
Tree Decomposition with Applications to Constraint Processing

Itay Meiri, Rina Dechter ’ and Judea Pearl

Cognitive Systems Laboratory
Computer Science Department

University of California
Los Angeles, CA 90024

itay@cs.ucla.edu, dechter@techsel.bitnet, judea@cs.ucla.edu

Abstract
This paper concerns the task of removing redun-
dant information from a given knowledge base,
and restructuring it in the form of a tree, so as to
admit efficient problem solving routines. We offer
a novel approach which guarantees the removal of
all redundancies that hide a tree structure. We
develop a polynomial time algorithm that, given an
arbitrary constraint network, generates a precise
tree representation whenever such a tree can be
extracted from the input network, otherwise, the
fact that no tree representation exists is ack-
nowledged, and the tree generated may serve as a
good approximation to the original network.

I. Introduction

This paper concerns the problem of finding computation-
ally attractive structures for representing constraint-based
knowledge.

It has long been recognized that sparse constraint net-
works, especially those that form trees, are extremely
efficient both in storage space and in query processing. A
densely-specified network may hide such a desirable
structure, and the challenge is to identify and remove
redundant links until the natural structure underlying the
knowledge base is recovered. The general issue of remov-
ing redundancies has been investigated in the literature of
relational databases [Maier 1983, Dechter 19871, as well
as in the context of constraint networks [Dechter and
Dechter 19871. This paper offers a novel approach which
guarantees the removal of all redundancies that hide a tree
structure.

* This work was supported in part by the National Science Foundation
Grant # IRI 8815522 and an Air Force Grant # AFOSR 880177
t Current address: Computer Science Department, Techuion - Israel
Institute of Technology, Haifa 32000, Israel.

Formally, the problem addressed is as follows.
Given a constraint network, find whether it can be
transformed into a tree-structured network without loss of
information; if the answer is positive find such a tree, if
the answer is negative, acknowledge failure.

This paper develops a polynomial time algorithm
that, given an arbitrary network, generates a tree
representation having the following characteristics:

1. The tree represents the network exactly whenever
such a tree can be extracted from the input network,
and

2. If no tree representation exists, the fact is ack-
nowledged, and the tree generated may serve as a
good approximation to the original network.

The algorithm works as follows. We examine all tri-
plets of variables, identify the redundancies that exist in
each triplet, and assign weights to the edges in accordance
with the redundancies discovered. The algorithm returns
a maximum-spanning-tree relative to these weights.

An added feature of the algorithm is that when the
tree generated is recognized as an approximation, it can
be further tightened by adding edges until a precise
representation obtains. This technique may be regarded
as an alternative redundancy-removal scheme to the one
proposed in [Dechter and Dechter 19871, accompanied
with polynomial complexity and performance guarantees.

2. Preliminaries and nomenclature

We first review the basic concepts of constraint satisfac-
tion [Montanari 1974, Mackworth 1977, Dechter and
Pearl 19871.

10 AUTOMATEDREASONING

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

TECHNICAL REPORT
R-146

A network of binary constraints consists of a set of
variables (X 1 , . . . ,X,, } and a set of binary constraints on
the variables. The domain of variable Xi, denoted by Q,
defines the set of values Xi may assume. A binary con-
straint, Rij, on variables Xi and Xi, is a subset of the
Cartesian product of their domains (i.e., Ri,j c Di x Dj); it
specifies the permitted pairs of values for Xi and Xi.

A binary constraint R is tighter than R’ (or converse-
ly R’ is more relaxed than R), denoted by R c R ‘, if every
pair of values allowed by R is also allowed by R’. The
most relaxed constraint is the universal constraint which
allows all pairs of the Cartesian product.

A tuple that satisfies all the constraints is called a
solution. The set of all solutions to network R constitutes
a relation, denoted by rel(R), whose attributes are the
variables names. Two networks with the same variable set
are equivalent if they represent the same relation.

