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units whose stable patterns, (relative to the visible units) 
coincide with the original relation. This task is central to 
most applications of connectionist networks, in particular 
to its role as associative memory. The task will be investi- 
gated for a connectionist architecture which is different 
from classic connectionist networks in that it is based on 
constraint networks. The sequential constraint network 
model is defined next. 

Abstract 

This paper investigates design issues associated 
with representing relations in binary networks 
augmented with hidden variables. The trade-off 
between the number of variables required and the 
size of their domains is discussed. We show that 
if the number of values available to each variable 
is just two, then hidden variables cannot improve 
the expressional power of the network, regardless 
of their number. However, for k23, we can 
always find a layered network using k-valued hid- 
den variables that represent an arbitrary relation. 
We then provide a scheme for decomposing an 

lpl-2 arbitrary relation, p, using - 
ables, each having k values (k >“Tff 

hidden vari- 

1. Introduction 

Hidden units play a central role in connectionist 
model, without which the model would not represent many 
useful functions and relations. In the early days of the Per- 
ceptrons Minsky 19691 it was noted that even simple 
functions like the XOR were not expressible in a single 
layer perceptron; a realization that slowed research in the 
area until the notion of hidden units had emerged 
mumelhart 1988a, Hinton 19881. Nevertheless, a formal 
treatment of the expressiveness gained by hidden units, and 
systematic schemes for designing systems with hidden 
units within the neural network paradigm are still not avail- 
able. 

Our intention is to investigate formally the role of 
hidden units and devise systematic schemes for designing 
systems incorporating hidden units. Specifically, we 
address the following task: given a relation on n variables, 
called visible, we wish to design a network having n+h 

(1) This research was supported in part by NSF grant #IRI- 
8821444 and by an Air Force grant #AFOSR 88 0177 while the 
author was visiting the cognitive systems lab at UCLA. 

A Network OP binary constraints involves a set 
of n variables X l,...rX,,r each represented by its domain 
values, D lr. . . ,D,, and a set of constraints. A binary 
constraint Ro between two variables Xi and Xi is a subset 
of the Cartesian product Di x Di that specifies which values 
of the variables are compatible with each other. A solution 
is an assignment of values to all the variables which satisfy 
all the constraints, and the constraint satisfaction prob- 
lems (CSP) associated with these networks is to find one 
or all solutions. A binary CSP can be associated with a 
constraint-graph in which nodes represent variables and 
arcs connect pairs of variables which are constrained expli- 
citly. Figure la presents a constraint network where each 
node represents a variable having values (a, b, c) and 
each link is associated with a strict lexicographic order 
(where Xi c Xi iff i < J]. (The domains and the constraints 
explicitlv indicated on some of the links.) 

x1’ *I x4 
Figure I: An example of a binary CN 

Our constraint-based connectionist architecture 
assumes that each unit plays the role of a variable having k 
states, and that the links, representing the constraints, are 
quantified by compatibility relations between states of 
adjacent units. Each unit asynchronously updates its state 
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(i.e., assigns itself one of its values) using a decision func- 
tion based only on the states of its neighboring units and its 
compatibility relations with them. In a companion paper 
we provide a communication protocol for this model which 
is guaranteed to converge to a global consistent assignment 
of values [Colhn 19901. Although this constraint-based 
architecture differs from classical connectionist architcc- 
tures the resemblance is strong enough to shed interesting 
light on the latter architectures as well. 

The paper is organized as follows. Section 2 con- 
tinues with definitions and preliminaries. In section 3 we 
show that bi-valued hidden variables add no expressional 
power, while, in section 4 we show that if the hidden vari- 
ables have 3 values or more they can decompose any rela- 
tion. Bounds on the trade-off between the number of hid- 
den variables and the cardinality of their values are given 
as well. Section 5 extends the decomposition scheme to 
those having some initial inner decomposition, section 6 
presents examples and section 7 provides concluding 
remarks. Due to space limitation most results are 
presented with sketchy or no proofs. For formal proofs see 
[Dechter 19901. 

