
ELSEVIER Artificial Intelligence 82 (1996) I-20

Artificial
Intelligence

Structure-driven algorithms for truth maintenance *

Rina Dechter a,*, Avi Dechter b*l
’ lnjbrmation and Computer Science Department, University of California, Irvine, CA 92717, USA

h Department of Management Science, School of Business Administration and Economics,
California State Universiry Northridge, CA 91330, USA

Received February 1990; revised August 1994

Abstract

This paper studies truth maintenance and belief revision tasks on singly-connected structures for
the purpose of understanding how structural features could be exploited in such tasks. We present
distributed algorithms and show that, in the JTMS framework, both belief revision and consistency
maintenance are linear in the size of the knowledge-base on singly-connected structures. However,
the ATMS task is exponential in the branching degree of the network. The singly-connected
model, while restrictive, is useful for three reasons. First, efficient algorithms on singly-connected
models can be utilized in more general structures by employing well-known clustering techniques.
Second, these algorithms can serve as approximations or as heuristics in algorithms that perform
truth maintenance on general problems. Finally, the analysis provides insights for understanding
the sources of the computational difficulties associated with JTMS and ATMS.

1. Introduction

Reasoning about dynamic environments is a central issue in artificial intelligence.
When dealing with a complex environment, only partial description of the world is
known explicitly at any given time. A complete picture of the environment can only
be speculated by making assumptions, which must be consistent with each other and
with the available information. When new facts become known, some assumptions

*This work was supported in part by grants from the Air Force Office of Scientific Research, AFOSR

900136, by NSF grant IRI-91573636, by grants from Toshiba of America and Xerox Palo Alto research

center.

* Corresponding author. E-mail: dechter@ics.uci.edu.

’ E-mail: avi@cs.ucla.edu.

0004.3702/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved

SSDlOOO4-3702(94)00096-4

TECHNICAL REPORT
R-138

2 R. Dechter; A. Dechter/Artijicial Intelligence 82 (1996) I-20

must be changed SO that the consistency of our view of the world is maintained at all
times.

Truth maintenance systems (TMSs) are computational schemes aimed at handling
such situations. In its generic form, a TMS manipulates propositional formulas built

from propositional symbols and standard Boolean connectives. A selected subset of the
propositional symbols are called premises. That is, statements about the environment
that do not require proof either because they are known to be true (observational facts)
or because they may be assumed to be true as long as there is no evidence to the
contrary (assumptions). In addition to premises, the system contains a set of Boolean
construints, sentences which describe invariant properties of the environment.

The main functionality of a TMS is to determine whether the truth of a given propo-
sition follows logically from a given set of premises and from the set of constraints, and
to keep this information current.

Two primary approaches to TMS implementation have been proposed: the JTMS
(Justification-based TMS) [14,21,23] and the ATMS (Assumption-based TMS) [111.

Each design implements the main functionality in a different way. A JTMS starts with
the given premise set and attempts to identify all provable propositions, hoping that a
proof will be derived for the target proposition. An ATMS, on the other hand, maintains
for each proposition a collection of consistent premise subsets (called environments)
any of which is sufficient for proving the proposition. To prove that the target proposition

follows from the given premise set, all that is needed is to verify that this premise set
contains at least one of the proposition’s environments.

A JTMS must also be able to check whether its current premise set is consistent

with the constraints, and, in case it is not, point to a part of the premise set which can

be shown to be a source of the inconsistency. This functionality of JTMS is closely
related to the framework of agent’s belief revision. The basic idea in this more recent

work is to enforce minimal change in an agent’s belief necessary to account for a new
contradiction in his knowledge [11. Thus far, research in belief revision focused on the
task of finding a minimal revision or on finding what holds under all minimal revisions.
Here we focus on the identification of a minimum number of changes to represent
minimal change.

When originally introduced, algorithms for truth maintenance were not accompanied

by complexity analysis, or performance guarantees [12,14,21]. Nevertheless, experi-
mental work with these tools, and more recent complexity analysis, have shown that
both JTMS and ATMS functionalities are very inefficient, with ATMS exhibiting higher

complexity than JTMS in both time and space.
A common strategy for reducing computational complexity has been to use efficient

algorithms [221 which are complete only for restricted languages (e.g., unit resolution
for Horn theories), but may be incomplete in general. This paper examine another
type of restriction, one based on the structure of the knowledge-base as reflected in
the graphical properties of the TMS constraint set. We will present algorithms that are
tractable for tree-like knowledge-bases and whose complexity for general theories can
be bounded as a function of the “distance” of the knowledge-base from a tree.

The algorithms are based on recent work in constraint satisfaction problems (CSPs) ,

which resulted in many efficient algorithms and tractable cases tied specifically to

R. Dechter; A. Dechter/Artijcial Intelligence 82 (1996) I-20 3

the structure of the problem [9,10,16,20]. A constraint network consists of a set of
variables, each associated with a finite set of possible values, and a set of constraints,

specifying joint assignments to the variables “allowed” by the constraints. A solution
is an assignment of values to all the variables such that all of the constraints are
satisfied.

For the purpose of using CSP techniques, we assume that the TMS knowledge-base is
represented as a constraint network. In this network, each proposition (e.g., assumptions

or facts) is represented by the assignment of a specific value to a particular variable.
A proposition is entailed if it is the only consistent assignment of a value to that
variable. To model change we introduce the notion of ussumption variables. The TMS
algorithms will be allowed to manipulate those assumptions in response to changes

to the network (possibly imposed by observations from the outside world). Since the
language of constraints has the same expressive power as propositional logic [21], all

the algorithms presented here are applicable to propositional languages. The connection

between truth maintenance systems and constraint satisfaction problems was already
pointed out by several authors e.g., [12,22,24]. The main thrust of these efforts has

been to show that search reduction techniques developed in one area may be used to the
benefit of the other. Our work here take this idea one step further.

