a, 0, b) E M. 

Definition Two dags D1 and 02 are isomorphic if 
the corresponding dependency models are equal. 
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Isomorphism draws the theoretical limitation of the 
ability to identify directionality of links using informa- 
tion about independence. For example, the two dags: 
a -+ b --) c and a + b t c, are indistinguishable in the 
sense that they portray the same set of independence 
assertions; these are isomorphic dags. On the other 
hand, the dag a -+ b + c is distinguishable from the 
previous two because it portrays a new independence 
assertion, I(a, 0, c), which is not represented in either 
of the former dags. An immediate corollary of the def- 
initions of &separation and isomorphism is that any 
two polytrees sharing the same skeleton and the same 
head-to-head connections must be isomorphic. 

Lemma 3 Two polytrees 2’1 and T2 are isomorphic if 
they share the same skeleton, and the same head-to- 
head connections. 

SufBciency: If Tl and T2 share the same skeleton 
and the same head-to-head connections then every ac- 
tive trail in Tl is an active trail in T2 and vice versa. 
Thus, MT, and MT~, the dependency models corre- 
sponding to Tl and T2 respectively, are equal. 

Necessity: Tl and T2 must have the same set of 
nodes U, for otherwise their dependency models are not 
equal. If a --) b is a link in Tl and not in T2, then 
the triplet (a, U \ (a, b), b) is in MT~ but not in iMT,. 
Thus, if MT~ and M T2 are equal, then Tl and T2 must 
have the same skeleton. Assume Tl and T2 have the 
same skeleton and that a + c + b is a head-to-head 
connection in Tl but not in T2. The trail a-c-b is the 
only trail connecting a and b in T2 because T2 is singly- 
connected and it has the same skeleton as Tl. Since 
c is not a head-to-head node wrt this trail, (a, c, b) E 
MT~. However, (a, c, b) @ MT~ because the trail a ---) 
c + b is activated by c. Thus, if MT, and MT~ are 
equal, then Tl and T2 must have the same head-to-head 
connections. II 

More generally, it can be shown that two dags are 
isomorphic iff they share the same skeleton and the 
same head-to-head nodes emanating from non adjacent 
sources [Pear, Geiger & Verma 891. 

The algorithm below uses queries of the form 
l-(X, 2, Y) to decide whether a pseudo-normal 
graphoid M (e.g., a normal distribution) has a poly- 
tree I-map representation and if it does, it’s topology 
is identified. Axioms (7) through (9) are then used 
to prove that if D exists, then it is unique up to iso- 
morphism. Th e a gorithm 1 is remarkably efficient; it 
requires only polynomial time (in the number of in- 
dependence assertions), while a brute force approach 
would require checking n! possible dags, one for each 
ordering of M’s variables. One should note, however, 
that validating each such assertion from empirical data 
may require extensive computation. 

774 MACHINE LEARNING 

Input: Independence assertions of the form 1(X, 2, Y) 
drawn from a pseudo-normal graphoid M. 
Output: A polytree I-map of M if such exists, or 
acknowledgment that no such I-map exists. 

1. 

2. 

3. 

4. 

Start with a complete graph. 

Construct the Markov network Ge by removing ev- 
ery edge a - b for which (a, U \ {a, b}, b) is in M. 

Construct GR by removing from Go any link a - b 
for which (a, 0, b) is in M. If the resulting graph GR 
has a cycle then answer “NO”. Exit. 

Orient every link a - b in GR towards b if b has a 
neighboring node c, such that (a, 0, c) E M and a-c 
is in Go. 

5. Orient the remaining links without introducing new 
head-to-head connections. If the resulting orienta- 
tion is not feasible answer “NO”. Exit. 

6. If the resulting polytree is not an I-map, answer 
“NO”. Otherwise, this polytree is a minimal-edge 
I-map of M. 

The Recovery Algorithm 

The following sequence of claims establishes the cor- 
rectness of the algorithm and the uniqueness of the 
recovered network; full proofs are given in [Geiger 901. 