2. Definitions and preliminaries 

Since communication links are pairwise our 
constraint-based architecture is restricted to expressing 
binary constraint networks only. A general relation on n 
variables is not necessarily expressible as a binary network 
of constraints on the same set of variables. The question 
we pose, therefore, is how to express any relation in a 
binary constraint network, with the aid of new hidden 
variables. 

Let reZ(I?) denotes the relation associated with 
network R. (i.e., rel (R) is the set of all solutions to R). Let 
p be an nary relation over variables X = {X 1, . . . , XJ, 
each having k values. We now define the notion of decom- 
posability with hidden variables. 

Definition: Relation p is h-network-decomposable if 
there exist h additional variables, Y = iyl, . . . , Yd, having 
k values or less, for which there is a binary network 
R = R (X,Y), on XuY, such that 

p = l&reZ(R (X,Y)). (1) 

II&p) denotes the projection of relation p on subsets of 
variables U. The projection of variables Xil, . . . ,Xi, on 
relation P - given 
“x,,,...Jti(p) = {(Xi, 9 . . . ,Xi,) ITI X E p S.t. 

by: 
V ij ?i. =x.) 

When no hidden variables are required f& nitwork 

decomposability we say that the relation is network 
decomposable. Any relation, p, can be associated with a 
unique binary network that is generated by projecting the 
relation on each pair of its variables. This network is called 
the minimal network [Montanari 19741 and it is known to 
provide the best approximation to p. Namely, p c rel (M) 
and if R is any other binary network on the original set of 
variables s.t. p c rel (R) then p c rel (M) G rel (R). It fol- 
lows that the minimal network can determine whether a 
relation is network decomposable or not. 

Theorem 1: A relation is network decomposable if and 
only if its minimal network represents it precisely. 
Namely, if p = rel (Ad). Cl 

Every non-decomposable relation has a trivial 
star-decomposition using one hidden variable and an 
unrestricted number of values. In this decomposition the 
hidden variable, Y, needs t values, when t is the cardinality 
of the relation. Each value of Y is needed to “index” each 
tuple in the relation. This is achieved by constraining the 
hidden variable with each original variable as follows. The 
constraint between the hidden variable, Y, and an original 
variable Xi makes the it* value of Y compatible with one 
and only one value of Xit the value that appears in the ith 
tuple of the relation. That way each value of Y is made 
consistent with exactly one tuple (Fig. 2). The resulting 
constraint network, which has a star shape (hence its 
name), clearly represents the target relation (i.e. projecting 
it on all original variables yields the orieinal relation). 

P c? Xl 
x ( . . . x. . . . .L nK2iY 0 

. . . ..a. u 1 
t :b . . 

r{ . . . 4’ . . . r: 
y 

. . . . . . 
= Fc 

- d 

Figure 2: A star decomposition 

Having the minimal network on one extreme, (a 
potential decomposition with no hidden variable) and the 
star network (requiring one hidden variable and unres- 
tricted number of values) on the other, we are now 
interested in exploring middle ground cases. In particular, 
we wish to establish how many hidden variables are 
required, were we to restrict the size of their domains. 
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3. Using bi-valued hidden variables 

When the hidden variables have only two values we get a 
surprising negative result: 

Theorem 2: Relations which are not network decompos- 
able cannot be decomposed by adding any number of 2- 
valued hidden variables. 

Sketch of proof: Lets p be a relation that is not network 
decomposable and let M be its minimal network. The 
minimal network, since not representing p, allows a tuple 
x=x1 , . . . ,X, which is not part of p. The task of any hid- 
den variable is to disallow such tuple while at the same 
time allow all tuples in p. Assume Y is such bi-valued hid- 
den variable that when added to the network M it is incon- 
sistent with X while consistent with any tuple in p. Y has to 
be consistent with each value of X (since x’s values are 
generated from the minimal network). Namely, each value 
of X is consistent either with Y’s “0” or with Y’s “1”. We 
claim, further, that all 3s values are either consistent with 
the “0” or with the ” 1”. Since if not there is a value, Xi 3 not 
consistent with Y=O and a value, Zj, not consistent with 
Y=l and the pair @,Zj) is not consistent with any value of 
Y. However, since this pair is allowed by the minimal net- 
work, excluding it must eliminate a legal tuple of p which 
yields a contradiction. The argument can be extended by 
induction to any number of hidden variables [Dechter 
19901. 0 

4. Multi-valued hidden variables 

4.1 A conditional decomposition scheme 

This section investigates decomposition schemes 
utilizing multi-valued (i.e., more then 2 values) hidden 
variables. In particular we wish to explore the trade-off 
between r, the number of hidden variables, and k, their 
domain sixes, required for decomposing an arbitrary rela- 
tion. 