A binary CSP is associated with a constraint graph,
where node i represents variable Xi, and an edge between
nodes i and j represents a direct constraint, Rg, between
them, which is not the universal constraint. Other con-
straints are induced by paths connecting i and j. The con-
straint induced on i and j by a path of length m through
nodes i. = i, i 1, . . . , i, = j, denoted by Ri,,i, . ,....&7
represents the composition of the constraints along the
path. A pair of values XE Di, and YE Dim is allowed by the
path constraint, if there exists a sequence of values
VIEDi,, . . . ,Vm-IEDi,-, such that
Ri,,i, kvl), Ri,,i,(vl rV2)r l - - 9 a ndRim+i,(Vm-l ,I�).

A network whose direct constraints are tighter than
any of its induced path constraints is called path con-
sistent. Formally, a path P of length m through nodes
i0, il i ,-**, m is consistent, if and only if
R io,i, C Rio,il . . Similarly, arc (i,j) is consistent if for ,-*..b$
any value XEDi, there exists a value yEDj such that
R&y). A network is arc and path consistent if all its
arcs and paths are consistent. Any network can be con-
verted into an equivalent arc and path consistent form in
time O(n3)(‘) [Mackworth and Freuder 19851. In this pa-
per we assume all networks are arc and path consistent.

Not every relation can be represented by a binary
constraint network. The best network that approximates a
given relation is called the minimal network; its con-
straints are the projections of the relation on all pairs of

(1) Actually, the complexity is 0 (n3&‘), where k is the domain six;

however, for simplicity, we assume the domain size is constant.

variables, namely, each pair of values allowed by the
minimal network participates in at least one solution.
Thus, the minimal network displays the tightest con-
straints between every pair of variables. Being a projec-
tion of the solution set, the minimal network is always arc
and path consistent.

3. Problem statement

We now define the tree decomposability problem. First,
we introduce the notion of tree decomposition.

Definition. A network R is tree decomposable if there
exists a tree-structured network T, on the same set of vari-
ables, such that R and 7’ are equivalent (i.e., represent the
same relation). T is said to be a tree decomposition of R,
and the relation p represented by R is said to be tree
decomposable (by 7). R is tree reducible if there exists a
tree 7’ such that R is decomposable by T, and for all
(i, j)E T, TG = RG, namely the constraints in T are taken
unaltered from R.

The tree decomposability problem for networks is
defined as follows. Given a network R, decide if R is tree
decomposable. If the answer is positive find a tree decom-
position of R, else, acknowledge failure. The tree reduci-
bility problem is defined in a similar way. A related
problem of decomposing a relation was treated in
[Dechter 19871, and will be discussed in Section 6.

Example 1. Consider a relation p1 shown in Figure 1.
The minimal network is given by

MA.B =A!f~,c =MB,c = (00, 11)

MA,D = &,D = &,D = (00, 10, 11)~

where constraints are encoded as lists of permitted pairs.
Any tree containing two edges from (AB, AC, BC) is a
tree decomposition of M; for example,
T1 = (AB, AC, AD) and T2 = {AB, BC, BD}. M is also
tree reducible, since the link constraints in these trees are
identical to the corresponding constraints in M.

A B C D

0 0 0 0

~

1 1 1 0
1 1 1 1

Figure 1. p1 - a tree-decomposable relation.

Example 2. Consider a relation p2 shown in Figure 2.
T = (AB, AC, AD, AE) is the only tree decomposition of

MEIRI,&ARL, AND DECHTER 11

P2-
c
-i-
1
1
1
0
1
0
1

D
0

0
1
1
1
1
1
1

ii-

-ii-
1
0
1
1
1
1
1

Figure 2. p2 - a tree-decomposable relation.

The rest of the paper is organized as follows. Sec-
tions 4 and 5 describe the tree decomposition scheme,
while Section 6 presents extensions and ramifications of
this scheme. Proofs of theorems can be found in [Meiri,
Dechter and Pearl 19901.

