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8 Probabilistic Semantics for Nonmonotonic Reasoning

Judea Pearl

8.1 Why Probabilistic Semantics? Or, Conventions versus Norms

In nonmonotonic logics, defeasible sentences are usually interpreted as
conversational conventions, as opposed to descriptions of empirical reality
(McCarthy 1986, Reiter 1987). For example, the sentence “Birds fly” is
taken to express a communication agreement such as: “You and I agree that
whenever I want you to conclude that some bird does not fly, I will say so
explicitly; otherwise you can presume it does fly.” Here the purpose of the
agreement is not to convey information about the world but merely to
guarantee that in subsequent conversations, all conclusions drawn by the
informed match those intended by the informer. Once the agreement is
accepted by an agent, the meaning of the sentence acquires a dispositional
character: “If x is a bird and I have no reasons to presume the contrary,
then I am disposed to believe that x flies.” Neither of these interpretations
invokes any statistical information about the percentage of birds that fly
nor any probabilistic information about how strongly the agent believes
that a randomly chosen bird actually flies.

However, the probabilistic statement P[(FIy(x)|Bird(x)] = High (to
read: “If x is a bird, then x probably flies”) offers such a clear interpretation
of “Birds fly”, that it is hard to refrain from viewing defeasible sentences as
fragments of probabilistic information, albeit subjective in nature. With
such declarative statements it is easier to define how the fragments of
knowledge should be put together coherently, to characterize the set of
conclusions that one wishes a body of knowledge to entail, and to identify
the assumptions that give rise to undesirable conclusions, if any.

The reasons are several. First, semantics has traditionally been defined
as a relation between the speaking agent and entities external to the agent.
Probabilistic information is, by its very nature, a declarative summariza-
tion of constraints in a world external to the speaker. As such, it is empiri-
cally testable (at least in principle), it is often shared by many agents, and
conclusions are less subject to dispute. Second, in many cases, it is the
transference of probabilistic knowledge that is the ultimate aim of common
conversations, not the speaker’s pattern of dispositions (which are often
arbitrary). In such cases, the empirical facts that caused the agent to
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commit to a given pattern of dispositions are more important than the
dispositions themselves, because it is those empirical facts that the listening
agent is about to confront in the future. Finally, being a centuries-old
science, the study of probabilistic inference has accumulated a wealth of
theoretical results that provide shortcuts between the semantics and the
intended conclusions. This facilitates quick generation of meaningful exam-
ples and counterexamples, quick proofs of necessity or impossibility, and
thus, effective communication among researchers.

But even taking the extreme position that the only purpose of default
statements is to establish conversational conventions, probabilists never-
theless believe that, while we are in the process of uncovering and formu-
lating those conventions, we cannot totally ignore their empirical origin.
Doing so would resemble the hopeless task of formulating qualitative
physics in total ignorance of the quantitative laws of physics, or, to use a
different metaphor, designing speech-recognition systems oblivious to the
laws of phonetics.

The quest for probabilistic semantics is motivated by the assumption
that the conventions of discourse are not totally arbitrary, but rather,
respect certain universal norms of coherence, norms that reflect the empir-
ical origin of these conventions. Probabilistic semantics, by summarizing
the reality that compelled the choice of certain conventions over others,
should be capable of revealing these norms. Such norms should tell us, for
example, when one convention is incompatible with another, or when one
convention should be a natural consequence of another, examples of both
will be illustrated in section 8.4.