We first restrict ourselves to r = 1. Clearly, a 
relation having t tuples is l-decomposable by the star net- 
work. One may expect that when using also the minimal 
constraints between the original variables as part of the 
network decomposition the number of values needed by 
the centered hidden variable can be reduced. It can be 
shown, however, that for some relations, t, is also the smal- 
lest number of values required for decomposition (when 
using one hidden variable). 

Let us define the unit relation, U,,, to be the “O-1” 
relation on n variables whose ith tuple consists of a value 
” 1” for variable Xi and a value “0” for all other variables 
(Fig. 3a). 

- 11 0 0 0 01 
x1x2x3x4x5 

10000 

115 = 1 01000 

00100 
00010 
00001 1 

(a) 

20000 

I I 01000 
02000 

u 10.3 = 00100 
00200 

1 i KEOO 
00001 

@ ) i 00002 
1 

Figure 3: (a) the unit relation Us, (b) relation U 10,3 

It can be shown that relation U, cannot exploit the 
minimal constraints in order to reduce the value cardinality 
of the hidden variable: 

Theorem 3: The smallest value, k, for which the unit rela- 
tion U, is l-decomposable is k=n. 

Sketch of proof: The minimal network of U,, allows the 
extra all “0” tuple. To exclude it any value of the hidden 
variable must be inconsistent with at least one Xi = 0 and 
therefore consistent with Xi = 1. As such it can “extend” 
only the it’ tuple of Un hence we need n values. Cl 

Let us define W,(h) to be the the minimum 
number of values (per variable) required for an h- 
decomposition of relation p. We can conclude: 

Corollary I: For every p, HP{ 1) I I p I and for some p’s, 
H,(l)= Ipl. cl 

A straightforward extension of the star decompo- 
sition to two hidden variables presents itself by expressing 
the I p I values of one hidden variable by I p I different 
pairs of values on the pair of hidden variables as follows. 
All pairs of values are of the form (i, 0) or (O,i), where 
A?!.. 

2 
2 i > 0, and the value (i, 0) is associated with the i ” 

tuple while the pair (O,zJ is associated with the Ipl +i 
2 

tuple. (For notational convenience we assume that all frac- 
tional expressions represent the ceiling integer of that frac- 
tion.) Since Ip I different pairs can be expressed in this 
way by two ( -!-$-)-valued hidden variables, we can infer 

that HP(2) I -$! It can be shown, however [Dechter 
19901 that this bound is tight, namely: 

Corollary 2: For every p, I+(2) I T and for some p’ 
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(e.g., U,)H,(2)= +-A 0 

The above property is extensible to any number of 
hidden variables and we can show that the unit relation U,, 
needs at least r, (n)-valued hidden variables in order to be 
decomposed. We\onclude that: 

Corollary 3: For some p’s HP(r) 2 Lf?!+-J 
r ’ 

Our approach for systematically decomposing a 
relation is to start from a star decomposition using a I p I - 
valued hidden variable, and then, if only k-valued variables 
are available, to simulate the star hidden variable by a rela- 
tion that obeys the value restriction and that can be net- 
work decomposed. If the latter relation is not network 
decomposable we will apply the same principle to it and so 
on. This approach is detailed in the following paragraphs. 

Let us extend the notion of unit relation into a k- 
valued relation as follows: the k-valued unit relation, U,,A 

has n tuples and r = fi variables such that the 

(i(k-1) + j)” tuple, i I r, j I k-l, has zero everywhere 
accept for the izh variable whose value is j (Fig. 3b). 