We present the algorithms in a distributed fashion, that is, assigning a processor to

each variable and letting the processors communicate with each other through a uniform
protocol. We emphasize the distributed nature of our algorithms for two reasons. First, in
order to allow their implementation on a real physical distributed network of processors.
Second, a distributed algorithm, if self-stabilized, is guaranteed to converge to a solution
from any initial configuration (for a precise definition see [71). The algorithms we

present are self-stabilized and, consequently, the updating process of such knowledge,

in response to a local change, is already encoded in the protocol.
Following preliminaries in Section 2 whereby the tasks of TMSs is defined within the

constraint network model, we present (Section 3) a distributed algorithm for computing
and maintaining the entailment status of each proposition. In Section 4 we present
a distributed belief revision algorithm for restoring consistency to an inconsistent net-

work in a way that minimizes the number of assumption changes. We demonstrate the
applicability of this algorithm for diagnosis (Section 5). We show that JTMS’s tasks
of entailment and belief revision are linear time on tree-like knowledge-bases. Finally,
in Section 6 we address the ATMS labeling task of compiling and maintaining all the
labels. We show that, although in this case the algorithm is not tractable, not even

for trees, its complexity is exponentially bounded by the branching degree of the tree.
Therefore, chain-like networks can be processed relatively efficiently for this task as
well.

2. Definitions and preliminaries

In this section we define the notions of constraint networks and relations, relate them
to propositional theories, and define in their context the TMS tasks discussed in the
introduction.

4 R. Dechter. A. Dechter/Artificial Intelligence 82 (1996) I-20

Definition 1 (Relations, networks, schemes). Given a set of variables X = { Xr , . . . , Xn}
associated, respectively, with domains of discrete values Di, . . . , D,, a relation (or,

alternatively, a constraint) p = p(X1,. . . , X,,) is any subset

p C D, x D2 x . . . x D,.

The projection of p onto a subset of variables Q, denoted nQ (p) or pQ, is the set of all
tuples defined on the variables in Q that can be extended into tuples in p. A constraint

network R over X is a set pi,. . . ,p, of such relations. Each relation pi is defined on a
subset of variables Si c X. The set of subsets S = {Si, . . . , St} is called the scheme of
R. The network R represents a unique relation rel(R) defined over X, which stands for

all consistent assignments (or all solutions), namely,

rel(R) ={x= (XI,... 7 4,) I tisi E s n,(x) E Pi}.

A partial assignment T = t is a value assignment to a subset of variables T C X. A
value x in the domain of X is said to be consistent if it is part of at least one solution

of R. A tuple t is consistent if it participate in at least one solution.

The scheme of a constraint network can be associated with a constraint graph where
each subset in the scheme is represented by a node in the graph and two nodes are
connected if the corresponding relations have at least one common variable. The arcs

are labeled by the common variables. A network whose constraint graph is a tree is said
to be acyclic and its corresponding constraint graph is called a join-tree. When all the
constraints involve exactly two variables, the network is called binary. In such a case,
another graphical representation of the network, called the primal constraint graph, is

useful. In this graph each variable is represented by a node and two nodes are connected
by an arc if the variables they represent are joined by a constraint.

Any propositional theory can be viewed as a special kind of constraint network, where
the domain of each variable is (0, 1) (corresponding to {false, true}) and where each
clause (a disjunction of propositional symbols or their negations) specifies a constraint

(in other words, a relation) on its propositional symbols. The set of all models of the
theory corresponds exactly to the set of all solutions of its corresponding constraint

network.
A proposition X = x is entailed by the network if x is the only consistent value of X,

namely if it participates in all solutions. Similarly, a tuple t is entailed if it participates
in all solutions. We distinguish a subset of variables A 2 X called assumption variables.

Example 2. Consider the theory @ = {‘A V -B, 7B v -C, C V D}. This theory can be
viewed as a constraint network over the variables {A, B, C, D}, where the corresponding
relations are the truth tables of each clause, that is, p(AB) = {OO,Ol, lo}, p(BC) =

{OO,Ol, IO}, and p(CD) = {Ol,lO, 11). The scheme of the theory @is {AB,BC,CD}.

The set of all solutions to this network (and hence the set of models of @) is

p(ABCD) = {0001,0010,0011,0101,1001,1010,1011}.

R. Dechter; A. Dechter/Art$cial Intelligence 82 (1996) l-20 5

It is evident that none of the propositions or their negations is entailed. Theory Q, is
acyclic as demonstrated by its constraint graph:

BC

/\

B/ \C

/ \
AB CD

We next define formally the TMS tasks that we consider in this paper:

Definition 3 (TMS functionalities defined for constraint networks). Given a network of

constraints R, over a set of variables X = Xi,. . . ,X,, with a subset A, A & X of
assumption variables, and a set of constraints pt, . . . , pnr over X we define:

l JTMS main functionality: Given an instantiation of a subset of the assumption
variables, determine for each X = x if it is entailed.

l JTMS belief revision: Given a set of assumptions for which the network is inconsis-
tent, determine a minimal size set of assumption changes that restore consistency.

l ATMS main functionality: For each value x of each variable X, determine the set of
all consistent minimal (in the sense of set inclusion) instantiations of assumption

variables that entail X = x.

The algorithms we discuss in this paper assume, initially, that the theories are acyclic.
These algorithms are extensible to arbitrary theories via a procedure known as tree-

clustering [lo], which compiles any theory into a tree of relations. Consequently, given
a general theory, the algorithms presented in the sequel work in two steps: A join-tree
is computed by tree-clustering, and then a specialized tree algorithm for the particular

TMS function is applied. The complexity of tree-clustering is bounded exponentially

by the size of the maximal arity of the generated relations, and hence our algorithms
are efficient for theories that can be compiled into tree networks of low-arity relations

only. Examples of such theories are discussed in Section 5. An alternative approach for
extending the algorithm to cyclic theories is via a method known as cycle-cutset [61,

which is exponential in the cycle-cutset size of the theory. The size of the minimal
cycle-cutset is normally higher than the cluster’s sizes of a tree-embedding of the same
theory. The virtue of the cycle-cutset however is that, unlike tree-clustering, it does not

require exponential space.