The benefits of adopting probabilistic norms apply not only to syntac-
tical approachés to nonmonotonic reasoning, but also to semantical
approaches, such as those based on model preference (McCarthy 1980).
Inferences based on model preference are much less disciplined than those
based on probability, because the preferences induced by the various
sentences in the knowledge base are not constrained a priori, and can, in
general, be totally whimsical. Indeed, such a wide range of approaches to
nonmonotonic reasoning can be formulated as variants of preference-based
semantics (Shoham 1987), that highly sophisticated restrictions must be
devised to bring the ensuing inferences in line with basic standards of
rationality (Lehmann and Magidor 1988) (see section 8.6.2).
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8.2 Nonmonotonic Reasoning Viewed as Qualitative Probabilistic
Reasoning

To those trained in traditional logics, symbolic reasoning is the standard,
and nonmonotonicity a novelty. To students of probability, on the other
hand, it is symbolic reasoning that is novel, not nonmonotonicity. Dealing
with new facts that cause probabilities to change abruptly from very high
values to very low values is a commonplace phenomenon in almost every
probability exercise and. naturally, has never attracted special attention
among probabilists. The new challenge for probabilists is to find ways
of abstracting out the numerical character of high and low probabilities,
and cast them in linguistic terms that reflect the natural process of accepting
and retracting beliefs. Thus. while nonmonotonic reasoning is commonly
viewed as an extension to standard logic, it can also be viewed as an exercise
in qualitative probability, much like physicists view current Al research in
naive physics.

In research on qualitative physics, it is customary to discretize and
abstract real quantities around a few “landmark” values (Kuipers 1986).
For example, the value 0 defines the abstraction: positive, negative and zero.
In probability, the obvious landmarks are {0, 3, 1}, where 0 and 1 represent
FALSE and TRUE, respectively, and 3 represents the neutral state of total
ignorance. However, direct qualitative reasoning about {0, 1} reduces to
propositional logic, while reasoning with the intervals [0,3] and [3,1]
is extremely difficult—to process pieces of evidence properly and determine
if a given probability should fall above % requires almost the full power of
numerical probability calculus (Bacchus 1988).

Following the tradition of qualitative reasoning in physics and mathe-
matics, two avenues are still available for qualitative analysis:

1. “Perturbation” analysis, to determine the direction of CHANGE in-
duced in the probability of one proposition as a result of learning the
truth of another, and

2. An“order-of-magnitude” analysis of proximities to the landmark values.

The first approach has been pursued by Wellman (1987) and Neufeld
and Poole (1988), and the second by Adams (1975), Spohn (1988), Pearl
(1988), and Geffner (1988, 1989).
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8.2.1 Perturbation Analyses

Both Wellman (1987) and Neufeld and Poole (1988) investigated the logic
behind the qualitative relation of influence or support, namely, the condition
under which the truth of one proposition would yield an increase in the
probability of another. Wellman's analysis focuses on variables with or-
dered domains (e.g., “An increase in quantity a is likely to cause an increase
in quantity b”) as a means of providing qualitative aids to decisions,
planning, and diagnosis. Neufeld and Poole, focused on the relation of
confirmation between propositions (e.g., Quaker( Nixon ) adds confirmation
to Pacifist( Nixon)), and viewed this relation as an important component
of nonmonotonic reasoning.

Both approaches make heavy use of conditional independence and its
graphical representation in the form of Bayesian networks (Pearl 1988).
The reason is that, if we define the relation “A supports B” (denoted S(4, B))
as

S(A4,B) iff P(B|A) > P(B), (1)

then this definition in itself is too weak to yield interesting inferences. For
example, whereas we can easily show symmetry S(4, B)<> S(B, A) and
contraposition S(A, B)<>S(71B, 714), we cannot conclude cumulativity
(i.e. that S(4 A B, C)follows from S(4, B) and S (4, C)), nor transitivity (i.e.,
that S(A, C) follows from S(A4, B) and S(B, C)). For the latter to hold, we
must assume that C is conditionally independent of A, given B,

P(C|A,B) = P(C|B),

namely, that knowledge of 4 has no influence on the probability of C, once
we know B.