We focus, first, on the decomposition of Un. The 
unit relation Un can be conditionally star-decomposed 

. via & k-valued hidden variables. We first generate the 
concatenated relation U,,U%k, and then decompose it via a 
two layered network. The first layer consists of the original 
variables X 1, . . . ,X, and the second layer has the hidden 
variables Y l, . . . , Yz. The only constraints in the 
decomposing network ke those relating each hidden vari- 
able with an original variable ( Fig. 4a). The constraints 
themselves are generated by projecting the concatenated 
relation UJJqR on the corresponding pairs of variables 
(Fig. 4b). We say that UqR “conditionally” decomposes Un 
in the following sense: for any instantiation of the hidden 
variables to a legal tuple in Un,R the network allows only 
legal tuples among the original variables, namely, those 
participating in Un. However, the new appended relation 
UnaR, by itself, is not network decomposable. Namely, even 
if we add all the minimal constraints between the hidden 
variables it will not exclude the “0” tuple on the hidden 
variables which in turn will allow any combination of 
values on the original variables. As its name indicates it is 
just a conditional decomposition, i.e. conditioned on our 
ability to further decompose IL&. 

number 

‘2 T3 . / 
Yl 

(e) (b) 

Figure 4: Decomposing U6 by Ug.3 

Let p1 and p2 be two relations, having the same 
of tuples on disjoint sets of variables. Let us 

denote by R (pl ,o2) the two layered network in which the 
top layer contains p1 ‘s variables, the bottom layer contains 
~2’s variables and there are constraints between any vari- 
able in p1 and any variable in p2. The constraints them- 
selves are the projection of the concatenated relation p1p2 
on the corresponding pairs of variables. Using this nota- 
tion we can say that R (UnrU,J is a conditional decompo- 
sition of U,. 

4.2. A general decomposition scheme 

It seems as though we didn’t solve anything! just 
transferred the decomposability problem from one unit 
relation (Un) to another (U,,k). Nevertheless, since the 
number of variables in Uqt is - < n, (for k >2) we can 

knl 
now decompose it with a new k-valued unit “relation”, 
denoted U’ n,k having even a smaller number of variables. 
The unit relation U1 n,k is a pseudo-relation since it is a set 
of tuples which are not necessarily different. U ‘,,k has 

n - variables and it is generated by taking the unit 
(k-1)2 

relation, u$,k, and duplicating each tuple in it (Fig. 5). 

The intention being that each tuple in U1 n,k will not distin- 
guish between tuples in UGA having non-zero values for 
the same variable. u’%,R can conditionally decompose 
Un,k in the same manner that U,,k conditionally decom- 
poses Un using the layered network R (U,+U' &. 

This results in having a sequence of “pseudo” unit 
relations, each with a smaller number of variables and each 
disallowing a smaller tuple of “0”‘s in the preceding rela- 
tion. The resulting relation is a concatenation of “inflated” 
unit relations each having a (k-l) fraction of the variables 
of the preceding relation. Let us denote the resulting rela- 
tion by U*, (Fig. 5). Clearly U, = l&U*,. 
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,x2x3 x5xd1xd3xld11x12 
100000000000 
010000000000 
001000000000 
000100000000 
000010000000 
000001000000 
000000100000 
000000010000 
000000001000 
000000000100 
000000000010 
000000000001 

u12 

\ I \/ \ 

,Y~Y,Y.YsY~ Z, Z2 & TI 
100000 100 1 
200000 100 1 
010000 200 1 
020000 200 

Kxx 
010 : 
010 2 

000100 020 2 

%5E 
020 2 
001 0 

00~0000~~ 
001 0 
002 0 

000002,‘ 002 0 

u123 u’,u u2123 

Figure 5: U* 12; the relation generated from 
decomposing U12 

The network that decomposes U*, is a layered 
network where each set of new hidden variables are con- 
nected to all variables in the preceding layer and the con- 
straints are the projection of U*, on the corresponding 
pairs of variables. The bottom layer consists of one or two 
variables whose allowed tuples can be controlled by a 
direct constraint. A schematic description of the network 
decomposition for U12 is given in Fig. 6. 