4. Tree decomposition schemes

Tree decomposition comprises two subtasks: searching
for a skeletal spanning tree, and determining the link con-
straints on that tree. If the input network is minimal, the
second subtask is superfluous because, clearly, the link
constraints must be taken unaltered from the correspond-
ing links in the input network, namely, decomposability
coincides with reducibility. We shall, therefore, first
focus attention on minimal networks, and postpone the
treatment of general networks to Section 6. Our problem
can now be viewed as searching for a tree skeleton
through the space of spanning trees. Since there are nnB2
spanning trees on n vertices (Cayley’s Theorem lEven
1979]), a method more effective than exhaustive
enumeration is required.

The notion of redundancy plays a central role in our
decomposition schemes. Consider a consistent path
P =io, il,. . . ,i,. Recall that the direct constraint Ri,,i=
is tighter than the path constraint Rio,;,, . . . ,im. If the two
constraints are identical we say that edge (ij) is redun-
dant with respect to path P; it is also said to be redundant
in the cycle C consisting of nodes {io, i 1, . . . , i,) . If the
direct constraint is strictly tighter than the path constraint,
we say that (i,j) is nonredundant with respect to P (or
nonredundant in C). Another interpretation of redundancy
is that any instantiation of the variables (io, i 1, . . . , i, }
which satisfies the constraints along P is allowed by the
direct constraint Ri,,i=. Conversely, nonredundancy im-
plies that there exists at least one instantiation which
violates Ri,,im.

Definition. Let T be a tree, and let e = (i,j) P T. The
unique path in T connecting i and j, denoted by PT(e), is
called the supporting path of e (relative to 7’). The cycle
CT(e) = PT(e) u {e) is called the supporting cycle of e
(relative to 7).

Theorem 1. Let G = (VIE) be a minimal network. G is
decomposable by a tree T if and only if every edge in
E - T is redundant in its supporting cycle.

Theorem 1 gives a method of testing whether a net-
work G is decomposable by a given tree T. The test takes
0 (n3) time, as there are 0 (n2) edges in E - T, and each
redundancy test is 0 (n).

Illustration. Consider Example 1. Tree
T1 = (AB, AC, AD} is a tree decomposition, since edges
BC, BD and CD are redundant in triangles {A, B, C},
{A, B, D} and {A, C, D), respectively. On the other
hand, T2 = (AD, BD, CD) is not a tree decomposition
since edge AB is nonredundant in triangle {A, B, D)
(indeed, the tuple (A = 1, B = 0, C = 0, D = 0) is a solu-
tion of T2, but is not part of pl).

An important observation about redundant edges is
that they can be deleted from the network without
affecting the set of solutions; the constraint specified by a
redundant edge is already induced by other paths in the
network. This leads to the following decomposition
scheme. Repeatedly select an edge redundant in some cy-
cle C, delete it from the network, and continue until there
are no cycles in the network. This algorithm, called TD- 1,
is depicted in Figure 3.

Algorithm TD-1

l.NtE;
2. while there are redundant edges in N do
3. select an edge e which is redundant in

some cycle C, and
4. NtN-{e)
5. end;
6. if N forms a tree then G is decomposable by N
7. else G is not tree decomposable;

Figure 3. TD-1 - A tree decomposition algorithm.

Theorem 2. Let G be a minimal network. Algorithm TD-
1 produces a tree T if and only if G is decomposable by
T.

12 AUTOMATEDREASONING

To prove Theorem 2, we must show that if the net-
work is tree decomposable, any sequence of edge remo-
vals will generate a tree. A phenomenon which might
prevent the algorithm from reaching a tree structure is
that of a stiff cycle, i.e., one in which every edge is non-
redundant (e.g. cycle {B, D, C, E} in Example 2). It can
be shown, however, that one of the edges in such a cycle
must be redundant in another cycle.

The proof of Theorem 2 rests on the following three
lemmas, which also form the theoretical basis to Section
5.