3. Identifying all entailed propositions

A proposition of the type X = x is entailed in a network of constraints R if the
network has at least one solution and if x is the only value of X in all solutions. The

approach we propose for identifying all entailed propositions involves computing for
each value in the domain of each variable the number of solutions it participates in. We
will refer to this number as the numerical support (n-support in short) of the value.
Once this information is available for every value of a variable, entailment is easy to

6 R. Dechteq A. Dechter/Arti$cial Intelligence 82 (1996) l-20

Fig. I. A fragment of a tree network.

determine locally: a proposition X = x is entailed if x has a positive n-support while

all other values of X have zero n-supports.
The notion of numerical support may be extended to encompass not just the instantia-

tion of a single variable but that of a tuple of variables. This is captured in the following

definition.

Definition 4. Given a network of constraints over variables Xi,. . . , X,, with constraints

c,,... , Cr, the n-support of a value x of X, denoted sx(x), is the number of solutions

in which X is assigned the value x. The n-support of a tuple C; = ci, denoted sc,(ci), is
the number of solutions in which Ci = ci. Let R be a join-tree, and let (U, V) be an arc
in the tree (see Fig. 1) . The subtree rooted at U, which does not contain V, is denoted
Tz, and s;(u) is the number of solutions of Tz which are consistent with U = U.

In the following we present a distributed algorithm that compiles all n-supports for
an acyclic network. The algorithm is a distributed adaptation of a known tree algorithm
that computes the number of solutions [91. Following [91, it is easy to show that:

Theorem 5. Let T be a join-tree, and let U be one of its relations, the overall n-support
for U = u can be expressed as a function of the n-supports of its neighbors, namely:

Q/(u) = I-I c s&7). (1)

Eq. (1) lends itself to a distributed propagation scheme. If constraint U gets from
each neighboring node, Q, the n-support vector, s$ it can calculate its own support
vector using Eq. (I), and, at the same time, it can generate an appropriate message
for each of its own neighbors. The message which U sends to Q, s$ (i.e., the support

vector reflecting the subtree T{) can be computed by:

(2)

R. Dechtec A. Dechter/Artificial Intelligence 82 (1996) I-20 7

support-propagation(U)

Input: A join-tree T, having variables X = (Xl, . . . , Xn}. A relation U E T, the n-support
vector sg, for all neighbors Q of U.

Output: The support vector s”(u), and for each neighbor Q, the vector SE(U).

(1) Compute n-supports for each tuple:

(2) Update single-valued n-supports: For every X in the constraint U,

sx(x) = c G/(u).
LrEl/:ux=x

(3) Compute n-supports messages for each neighbor Q:

SE(U) = I-J c s!(c).
(C,U)EKC’Q c;ccnu=ucnu

Fig. 2. Algorithm support-propagation

The message generated by a leaf constraint is a vector consisting of l’s representing
the tuples allowed by that constraint. The computation consists of nodes sending to their
neighbors the partial n-support vectors whenever they are readily computed. When all
nodes have received all the n-supports, the overall n-supports for each tuple in their

constraint can be computed using (1).
Having the n-supports for each tuple in each relation, the single-valued n-supports

can be derived by picking a relation in the tree containing the variable in question, and

then summing the corresponding n-supports of all tuples in the relation that has that
value. The algorithm for node U is summarized in Fig. 2.

If the algorithm is executed in a real distributed environment, its convergence is
guaranteed after at most II . d messages when d is the maximal distance between two

leaf nodes. Under some synchronization the number of messages can be reduced to 2n.

It can, similarly, be shown that the cost of updating the n-supports following a single
change in one relation will cause at most 2n messages until convergence. The following
theorem focuses only on the sequential complexity of the algorithm.

Theorem 6. The sequential complexity of algorithm support-propagation is 0(n r .
log r), where r is the maximal number of tuples of any relation in the join-tree.

Proof. The summation operation between any two relations U and Q can be accom-

plished in 0(r . log r) steps as follows. Relation Q is projected on the variables in the
intersection of Q and U. Each projected tuple is associated with a new n-support com-
puted by summing the corresponding n-supports in the message that Q sends to U. This
operation takes O(r) steps. Then, the projected relation can be sorted in 0(r . log r)
steps and each tuple can be retrieved in log r steps by relation U. 0

8 R. Declarer; A. Dechter/Artijicial Intelligence 82 (1996) I-20

In conclusion, once all n-supports are computed, each tuple of each relation “knows”
if it is entailed, consistent, or inconsistent in constant time, while for each singleton this

information can be obtained in O(r) steps.
If one is interested in entailment only, jut support vectors, consisting of zeros and

ones, can be propagated in exactly the same manner, except that the summation operation
in (1) should be replaced by the logic operator OR, and the multiplication can be
replaced by AND. This results in a distributed arc-consistency algorithm that minimizes

the number of message passing along the links.
Computing n-supports is not easier than determining entailment directly (namely, by

calculating all the solutions of the network). In fact, it is generally very complex, as
it is #P-complete [25]. However, for acyclic networks the complexity of computing
n-supports is the same as that of computing one solution. We choose to compute n-
supports since this can be accomplished at no additional cost on trees, while it is more
informative and might prove useful in applications.

4. Belief revision

When, as a result of a new input, the network enters a contradictory state (i.e., no
solution exists), it often means that the new input is inconsistent with the current set of

assumptions, and that some of these assumptions must be modified in order to restore
consistency.

It is widely agreed that the subset of assumptions that are modified should be minimal,

namely, it must not contain any proper subset of assumptions whose simultaneous
modification is sufficient for that purpose. A sufficient (but not necessary) condition for
this set to be minimal is for it to be as small as possible. In this section we show how
to find a minimum cardinality set of assumptions that need to change in order to restore
consistency.