Figure 6: A layered decomposition of U * 
12 

To summarize, U, can be decomposed by inter- 
secting sequences of two layered networks. The resulting 
network, R * n, is defined by: (“ml’ denotes the intersection 
operation) 

R*,= R(&d&,k) -R(&,k,U’n,k) * (4 

WJ1n,kJJ2n,k), ’ . . . . ‘R(f&,k,@+‘n,k) 

. 
,--0, ’ R (U1o@+’ ,+ U1oa”,k). 

We can now apply the same idea to an arbitrary 
relation. Namely, in order to decompose a given relation p 
using k-valued hidden variables we will generate the net- 
work 

R*(P)=R@&,l,k) -R(Ulpl,k,U1 1pl.k) ’ 
. (5) ,-*a, 

WJ log&lpl-1 lo%lPl 
Ipl,k 9 u 1pl.k). 

Let H-’ P(k) denotes the minimum number of k- 
valued hidden variables needed for decomposing p. We 
get the following theorem: 

Theorem 4: Any relation is decomposable by r Ipl-2 k - - 
valued hidden variables, when k > 2. Cl 

From corollary 3 and from Theorem 4 it follows 
that the unit relation’s decomposition cannot be substan- 
tially improved. Namely, 

Therefore, the decomposition scheme presented by (5) is 
optimal in the sense that for some relations (the Un’s) a 
better decomposition does not exist. Nevertheless, we still 
wish to find the minimum number of values needed for the 
star-decomposition, since it will provide a better bound for 
any general decomposition, namely: 

H-‘&k) I Hp;1’2- 2 . - 

5. Decompositions of partially decomposable 
relations 

One way of improving our scheme can be hinted 
by investigating-the level of &mer decomposition of the 
relation using only its original variables. We assumed that 
the relation is not binary network decomposable, however 
it may be losslessly decomposed to relations having arity 
greater then 2 yet smaller then n. Let a relation scheme 
R =R1,. . . , Rl be a set of subsets of attributes of the origi- 
nal relation. We say that the scheme R is a lossless 
decomposition of p if: 

p=p1 Dq.J2MI,..., tq$. (8) 

When MI is the relational database join operator. We claim 
that if a lossless decomposition of the relation is available 
and if we use hidden variables to decompose each com- 
ponent separately without introducing any conflicts 
between the components, the combined network is a 
decomposition of the target relation. The general scheme . follows: given a lossless decomposition 
:=:; ,R2, ,. .., RI of p which is defined over variables 
x=x 19***, Xn, and given a binary network 
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decomposition, R’i, for each subrelation pi, utilizing a set 
of hidden variables Yi, (i.e., pi = lIxreZ (R’i)), and denoting 
by p’ = reZ(R’1) MI, . . . , #IreZ(R’J, it is always true that 

l&p’c (IIxreZ(R’1)) MI,. . . , (9) 

KI o[-lxrel(R’~)) = p 

If we take special care to ensure that the hidden variables 
used in different components will not interfere with each 
other (by utilizing disjoint subsets, for instance) and will 
not eliminate a legal tuple of p we will have an equality in 
the left hand side of (9). In that case the combined net- 
work fl ‘i , is a network decomposition of p utilizing a set 

of hidden variables UYi. 
i 

We can associate a star decomposition with each 
component separately. Namely, if I hidden variables are 
available, each devoted to a star decomposition of one 
subrelation, then the hidden variable Yi of subrelation pi 
will need I pi I values. We will get therefore that 

H-‘~(~IpiI)II 
i 

(10) 

If only k-valued hidden variables are available we 
can decompose each component subrelation using disjoint 
subsets of k-valued hidden variables. This way the non- 
interfering property is maintained. When applying the 
bound of Theorem 4 to each component separately and 
summing over all components we get: 

’ I pi I - 2 
ClfJil -21 

H-$(k) I C 
i=l 

i=l k-2 = k-2 (11) 

We see, therefore, that the “level” of inner decom- 
position can affect p’s decomposability. We further con- 
jecture that if p cannot be losslessly decomposed at all then 
HP( 1) = I p I . Examples conforming with this conjecture is 
the unit relation and the parity relation pechter 19901. 

6. Examples 

The following two examples, taken from chapter 
8 of [Rumelhart 1988b], demonstrate the use of inner 
decompositions once they are available. Figure 8: A 3-valued decomposition of add. 