Lemma 1. Let G be a path consistent network and let
e = (io,im) be an edge redundant in cycle
C = {io, il , . . . ,im). If C’= {io, il,. . . ,ik, &+I,. . . ,im)
is an interior cycle created by chord (ik, il), then e is
redundant in C’.

Lemma 2. Let G be a minimal network decomposable by
a tree T, and let eE T be a tree edge redundant in some cy-
cle C. Then, there exists an edge e’E C, e’4 T, such that e
is redundant in the supporting cycle of e’.

Lemma 3. Let G be a minimal network decomposable by
a tree T. If there exist eE T and e’$ T such that e is redun-
dant in the supporting cycle of e’, then G is decomposable
by T’= T - {e} u (e’}.

Algorithm TD-1, though conceptually simple, is
highly inefficient. The main drawback is that in Step 3 we
might need to check redundancy against an exponential
number of cycles. In the next section we show a polyno-
mial algorithm which overcomes this difficulty.

5. Tree, triangle and redundancy labelings

In this section we present a new tree decomposition
scheme, which can be regarded as an efficient version of
TD-1, whereby the criterion for removing an edge is
essentially precomputed. To guide TD-1 in selecting
redundant edges, we first impose an ordering on the
edges, in such a way that nonredundant edges will always
attain higher ranking than redundant ones. Given such
ordering, we do not remove edges of low ranking, but ap-
ply the dual method instead, and construct a tree contain-
ing the preferred edges by finding a maximum weight
spanning tree (MWST) relative to the given ordering.
This idea is embodied in the following scheme.

Definition Let G = (V,E) be a minimal network. A label-
ing w of G is an assignment of weights to the edges,

where the weight of edge eE E is denoted by w(e). w is
said to he a tree labeling if it satisfies the following con-
dition. If G is tree decomposable, then G is decomposable
by tree T if and only if T is a MWST of G with respect to
W.

Finding a tree labeling essentially solves the tree
decomposability problem, simply following the steps of
algorithm TD-2 shown in Figure 4. TD-2 stands for a
family of algorithms, each driven by a different labeling.
Steps 2-4 can be implemented in 0 (n 3): Step 2 can use
any MWST algorithm, such as the one by Prim, which is
O(n2) (see Even 19791); Steps 3-4, deciding whether G
is decomposable by T, arc 0 (n3) as explained in Section
4.

Algorithm TD-2

1. w t- tree labeling of G;
2. T t MWST of G w.r.t. w;
3. test whether G is decomposable by T;
4. if the test fails G is not tree decomposable;

Figure 4. TD-2 - A polynomial tree
decomposition algorithm.

We now turn our attention to Step 1, namely comput-
ing a tree labeling. This will be done in two steps. We
first introduce a necessary and sufficient condition for a
labeling to qualify as a tree labeling, and then synthesize
an 0 (n3) algorithm that returns a labeling satisfying this
condition. As a result, the total running time of TD-2 is
bounded by 0 (n3).

Definition. Let G = (V,E) be a minimal network. A label-
ing w of G is called a redundancy labeling, if it satisfies
the following condition. For any tree T and any two
edges, e’ E E - T and eE T, such that e is on the support-
ing cycle Cr(e’) of e’, if G is decomposable by T then

(i) w(e’) 5 w(e). (1)

(ii) e is redundant in CT(e’) whenever w (e’) = w(e). (2)

Theorem 3. Let w be any labeling of a minimal network
G. w is a tree labeling if and only if w is a redundancy la-
beling.

The merit of Theorem 3 is that it is often easier to test
for redundancy labeling than for the ultimate objective of
tree labeling. Having established this equivalence, the
next step is to construct a labeling that satisfies conditions

MEIRI,PEARL,ANDDECHTER 13

(1) and (2).

Definition. A labeling w of network G is a triangle label-
ing, if for any triangle t= { e 1 ,e 2 ,e 3) the following condi-
tions are satisfied.