Theorem 4 Let D be a non-triangular dag that a’s a 
minimal-edge I-map of an intersectional graphoid M. 
Then, for every link a - b in D, (a, U \ (a, b), b) # M. 

Theorem 4 ensures that every link in a minimal-edge 
polytree I-map (or more precisely, a link in a minimal- 
edge non-triangular dag J-map) must be a link in the 
Markov network Go. Thus, we are guaranteed that 
Step 2 of the algorithm does not remove links that are 
needed for the construction of a minimal-edge polytree 
&map. 

Theorem 5 Let M be a semi-normal graphoid that 
has a minimal-edge polytree I-map T. Then, the re- 
duced graph GR of M equals skeleton(T). 

Corollary 6 All minimal-edge polytree I-maps of a 
semi-normal graphoid have the same skeleton (Since 
GR is unique). 

Theorem 5 shows that by computing GR, the algo- 
rithm identifies the skeleton of any minimal-edge poly- 
tree I-map T, if such exists. Thus, if GR has a cycle, 
then M has no polytree I-map and if M does have a 
polytree &map, then it must be one of the orientations 
of GR. Hence by checking all possible orientations of 
the links of the reduced graph one can decide whether 
a semi-normal graphoid has a minimal-edge polytree 
&map. The next two theorems justify a more efficient 
way of establishing the orientations of GR. Note that 
composition and intersection, which are properties of 
semi-normal graphoids, are sufficient to ensure that the 
skeleton of a polytree J-map of M is uniquely recover- 
able. Marginal weak transitivity, which is a property 



of pseudo-normal graphoids, is used to ensure that the 
algorithm orients the skeleton in a valid way. It is not 
clear, however, whether axioms (7) through (9) are in- 
deed necessary for a unique recovery of polytrees. 

Definition Let M be a pseudo-normal graphoid for 
which the reduced graph GR has no cycles. A partially 
oriented polytree P of M is a graph obtained form GR 
by orienting a subset of the links of GR using the fol- 
lowing rule: A link a + b is in P if a - b is a link in 
GR, b has a neighboring node c, such that (a, 8, c) E M 
and the link a - c a’s in Go. All other links in P are 
undirected. 

Theorem 7 If M is a semi-normal graphoid that has 
a polytree I-map, then M defines a unique partially 
oriented polytree P. 

Theorem 8 Let P be a partially oriented polytree of 
a semi-normal graphoid M. Then, every oriented link 
a + c of P is part of every minimal-edge polytree I-map 
ofM. 

Theorem 7 guarantees that the rule by which a par- 
tially oriented polytree is constructed cannot yield a 
conflicting orientation when M is pseudo-normal. The- 
orem 8 guarantees that the links that are oriented in 
P are oriented correctly, thus justifying Step 4. 

We have thus shown that the algorithm identifies 
the right skeleton and that every link that is oriented 
must be oriented that way if a polytree &map exists. 
It remains to orient the rest of the links. 

Theorem 9 below shows that no polytree &map of M 
introduces new head-to-head connections, hence, justi- 
fying Step 5. Lemma 3, further shows that all orienta- 
tions that do not introduce a head-to-head connection 
yield isomorphic dags because these polytrees share the 
same skeleton and the same head-to-head connections. 
Thus, in order to decide whether or not M has a poly- 
tree I-map, it is sufficient to examine merely a single 
polytree for I-mapness, as performed by Step 6. 

Theorem 9 Let P be a partially oriented Polytree of 
a pseudo-normal graphoid M. Every orientation of the 
undirected links of P which introduces a new head-to- 
head connection to P yields a polytree that is not a 
minimal-edge I-map of M. 