Assume that a constraint which detects an inconsistency (i.e., all its n-supports are
zero) sends this information to the entire tree, creating in the process a directed tree
rooted at itself. Given this rooted join-tree, belief revision proceeds as follows.

With each tuple u of each relation V in the join-tree T, we associate a weight w(u),

denoting the minimum number of assumption values that must be changed in the subtree
rooted at V in order to make u consistent relative to this subtree. For each tuple q of a
relation Q we denote by S(q), the number of its assumptions that differ from the current

assumptions. We denote by child(V) the set of child relation of V in the join-tree.
The weights obey the following recursion (see Fig. 3):

w(u) = 6(u) + c min
~EQ;w~Q=w~~

w(q).
Q;QEchild(V)

The computation of the weights is performed distributedly from the leaves of the
directed tree to the root. A node waits to get the weights of all its child nodes, computes
its own weights according to (3)) and makes them available to its parent. During this
bottom-up propagation a pointer is kept from each tuple of V to the tuples in each of
its child nodes where a minimum is achieved. When the root receives all the weights, it

R. Dechter; A. Dechter/Ar@cial Intelligence 82 (1996) I-20

V V

21

min

dz?3

c

. . . UJ w2 w 0 .
&I Q2 Q3 Qt

u w min(wl,

Fig. 3. Weight calculation for relation V

9

w3)

belief-revision(V)
Input: A rooted join-tree T, having variables X = {Xi, , X,,}, and relations V, , . . . , K:,,.
A set of assumption variables A & X and its current assignment A = a.

Output: The weights of each tuple and an indication to minimal changes in assumption

assignment.
(1) For each tuple u; E L$ compute a(~).
(2) (Bottom-up) Compute weights of V (given the weights for its child nodes)

w(u) = S(u) + c min
qEQxwnp=wny

w(q).
Q;QEchild(V)

(3) (Top-down) Given a tuple t selected by parent, change assumption value accord-
ingly, select that tuple of each child relation pointed to by t.

Fig. 4. Algorithm belief-revision.

computes its own weights and selects one of its minimizing tuples. It then initiates (with
this tuple) a top-down propagation down the tree, following the pointers marked in the
bottom-up propagation. At termination this process marks the assumption variables that

need to be changed and the appropriate changes required. The algorithm is summarized
in Fig. 4.

Theorem 7. Given a join-tree T whose largest relation size is at most r, algorithm
belief-revision can find one minimal revision in 0(n r . log r). The set of all minimal

cardinality revisions can be generated in 0(1+ n . r log r) , where 1 is the size of the

output.

Proof. The minimization operation between any two relations of size r can be accom-
plished in O(r . logr) steps as follows. A child node C, with its weighted relation,
projects its relation on the intersection of its own variables and that of its parent relation
P. The weight associated with each projected tuple is the minimum weight among the
weights of ail the corresponding tuples in C. This operation can be accomplished in
linear time O(r). Then the projected relation can be sorted in O(r . logr) steps and can
be retrieved in logr steps by the parent node P for the summation operation. If all the
minimum cardinality revisions are needed they can all be retrieved in output linear time
by following the pointers in the top-down step of the algorithm. 0

IO R. Dechter; A. Dechter/Artijiciul Intelligence 82 (1996) I-20

A=3

B=2

c=2

D=3

E=3

Fig. 5. A circuit example.

Once belief revision has been terminated, all assumptions can be changed accordingly,
and the system can get into a new stable state using support propagation. There is no

need, however, to activate the whole network for belief revision, because the n-support
information clearly points to those subtrees where no assumption change is necessary.

We will illustrate the belief revision algorithms in the next section using a circuit
diagnosis example.

5. A circuit diagnosis example

An electronic circuit can be modeled in terms of a constraint network by associating a
variable with each input, output, intermediate value, and device. Devices are modeled as

bi-valued assumption variables, having the value “0” if functioning correctly (default)
and the value “1” otherwise. There is a constraint associated with each device, relating
the device variable with its immediate inputs and outputs. Given input data, the possible
values of any intermediate variable or output variable is its “expected value”, namely,
the value that would have resulted if all devices worked correctly, or some “unexpected
value” denoted by “e”. A variable may have more than one expected value. For the

purpose of this example we assume that the set of expected values for each variable was
determined by some pre-processing and all the other values are marked collectively by
the symbol “e”.

Consider the circuit of Fig. 5 (also discussed in [4,13,18]), consisting of three
multipliers, Ml, ML M3, and two adders, Al and AZ. The values of the five input
variables, A, B, C, D, and E, and of the two output variables, F and G, are given.
The numbers in the brackets are the expected values of the three intermediate points X,
Y, and Z, and of the outputs. The relation defining the constraint associated with the
multiplier MI is given in Fig. 6 as an example, as well as the initial weights associated
with the tuples of these leaf constraints (S = w for leaf nodes). The weight of the first
tuple is “0” since the assumption variable MI is assigned the currently assumed value,
“O”, while in the second tuple the assumed value is changed to “1”. Given the inputs
and outputs of the circuit, the objective is to identify a minimal set of devices which,
if presumed to be malfunctioning, could be consistent with the observed behavior (i.e.,
G=12and F=lO).

R. De&e< A. Declzter/Arti$cial Intelligence 82 (1996) I-20 11

Ml A C X
0 2 3 6 w=o
1 2 3 e w=l

Fig. 6. A multiplier constraint

Fig. 7. An join-tree for the circuit example.

Fig. 8. Weight calculation for the circuit example.

The join-tree of the constraint network modeling this circuit is given in Fig. 7. This

network is acyclic, as is evident by the fact that a join-tree can be obtained by eliminating
the redundant arc (marked by a dashed line) between constraint (A42, B, D, Y) and
(AZ, Z, XC). For more details see [lo].