(i) If e 1 is redundant in t then

w(ed 2 de21 , wh) 5 w(e3). (3)

(ii) If e 1 is redundant in t and e2 is nonredundant in t then

wh) < w(e2). (4)

Conditions (3) and (4) will be called triangle constraints.

Illustration. Consider the minimal network of Example
2. Analyzing redundancies relative to all triangles leads to
the triangle constraints depicted in Figure 5. Each node in
the figure represents an edge of the minimal network, and
an arc e 1 -+ e2 represents the triangle constraint
w (e 1) < w (e2) (for clarity, all arcs from bottom layer to
top layer were omitted). It so happens that only strict ine-
qualities were imposed in this example. A triangle label-
ing w can be easily constructed by assigning the following
weights:

w(AB)=w(AC)=w(AD)=w(AE)=3

w(BD)=w(BE)= w(CD)=w(CE)=2

w(BC)=w(DE)= 1.

Note that the tree T = {AB, AC, AD, AE), which decom-
poses the network, is a MWST relative to these weights, a
property that we will show to hold in general.

Figure 5. Triangle constraints for Example 2.

Clearly, conditions (3) and (4) are easier to verify as
they involve only test on triangles. In Theorem 5 we will
indeed show that they are sufficient to constitute a redun-
dancy labeling, hence a tree labeling. Moreover, a label-
ing satisfying (3) and (4) is easy to create primarily be-
cause, by Theorem 4, such a labeling is guaranteed to ex-

ist for any path consistent (hence minimal) network. Note
that this is by no means obvious, because there might be
two sets of triangles imposing two conflicting constraints
on a pair (a,b) of edges; one requiring w(a) I w (b), and
the other w(a) > w(b).

Theorem 4. Any path consistent network admits a trian-
gle labeling.

The ic’:a behind triangle labelings is that all redun-
dancy information necessary for tree decomposition can
be extracted from individual triangles rather than cycles.
By Lemma 1, if an edge is redundant in a cycle, it must be
redundant in some triangle. Contrapositively, if an edge is
nonredundant in all triangles, it cannot be redundant in
any cycle, and thus must be included in any tree decom-
position. To construct a tree decomposition, we must
therefore include all those necessary edges (note that they
attain the highest ranking) and then, proceed by preferring
edges which are nonredundant relative to others. The
correctness of the next theorem rests on these considera-
tions.

Theorem 5. Let G be a minimal network, and let w be a
labeling of G. If w is a triangle labeling then it is also a
redundancy labeling.

By Theorems 3 and 5, if the network is minimal any
triangle labeling is also a tree labeling. What remains to
be shown is that, given any minimal network G = (V,E), a
triangle labeling can be formed in 0 (n3) time. Algorithm
TLA, shown in Figure 6, accomplishes this task.

Algorithm TLA

1. create an empty directed graph G 1 = (V 1, E 1)
with VI = E;

2. for each triangle t = (ei, ej, ek) in G do
3. if edge ei is redundant in t then

addarcsei~ejandei~ektoG1;
4. G2 = (V2,E2) t superstructure of G,;
5. compute a topological ordering w for V2;
6. for i := lto IV21 do
7. for each edge e in Ci do
8. W (4 + W (Ci);

Figure 6. TLA - an algorithm for
constructing a triangle labeling.

Let us consider the TLA algorithm in detail. First, it
constructs a graph, G1, that displays the triangle con-
straints. Each node in G1 represents an edge of G, and arc

14 AUTOMATEDREASONING

u + v stands for a triangle constraint w(u) 5 w(v) or
w(u) c w(v). The construction of G1 (Steps l-3) takes
0 (n3) time, since there are 0 (n3) triangles in G, and the
time spent for each triangle is constant.