Example 1: addition Example 2: the negation problem: 

Consider the problem of adding two-digit numbers, where 
the digits are 0 or 1. Denote the first number by X 1 Y 1, the 

Consider a situation where the input to a system consists of 
a pattern of n+l bits and n output bits. One of the input bit 

second number by X2Y2, let T stand for the carry and let _ 
Z1Z2Z3 stand for the resulting sum. The add relation is 
given{ in figure 7a. , 

XI Y, X2 Y2 T ZI Z2 Z3 
000~00000 
00010001 
00100010 00110011 f \ 
01000001 TX, x2 z, z* 
01011000 00000 
01100011 00101 

cd=* 0 1 1 1 1 1 0 0’ 01001 
10 0 0 0 0 10 10010011 R2=y ; (: ; y R1= 

10100100 10110 
10110101 11010 
11000011 1 1 1 1 1 
11011100 \ / 
11100101 
11111110 0 

/ 
“) Figure 7: (a) The add relation, 

(b) A lossless decomposition of add 

A star decomposition of add with one hidden vari- 
able requires 16 values, namely H&(l) I 16. Using 3- 
valued variables our scheme requires 14 variables (EQ. 
(7)). Consider now the lossless decomposition of the add 
relation given by R = R 1 ,R2 where R 1 = T,Yl ,Y2,Z3 and 
R 2 = T,X 1 ,X2,Z1 ,Z2 (see figure 7b.) By decomposing 
each component separately we get that one 8-valued vari- 
able is needed for rel(R2) and a 4-valued variable is 
needed for reZ(R l)r each of the two can star-decompose its 
corresponding subrelation. In that case nothing is gained 
by the inner decomposition since a decomposition of the 
relation with &valued variables can be directly applied to 
the overall relation using just two variables. However, if 
only 3-valued variables are permitted, reZ(R 1) would 
require two such hidden variables while rel (R2) will 
require 6 variables, resulting in a total of 8,3-valued vari- 
ables as in Fig. 8. 
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is called “the negation bit”. When it is “0” the rest of the n 
input bits should be mapped directly to the output patterns. 
If it is “1” then each bit should be mapped to its negation. 
Fig. 9a describes the relation defined over the negation 
variable N, the input variables Xi,Xs,Xs and the output 
variables Y,,Y~,YJ. 

Figure 9: (a) The neg 3 relation, 
(b) Subrealtion Ri 9 (c) A network decomposition 

A direct decomposition of this relation requires 2” values 
for a star decomposition and when 3-valued variables are 
available 2” -2 hid&n variables are required. Consider 
now the following lossless decomposition 

negn = reZ(R I),K~ . . . , Wel(R,) 
(12) 

where reZ(RJ is given in figure 9b. Two 3-valued hidden 
variables can be used for each reZ(Ri), resulting in a total 
of 2n 3-valued hidden variables. The constraint graph of 
this decomposition is given in Fig. 9c. 

7. Conclusions 

We have shown that any relation can be expressed 
as a network of binary relations if augmented by hidden 
variables having three values, while no expressional power 
is gained by hidden variables having only two values. 
Specifically, a constructive scheme is presented that 
decomposes any relation, p, into a layered network using 
lpl-2 k 2 k-valued hidden variables when k>2. We also 

showed that the scheme is worse-case optimal, meaning 
that some relations require that many hidden variables. 
We extended the scheme to exploit an initial lossless 
decomposition of the relation, if one is available. 

Comparing our decomposition scheme with 
current techniques used in the neural networks community 
we should consider two systems; those based on the Heb- 
bian rule and those using feedforward networks. The 
former are restricted to orthogonal vectors, and thus our 
scheme is more general. The latter have no established 
theoretical guarantees and pften require a long time to con- 
verge. In contrast our scheme is complete and it works in 
time linear in the size of the initial relation. Its drawback, 
however, is that it requires an a-priori knowledge of the 
entire relation. Nonetheless, understanding the basic 
theoretical limitations of architectures using hidden vari- 
ables should facilitate the development of effective gen- 
eralizing scheme based on partial relations. 

’ 
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