Initially, when no observation of output data is available, the network propagates its
n-supports assuming all device variables have their default assumption value “0”. In this

case only one solution exists and therefore the supports for all consistent values are “1”.
The diagnosis process is initiated when the value “10” is observed for variable F which
is different from the expected value of 12. The value “10” is fixed as the only consistent

value of F. At this point, the constraint (X, Al, F, Y), ’ which is the only one to contain
F has all its n-supports equal “0” and it induces direction on the join-tree, resulting in

the directed tree (rooted at itself) of Fig. 7, and belief revision is initiated.
Each tuple will be associated with the minimum number of assumption changes in the

subtree underneath it. Instead of indicating the weights associated with each tuple we
indicate the weight projected on the variables on the arcs of the tree. In Fig. 8 the weights

associated with the arcs of the three leaf constraints (i.e., the multipliers constraints),
projected on their outgoing arcs is illustrated. These are derived from the weights
associated with their incoming constraints (see the weights in Fig. 6). For instance, the
weight associated with X is w(X = 6) = 0 since “6” is the expected value of X when

2 For simplicity we will refere here to a constraint by the subset of variables on which it is defined.

12 R. Dechter; A. Dechter/Artijicial Intelligence 82 (1996) I-20

A2 Z G Y Weights Faulty devices

0 6 12 6 w=o none

0
1 z

12 e w=l M3

12 e w=l A2

1 e 12 e w=2 M3 & A2

Fig. 9. The weights of constraint (XG, AZ, Z)

Al F X Y Weights Faulty devices

(1) 0 10 6

z

2 (M3V&)&M2

(2) 0 10 4 1 Ml
(3) 0 10 3 Ml&M:!&(M3VA2)

(4) 1 10 E z 1 Al
(5) 1 10 6 e 3 Al&Mz&(M3 VA2)
(6) 1 10 e e 4 Al&M2&M,&(M3VA2)

Fig. 10. The weights of constraint (Al, F; X, Y) (the root)

MI works correctly (which is the default assumption), and w(X = e) = 1 since any

other value can be expected only if the multiplier is faulty. Next, the weights propagate

to constraint (XG, A?, 2). This constraint is the only parent node of (Z, M3, C, F) and
its weights are given in Fig. 9 (note, that G’s observed value is 12).

The corresponding projected Y’s weights are indicated on the outgoing arc of con-

straint (XI:, AZ, Z) in Fig. 8. Finally, the weights associated with the root constraint
(Al, X, x F) are computed by summing the minimum weights associated with each of
its child nodes. The tuples associated with the root constraint and their weights are
presented in Fig. 10.

We see that the minimum weight is associated with tuple (2) indicating Ml as faulty,
or tuple (4) indicating A1 as faulty. Therefore, either Al or Ml are faulty (the weights
can also be used as a guide for additional measurement that should delineate between

the different diagnoses).
This example illustrates the efficiency of the belief revision process when the special

structure of the problem is exploited. By contrast, handling this problem using ATMS
[111 may exhibit exponential behavior. A similar algorithm exploiting the framework

of probabilistic networks is given [171.

6. ATMS labeling

In this section we focus on the primary ATMS functionality, namely, finding one or
all minimal instantiations of assumption variables in a given network of constraints that
entail the proposition X = x . This task is often called LubeE determination in the ATMS
terminology. We call each tuple representing such an instantiation a support tuple or
t-support. The main result of this section is a bound on the complexity of finding one
t-support for X = x which is exponential in the branching degree of the tree. We also

introduce an algorithm for performing this task which attains this complexity as a lower
bound, thereby proving that the bound is tight. When computing all t-supports, the

R. Dechter, A. Dechter/ArtQkd Intelligence 82 (1996) I-20 13

complexity increases by a linear factor of the output. If only a subset of the variables is
regarded as assumption variables, the complexity is still exponential in the degree of the
tree unless the assumption variables are distributed in a way that reduces the effective
degree of the tree. It should be noted that the ATMS task is equivalent to what is often
referred to as abduction, and, therefore, the results we present extend to the abduction
task as well.

To simplify the exposition we will describe an algorithm for computing minimal t-

supports for trees of binary constraints. In this case, the primal constraint graph, where
nodes represent variables and arcs indicate the existence of constraints between pairs

of variables, is more convenient. The extension of this algorithm to general join-trees
is straightforward since a join-tree can be viewed as a regular binary tree where each

relation is a compound variable and its tuples are its values. We assume, without loss
of generality, that all the variables are assumption variables.

Definition 8. Given a network of constraints R over a set of variables X, a partial
instantiation T = t, T C X, is a support tuple (t-support) for Xi = Xi iff for every

solution s of R.

ST = t + s,y, = xi. (4)

T = t is a minimal t-support of x; is there is no subtuple of t satisfying (4). The set
of all minimal t-supports for x; relative to a network R is denoted mstR(xi) or mst(xi)

when the network’s identity is clear.

Example 9. Consider the following propositional theory

~D={((T+Z),(R+Y),(L+X)((XVY)+Z)}. (5)

The theory can be modeled as binary tree network with four bi-valued variables T, Z, R, L

and the compound variable XY having the domain {OO,Ol, 10, 11). The explicit con-
straints are given by their truth tables. The constraint graph and the explicit constraints
are depicted in Fig. 11.

We will illustrate the main idea of the algorithm through an example. Suppose that

we want to compute all minimal t-supports for Z = 1 in cp. The algorithm begins by
generating a directed tree rooted at Z. Then, for each variable and each of its values,
it computes all its minimal support tuples restricted to the child nodes of the relation,

called minimal child support. For instance, the set of minimal child supports for XY = 11
is (L = 1, R = 1)) while for XY = 01 the set is empty since no tuple over the child
variables R and L entails XY = 01. The set of all minimal child supports for X = x, in
a given directed tree, is denoted by mcs(x).