Consider a pair of nodes, u and v, in G 1. It can be
verified that if they belong to the same strongly-connected
component (i.e., they lie on a common directed cycle),
their weights must satisfy w(u) = w(v). If they belong to
two distinct components, but there exists a directed path
from u to v, their weights must satisfy w(u) < w(v).
These relationships can be effectively encoded in the su-
perstructure of G 1 [Even 19791. Informally, the super-
structure is formed by collapsing all nodes of the same
strongly-connected component into one node, while keep-
ing only arcs that go across components. Formally, let
G2 = (V2,Ez) be the superstructure of Gl. Node CiE G2
represents a strongly-connected component, and a direct-
ed arc Ci + Cj implies that there exists an edge u + v in
G 1, where UE Ci and VE Cj. Identifying the strongly con-
nected components, and consequently constructing the su-
perstructure (Step 4), takes 0 (n3) (a time proportional to
the number of edges in G 1 [Even 19791).

It is well-known that the superstructure forms a DAG
(directed acyclic graph), moreover, the nodes of the DAG
can be topologically ordered, namely they can be given
distinct weights w, such that if there exists an arc i -+ j
then w(i) < w 0). This can be accomplished (Step 5) in
time proportional to the number of edges, namely 0 (n3).
Finally, recall that each node in G2 stands for a strongly-
connected component, Ci, in G 1, which in turn represents
a set of edges in 6. If we assign weight w (Ci) to these
edges (Steps 6-8), w will comply with the triangle con-
straints, and thus will constitute a triangle labeling. Since
all steps are 0 (n3), the entire algorithm is 0 (n3).

Illustration. Consider Example 1. There are two
strongly-connected components in G 1 :

Cl = {AD, BD, CD}

and

C2 = (AB, AC, BC).

There are edges going only from C1 to C2. Thus, assign-
ing weight 1 to all edges in Cl and weight 2 to all edges
in C2 constitutes a triangle labeling. Consider Example 2,
for which G 1 is shown in Figure 5. Note that G 2 = G 1,
that is, every strongly-connected component consists of a
single node. Assigning weights in the ranges l-2,3-6 and
7-10 to the bottom, middle and top layers, respectively,
constitutes a triangle labeling.

6. Exterisions and Ramifications

6. I. Decomposing a relation

Given a relation p, we wish to determine whether p is tree
decomposable. We first describe how TD-2 can be em-
ployed to solve this problem, and then compare it with the
solution presented in Dechter 19871.

We start by generating the minimal network A4 from
p. We then apply TD-2 to solve the decomposability
problem for M. If A4 is not tree decomposable, p cannot
be tree decomposable; because otherwise, there would be
a tree T satisfying p = rel (T) c rel (M), violating the
minimahty of M [Montanari 19743. If M is decomposable
by the generated tree 7’, we still need to test whether
reZ(7’) = p (note that A4 may not represent p precisely).
This can be done by comparing the sizes of the two rela-
tions; p is decomposable by T if and only if
Ipl= I reZ(T) I. Generating M takes 0 (n2 I p I) opera-
tions, while ITI can be computed in 0 (n) time [Dechter
and Pearl 19871; thus, the total time of this method is
O(n21pI).

An alternative solution to the problem was presented
in [Dechter 19871. It computes for each edges a numerical
measure, w, based on the frequency that each pair of
values appears in the relation. Fit, the following param-
eters are computed:
n Cxi = xi) = number of tuples in p in which variable Xi at-
taiIlS value Xi.
n Cxi = Xi,Xj = xi) = number of tuples in p in which both
Xi =Xi andXj=xj.
Then, each edge e = (ij) is assigned the weight

w(e) = C ?Z (Xi,Xj)lOg ny:ATi) . (5)
*iJj E Xi;ui i i

It has been shown that this labeling, w, is indeed a tree la-
beling, also requiring 0 (n2 I p I) computational steps.

Comparing the two schemes, our method has three
advantages. First, it does not need the precision required
by the log function. Second, it offers a somewhat more
effective solution in cases where p is not available in ad-
vance but is observed incrementally through a stream of
randomly arriving tuples. Finally, it is conceptually more
appealing, since the removal of each edge is meaningfully
justified in terms of being redundant.