4 Summary and Discussion 
In the absence of temporal information, discovering 
directionality in interactions is essential for inferring 
causal relationships. This paper provides conditions 
under which the directionality of some links in a prob- 
abilistic network is uniquely determined by the depen- 
dencies that surround the link. It is shown that if 
a distribution is generated from a singly connected 
causal network (i.e., a polytree), then the topology 
of the network can be recovered uniquely, provided 
that the distribution satisfies three properties: com- 
position, intersection and marginal weak transitivity. 
Although the assumption of singly-connectedness is 

somewhat restrictive, it may not be essential for the 
recovery algorithm, because Theorem 1, the basic step 
of the recovery, assumes only non-triangularity. Thus, 
an efficient recovery algorithm for non-triangular dags 
may exist as well. Additionally, the recovery of singly 
connected networks demonstrates the feasibility of ex- 
tracting causal asymmetries from information about 
dependencies, which is inherently symmetric. It also 
highlights the nature of the asymmetries that need be 
detected for the task. 

Another useful feature of our algorithm is that its 
input can be obtained either from empirical data or 
from expert judgments or a combination thereof. Tra- 
ditional methods of data analysis rely exclusively on 
gathered statistics which domain experts find hard to 
provide. Independence assertions, on the other hand, 
are readily available from domain experts. 

We are far from claiming that the method presented 
in this paper discovers genuine physical influences be- 
tween causes and effects. First, a sensitivity analysis is 
needed to determine how vulnerable the algorithm is 
to errors associated with inferring conditional indepen- 
dencies from sampled data. Second, such a discovery 
requires breaking away from the confines of the closed 
world assumption, while we have assumed that the set 
of variables U adequately summarizes the domain, and 
remains fixed throughout the structuring process. This 
assumption does not enable us to distinguish between 
genuine causes and spurious correlations [Simon 541; a 
link a - b that has been determined by our procedure 
may be represented by a chain a + c ---) b where c is 
a variable not accounted for when the network is first 
constructed. Thus, the dependency between a and b 
which is marked as causal when c @ U is in fact spu- 
rious, and this can only be revealed when c becomes 
observable. Such transformations are commonplace in 
the development of scientific thought: What is cur- 
rently perceived as a cause may turn into a spurious 
effect when more refined knowledge becomes available. 
The initial perception, nevertheless serves an impor- 
tant cognitive function in providing a tentative and ex- 
pedient encoding of dependence patterns in that level 
of abstraction. 

Future research should explore structuring tech- 
niques that incorporate variables outside U. The addi- 
tion of these so called “hidden” variables often renders 
graphical representations more compact and more ac- 
curate. For example, a network representing a collec- 
tion of interrelated medical symptoms would be highly 
connected and of little use, but when a disease variable 
is added, the interactions can often be represented by a 
singly connected network. Facilitating such decompo- 
sition is the main role of “hidden variables” in neural 
networks [Hinton 891 and is also incorporated in the 
program TETRAD citebk:glymour. Pearl and Tarsi 
provide an algorithm that generates tree representa- 
tions with hidden variables, whenever such a represen- 
tation exists iPear- & Tarsi 861. An extension of this 

GEIGERETAL. 775 



algorithm to polytrees would further enhance our un- 
derstanding of causal structuring. 

Another valuable extension would be an algorithm 
that recovers general dags. Such algorithms have been 
suggested for distributions that are graph-isomorph 
[Spirtes, Glymour & Scheines 89, Verma 901. The ba- 
sic idea is to identify with each pair of variables 2 and 
y a minimal subset Sxy of other variables3 that shields 
x from y, to link by an edge any two variables for which 
no such subset exists, and to direct an edge from x to 
y if there is a variable z linked to y but not to x, such 
that 1(x, Sxz Uy, Z) does not hold (see Pearl 1988, page 
397, for motivation). The algorithm of Spirtes et al. 
(1989) requires an exhaustive search over all subsets of 
variables, while that of Verma (1990) prunes the search 
starting from the Markov net. It is not clear, however, 
whether the assumption of dag isomorphism is realistic 
in processing real-life data such as medical records or 
natural language texts. 
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