Given a minimal child support, 1, new supports can be generated by replacing a
value in 1 by one of its own minimal child supports. For instance, since (XY = 11)
is a minimal support tuple for Z = 1 and since XY = 11 is minimally supported by
(L = 1, R = 1) , this past set is a new support for Z = 1. This property seems to suggest
that the set of support tuples can be generated recursively by a bottom-up process from
leaves to root.

14 R. Dechtel; A. Dechter/Artifcial Intelligence 82 (1996) l-20

T+Z

m
1 1

q 0 1

0 0

I, --t x
[Llxyl
1 10
1 11

0 10 El 0 11

0 00

0 01

XIY + z
lxylzl

01 1

10 1 Ea 11 1

00 1

0 00

Fig. I 1. An example of a binary tree network.

There are, however, two problems. First, the minimality property is not maintained

by this process. The set (L = 1, R = I), which has been generated by the substitution
process, is not a minimal support for 2 = 1 since either L = 1 or R = 1 independently

support Z = 1. The second, and the more significant problem is that not all support

tuples are generated. Consider again the tree in Fig. 11 restricted to variables (Z, xl: L) .
Each of the values (XY = 10) and (XY = 11) is a minimal support to Z = 1. However,

since each one of these values is not individually supported by L = 1 (L = 1 is consistent
with both of them), L = 1 will not be generated by the substitution process (although
it is a minimal support for Z = 1) because it can substitute neither XY = 01 nor
XY= 11.

The algorithm we present next is based on the idea discussed above: compute the

minimal t-supports locally and generate the rest by a recursive substitution process. To
overcome the problems mentioned, the algorithm computes local t-supports to a subset

of values in a variable’s domain, rather than to singletons. As was shown in the example,

several values of a variable can play identical roles in a support tuple (e.g., XY = 10
and XY = 11 both supporting Z = 1) and, therefore, if a disjunction of such values has
a minimal support, it can replace any of the elements of this disjunction in that label.
For instance, since L = 1 supports the disjunction XY = 10 or XY = I1 it can replace
either one of them in a t-support. Next, we formalize these notions.

Definition 10. Let V and C be two variables in a network, and let Rev denote the
constraint of allowed pairs between them. M:(c) denotes the set of values in the

domain of V that are consistent with c E C (Fig. 12(a)) . Namely,

M;(c) = {U E V) (c,u) E Rev}. (6)

Definition 11. Given a variable V with its child nodes Cl, . . . , Cl (Fig. 12(b)) and a
subset of consistent values of V, denoted Av, a child support for Av is an instantiation

tuple (Cl =cI,..., C, = c,) over a subset of its child variables that entails Av. Namely,

a child support tuple, (Cl = cl,. . . , C, = c,), satisfies:

R. Dechter; A. Dechter/Artificial Intelligence 82 (1996) l-20

(a) (b)

Fig. 12. Computing the minimal child support

n MF,(cj) C Av. (7)

A child support tuple is minimal if no subset of it satisfies condition (7).

Example 12. It can be verified that (see Fig. 1 l), Z = 1 has four minimal child supports

given by:

mcs&{l}) ={(T= l),(XY=Ol),(XY= lO>(XY= II)},

while mcsxy((01, 10,ll)) = {(L = l), (R = l)}, and it does not contain the support

(L = 1, R = 1) since it is not minimal.

Given a minimal child support, I = (Cl = cl,. . . , C, = c,) of A”, we denote by
li(C,. = c,‘) the tuple resulting from exchanging cr by c,’ in 1. If I((C, = c,‘) is also a

minimal t-support for A” we say that c, and c,’ play identical roles with respect to 1
and AV and that they are exchangeable.

Definition 13. Given a subset Av of V, a tuple 1 E mcs(Av), and a variable-value pair

C = c in 1 we define the set of label-dependent values of C, denoted by FA”,~(C) (or
F,(C) for short), which are exchangeable in label I:

FA”,I(C) = {c E C 1 l/(C = c) E mcs(Av)}. (8)

A minimal child support for A” is also a minimal support since we assumed that all

variables are assumption variables, and it can recursively generate additional minimal
support tuples. Let 1 E mcs(Av) be such that

l=(c,=c])...) Cr=cr)..., Cr=cr)

and denote by mst(Av) all the minimal support tuples for AV restricted to its rooted
tree. The set of minimal supports generated via I = (Cl,. . . , C,) in that subtree satisfies:

mstr(Av) =mst(F!(C~)) x ... x mst(Fl(C,)) x ... x mst(F/(C,)) (9)

and

mst(Av) = U m.%(Av). (10)
lEmcs(Av)

16 R. Dechter; A. Dechter/Art@cial Intelligence 82 (1996) I-20

label-generation(V)
Input: A tree T rooted at V. V has a set of child variables Cl,. . . , C,. The set of label-

dependent subsets of V, L(V).

Output: The set of all minimal support sets to each A E L(V).

(1)

(2)
(3)
(4)

(Top-down) For each AV E L(V) compute the set of child support tuples
mcs(Av) using Eq. (7).
For each 1 E mcs(Av) and for each ci E 1 do
Compute F/(Ci) and add it to L(Ci).

(Bottom up) (once mst(FI(Ci>> are available) For each A” E L(V) compute

tnst(Av) = UIE,~~~.~(A~) XC,EI mst(fi(G)).

Fig. 13. Algorithm label-generation.

Combining (9) and (10) yields a recursive equation for calculating the minimal
support tuples of a subset Av restricted to the subtree rooted at V:

mst(Av) = U x{c,EqmMfi(Ci)). (11)
~Emcs(Av)

The algorithm for generating all minimal support tuples is summarized in Fig. 13.
The first phase is a top-down process generating all the minimal child supports of

all the relevant label-dependent subsets. The process continues top-down where the
label-dependent subsets of a variable are computed only after their parents had already
computed all their minimal child supports (or mcs’s for short). The second phase is a
bottom-up process that starts at the leaves and continues level by level until it reaches

the queried relation. Each relation computes, in its turn, for each of its label-dependent

subsets, all its minimal t-supports restricted to their tree. This is accomplished by
substituting a value c of C in a label I that supports A” by one of the (already

computed) minimal support sets of the subset Fl (C) ,

The algorithm assumes that the n-supports are explicitly maintained and thus no
inconsistent values participate in a support nor in a label-dependent subset.