6.2. Reducing a network

Given an arc and path consistent network R, we wish to

MEIRI,PEARL,ANDDECHTER 15

determine whether R is tree reducible. This problem ad-
mits TD-2 directly, since it can be shown that any path
consistent network is tree reducible only when it is
minimal. Thus, if TD-2 returns failure, we are assured
that R is not tree reducible (though it could still be tree
decomposable).

6.3. Removing redundancies from a network

Given a network R (not necessarily tree decomposable),
we wish to to remove as many redundant edges as possi-
ble from the network. Our scheme provides an effective
heuristics, alternative to that of [Dechter and Dechter
19871. We first apply the TD-2 algorithm and, in case the
tree generated does not represent the network precisely,
we add nonredundant edges until a precise representation
obtains.

6.4. Approximating a Network

Given a network R, find a tree network which constitutes
a good approximation of R. The tree T generated by TD-
2 provides an upper bound of R, as it enforces only a sub-
set of the constraints. The quality of this approximation
should therefore be evaluated in terms of the tightness, or
specificity, of T.

Conjecture: The tree T generated by TD-2 is most
specific in the following sense: no other tree T’, extracted
form the network, satisfies reZ(T’) c reZ(T).

Although we could find no proof yet, the conjecture has
managed to endure all attempts to construct a counterex-
ample.

7. Conclusions

We have addressed the problem of decomposing a con-
straint network into a tree. We have developed a tractable
decomposition scheme which requires 0 (n3) time, and
solves the problem for minimal networks. The technique
maintains its soundness when applied to an arbitrary net-
work, and is guaranteed to find a tree decomposition if it
can be extracted from the input network without altering
the link constraints. The main application of our scheme
lies in preprocessing knowledge bases and transforming
them into a very effective format for query processing.
Other applications are in guiding backtrack search by tree
relaxation of subproblems. Finally, we envision this tech-
nique to be useful in inductive learning; especially, for
learning and generalizing concepts where instances are
observed sequentially. The tree generated by TD-2 pro-

vides one of the simplest descriptions consistent with the
observed data, and at the same time it is amenable to
answer queries of subsumption and extension.

References

Dechter A. and Dechter R. 1987. Removing Redundan-
cies in Constraint Networks. In Proceeding of AAAI-87,
Seattle, WA.

Dechter R. 1987. Decomposing a Relation into a Tree of
Binary Relations. In Proceedings of 6th Conference on
Principles of Database Systems, San Diego, CA, 185-189.
To appear in Journal of Computer and System Science,
Special Issue on the Theory of Relational Databases.

Dechter R. and Pearl J. 1987. Network-Based Heuristics
for Constraint Satisfaction Problems. Artificial Intelli-
gence 34(l), l-38.

Even S. 1979. Graph Algorithms. Computer Science
Press, Rockville, Md.

Freuder E. C. 1982. A Sufficient Condition of Backtrack-
Free Search, JACh4 29(l), 24-32.

Mackworth A. K. 1977. Consistency in Networks of Rela-
tions. Artificial Intelligence 8(l), 99-l 18.

Mackworth A. K. and Freuder E. C. 1985. The Complexi-
ty of Some Polynomial Network Consistency Algorithms
for Constraint Satisfaction Problems. Artijcial Intelli-
gence 25(l), 65-74.

Maier D. 1983. The Theory of Relational Databases.
Computer Science Press, Rockville, Md.

Meiri I., Dechter R. and Pearl J. 1990. Tree Decomposi-
tions with Applications to Constraint Processing. Techni-
cal Report R-146, Cognitive Systems Lab., University of
California, Los Angeles.

Montanari U. 1974. Networks of Constraints: Fundamen-
tal Properties and Applications to Picture Processing. In-
formation Sciences 7,95- 132.

16 AUTOMATEDREASONING