The computation of the label-dependent subsets can be accomplished by scanning
the set mcs(Av) of a given set Av and determining for each child node the subset of
its values that satisfies condition (8). Computing the minimal child supports for A”

can be implemented by a standard search algorithm that checks condition (7) for all
instantiations of one child variable first, then goes to two variables, using values not
selected previously, and continues to larger supports. The supports generated that way

are minimal. The supports of leaf values are the empty tuples.

Theorem 14. Algorithm label-generation generates all and only minimal support sets.

Proof. See Appendix A.

The time complexity of the algorithm can be computed along its various steps. The
computation of the minimal child supports and the label-dependent subsets is performed
locally, between every node and its children. Given a parent node having d child

R. Dechtel; A. DechterIArtijicial Intelligence 82 (1996) l-20 17

variables and t label-dependent subsets (already computed with respect to its parent),
where k 6 t 6 2k, we can test condition (7) on subsets of child variables, in increasing
order of their size. Since, in the worst case, all subsets of d/2 variables may need to be

tested, and since for every such set all combinations of values may be involved, we get:

T(label-generation) = 0 . kdi2 = @(2v?$. (12)

This performance can be attained in the worst case even when the size of the result-
ing mcs set is very small. Notice that the tree structure does not prevent exponential

computation for finding even one mcs.

Once all mcs’s for a variable are generated, all label-dependent subsets of each child

variable will be generated and this may take 0(t2) steps.
Once the minimal child supports for all variables are available, the time required

for generating all minimal support tuples is linear in the output (this is the bottom-up
process). The total time complexity of the algorithm is dominated, therefore, by the

calculation of the minimal child supports. Consequently,

Theorem 15. The worst-case time complexity of algorithm label-generation has a lower

bound 11 (exp(d) + n,s) , and an upper bound 0(exp(d) + n,) , where n, is the number
of minimal support tuples in the output.

The results in this section are restricted for binary tree networks. A simple way for
extending them to an arbitrary join-tree is to view each relation in the tree as a meta-

variable when the constraints between relations say that two partial tuples are consistent
if they coincide on shared variables. Once we compute for each tuple in the root relation

all its minimal supports, the minimal supports of individual values can be generated by
manipulating only the tuples’ support of that relations. We conclude that:

Corollary 16. Finding all minimal support tuples of a partial tuple t appearing in a

root relation of a join-tree can be accomplished in 0(td +n,) when t bounds the number
of tuples in each relation, d is the branching degree in the tree and n, is the size of the

output.

7. Conclusions and related work

This paper presents truth maintenance algorithms within the framework of constraint
networks. The common feature making these algorithms attractive is that their complexity

is linked to the structure of the network, making their performance more predictable.
Our results provide some theoretical explanations for the behavior of truth maintenance

algorithms reported in the literature.
The ideal structure for all three algorithms is an acyclic network. In that case, the

two JTMS algorithms (entailment and belief-revision) are time and space linear. On
the other hand, the ATMS algorithm, which finds all minimal support sets for each

18 R. Dechier, A. Dechter/Art@cial Intelligence 82 (1996) l-20

proposition, is time and space exponential. The exponent is reduced though from n (the
number of variables) to d (the branching degree of the constraint graph).

These results support the common observation that the ATMS task is more complex
than the JTMS task. It appears that, in practice, users should be advised to implement

the JTMS strategy whenever possible and to use ATMS only when the task is really
necessary.

When the constraint network is not acyclic, the method of tree-clustering [lo] should
be used as a pre-processing step. This method uses aggregation of constraints into
equivalent constraints involving larger clusters of variables in such a way that the
resulting network is acyclic. The clustering scheme is exponential in the size of the

largest cluster, making the complexity of pre-processing also dependent on the structure
of the network, with near-tree networks requiring less computation.

An alternative approach to dealing with cyclic theories is to use the cycle-cutset

method [6], which is exponential in the cycle-cutset size of the theory. The size of
the minimal cycle-cutset is larger than the cluster’s sizes of a tree-embedding of the

same theory, however, unlike tree-clustering, the cycle-cutset method does not require
exponential space.

Because of the need for re-structuring the network, it is clear that the algorithms
proposed in this paper are best-suited for situations where the structure of the knowledge-
base is either fixed or involves only minor topological changes over time. Examples of
such cases are physical or biological systems such as electronic circuits and model-based

medical diagnosis systems.
Structure-exploiting algorithms for diagnosis that were inspired by algorithms on

probabilistic networks appear in [3,17,19]. The merits of the belief revision algorithms

appearing here were recently tested experimentally on various circuit diagnosis exam-

ples. The algorithm’s performance was shown to be superior relative to model-based

diagnosis (MBD) algorithms [151. Another paper [2] discusses the task of finding all
minimal sets of changes needed to restore consistency (as opposed to the task of all
sets of minimum cardinality, discussed in the current paper). It is shown that while a
propagation scheme is available in this case as well, it has greater complexity.

Appendix A. Proof of Theorem 14

Theorem 14. Algorithm label-generation generates all and only minimal support sets.

Proof. It is clear that the algorithm generates only t-supports. We will therefore focus on
showing that any generated set is minimal and that any minimal t-support is generated
by the algorithm. The proof is by induction on the distance of the variables in the
support set from the queried variable.

Let 2 = z be the queried variable and let s = (Xi = xi,. . . , Xt = xt) be a generated
t-support. We will show that s is a minimal t-support. Let h be the furthest distance from
Z of variables in s. For h = 1 it is known that only minimal t-supports are generated,
i.e., the minimal child supports. Assuming that the generated t-supports having variables
with distance h - 1 or less are all minimal, we will show that s, having longest distance

R. Dechiec A. Dechter/Artifcial Intelligence 82 (1996) I-20 19

h, is also a minimal t-support. Let sp = (X1’ = xl,. . . , Xjp = xi) be a subtuple of the
t-support s having distance h such that all the participating variables have a common
parent, P. Let nx,EX,,J M;,,, (xi) = Ap. Since s was generated by the algorithm, sp
must be a minimal support label of a label-dependent subset of P. Therefore Ap must
be a subset of a label-dependent subset of P and therefore each value of Ap can

replace sp in s, resulting in a t-support with lower distance. By performing this “reverse
substitution” to all the variables in s having distance h we get a t-support whose utmost
distance from Z is h - 1 and which must have been generated by the algorithm. By
the induction hypothesis this support is minimal and since each sp is a minimal child

support of the corresponding label-dependent subset (otherwise it would not be applied),
the (nonreversed) substitution must result in a minimal t-support having distance h or

less.
We will now show that if s is a minimal t-support for Z = z it must be generated by

the algorithm. Let {sR} be all the subsets of s having distance h from Z indexed by
their parents, Pi. Let the corresponding ranges that each set of children determines on

their parent be defined by:

n M;,,, (xi) = AP,.

I&X:;

We claim that for every parent, Pi, each value in Ap, can replace the subset sp’ in s to
yield a minimal t-support of depth not greater than h - 1, which we call SA-1. Since,
otherwise, if for some Pi and for some value in Ap,, the resulting sh_t is not a minimal
t-support for Z = z, it can easily be shown that from the definition of a support set, s
could not be a minimal support set either, thus resulting in a contradiction. It follows that

any possible sh-_I, generated by exchanging a value from Ap, with Ss in s, is a minimal
support set. Since sh-t has distance h - 1 at the most, the induction hypothesis implies

that it is generated by the algorithm. Also, since by definition Ap, is a label-dependent
subset of Pi, and since it is supported minimally by the label sp,, the algorithm will

produce s in his substitution bottom-up process. 0

Acknowledgements

We would like to thank Yousri El Fattah for commenting on a recent version of this

manuscript, and Dan Frost for helping with the figures. Preliminary versions of some of
the contents of this paper appeared in [81 and in [5].

References

[I 1 C. Alchourron, P. Gardenfors and D. Makinson, On the logic of theory change: partial meet contraction

and revision functions, J. Symbolic Logic 50 (1985) 510-530.
12 1 R. Ben-Eliyahu and R. Dechter, On computing minimal models, in: Proceedings AAAI-93, Washington,

DC (1993) 2-8.

1 3 I A. Dalwiche, Conditional independence in ATMSS: independence-based algorithms for computing labels
and diagnosis, Tech. Rept., Rockwell (1994).

20 R. Dechter; A. Dechter/Art@cial Intelligence 82 (1996) I-20

14 I R. Davis, Diagnostic reasoning based on structure and behavior, Artif lntell. 24 (1984) 347-410.

[5 I R. Dechter, A distributed algorithm for ATMS, in: Proceedings Bar-llan Symposium on Foundation oj

Artijicial Intelligence (BISIM-89) (1989).

16 I R. Dechter, Enhancement schemes for constraint processing: backjumping, learning, and cutset

decomposition, Artq lntell. 41 (1990) 273-312.

17 I R. Dechter, Z. Collin and S. Katz, On the feasibility of distributed constraint satisfaction, in: Proceedings

IJCAI-91, Sydney, Australia (199 I) 3 18-324.

I 8 I R. Dechter and A. Dechter, Belief maintenance in dynamic constraint networks, in: Proceedings AAAI-88,

St. Paul, MN (1988) 37-42.

19 I R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems, Artif: lntell. 34

(1987) l-38.

1 IO I R. Dechter and _I. Pearl, Tree clustering for constraint networks, Artif: lntell. 38 (1989) 353-366.

I I I 1 J. de Kleer, An assumption-based TMS, Arti$ Intell. 28 (1986) 127-162.

[I2 1 J. de Kleer, A comparison of ATMS and CSP techniques, in: Proceedings IJCAI-89, Detroit, MI (1989)

290-296.

I 13 I J. de Kleer and B. Williams, Reasoning about multiple faults, in: Proceedings AAAI-86, Philadelphia,

PA (1986) 132-139.

I 14 I J. Doyle, A truth maintenance system, Artif: lntell. 12 (1979) 231-272.

I 15 I Y. El Fattah and R. Dechter, Diagnosing tree-decomposable circuit, in: Proceedings IJCAI-95, Montreal,

Que. (1995) 1742-1748.

1 16 I E.C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1982) 24-32.

I 17 1 H. Geffner and J. Pearl, An improved constraint propagation algorithm for diagnosis, in: Proceedings

IJCAI-87, Milan (1987) 1105-l Ill.

I 18 I M.R. Genesereth, The use of design descriptions in automated diagnosis, Artif lntell. 24 (1984) 41 l-

436.

[19 I J. Kohlas, Symbolic evidence, arguments and valuation networks, in: Proceedings Uncertairq in

Art@cial Intelligence (UAl-93). Washington, DC (1993)

I20 I A.K. Mackworth and E.C. Freuder, The complexity of some polynomial network consistency algorithms

for constraint satisfaction problems, Artif: lntell. 25 (1985) 65-74.

I21 I D.A. McAllester, An outlook on truth-maintenance, Tech. Rept., AI Memo 551, MIT, Cambridge, MA

(1980).

I22 I D.A. McAllester, Truth maintenance, in: Proceedings AAAI-90, Boston, MA (1990).

I23 I D. McDermott, A general framework for reason maintenance, Arfi$ lntell. 50 (1991) 289-329.

I24 I G. Provan, Complexity analysis of multiple-context TMSs in scene representation, in: Proceedings

AAAI-87, Seattle, WA (1987) 173-177.

I25 I L.C. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. S(3) (1987)

10.5-l 17.