Conditional independence is a 3-place nonmonotonic relationship that
forms a semi-graphoid (Pearl and Verma 1987, Pearl 1988). Semi-graphoids
are structures that share some properties of graphs (hence the name) but,
in general, are difficult to encode completely, in a compact way. The
assumption normally made in probabilistic reasoning (as well as in most
nonmonotonic logics, though not explicitly) is that if we represent de-
pendence relationships in the form of a directed (acyclic) graph, then any
link missing from the graph indicates the absence of direct dependency
between the corresponding variables. For example, if we are given two
defeasible rules, a —» b and b — ¢, we presume that a does not have any




Probabilistic Semantics for Nonmonotonic Reasoning 161

direct bearing on ¢, but rather, that c is independent of a, given the value
of b. An important result from the theory of graphoids states that there is
indeed a sound and complete procedure (called d-separation) of inferring
conditional independencies from such a graph. However, this requires that
the graph be constructed in a disciplined, stratified way: Every variable x
should draw arrows from all those perceived to have direct influence on x,
that is, those that must be known to render x independent of all its
predecessors in some total order (e.g., temporal). A graph (directed and
acyclic) constructed in this fashion is called a Bayesian network (Pearl 1988).
In practice, this presumes that the knowledge provider has taken pains to
identify all direct influences of each variable in the system.

Neufeld and Poole have assumed that if we take isolated default state-
ments and assemble them to form a directed graph, the resulting graph
would display all the dependencies that a Bayesian network would. Un-
fortunately, this is not always the case, and may lead to unsound conclu-
sions. For example, from the defaults 4 — B, C — 7B, we will conclude
(using the d-separation criterion) that A4 is independent of C (since there is
no active path between A4 and C). Often, however, two classes A and C
whose members differ substantially in one typical property (B vs 71B) will
be found dependent on one another. The language of graphs may also be
insufficient for expressing some independencies that are found useful in
natural discourse. For example, having been told that A4 supports C and B
supports C, we tend to presume that 4 and B also supports C. This pre-
sumption. however, is not directly expressible in the language of directed
graphs, nor can it be derived from the semantics of “support” given in
equation (1).

Wellman has circumvented these difficulties by starting from a well
structured Bayesian network, and by defining “support” in a more restric-
tive way. Instead of equation (1), Wellman'’s definition reads:

S*(a,b,G) iff P(B|A,x)= P(B|x)

where S* (a, b, G) stands for “a positively influences b, in the context of graph
G”, and the inequality should hold for every valuation x of the direct
predecessors of b (in G). This stronger definition of support defines, in fact.
the conditions under which inferences based on graphically derived de-
pendencies are probabilistically sound. Compared with the system of Neu-
feld and Poole, soundness is acquired at the price of a more elaborate form
of knowledge specification. namely. the structure of a Bayesian network



162 Judea Pearl

8.2.2 Infinitesimal Analysis

Spohn (1988) has introduced a system of belief revision (called OCF for
Ordinal Conditional Functions) which requires only integer-value addi-
tion, and yet retains the notion of conditionalization, a facility that makes
probability theory context dependent, hence nonmonotonic. Although
Spohn has proclaimed OCF to be “nonprobabilistic,” the easiest way to
understand its power and limitations is to interpret OCF as an infinitesimal
(ie., nonstandard) analysis of conditional probabilities.

Imagine an ordinary probability function P defined over a set W of
possible worlds (or states of the world), and let the probability P(w) assigned
to each world w be a polynomial function of some small positive parameter
¢, for example, o, Be, ye?, and so on. Accordingly, the probabilities assigned
to any subset A of W, as well as all conditional probabilities P(4|B), will
be rational functions of ¢. Now define the OCF function k(4| B) as

k(A |B) = lowest n such that lim P(A4|B)/e" is non-zero. (2)
e—~0

In other words, k(A4|B) = niff P(4|B) is of the same order as &", or equiv-

alently, k(A|B) is of the same order of magnitude as [P(4|B)]~".

If we think of n for which P(w) = ¢" as measuring the degree to which
the world w is disbelieved (or the degree of surprise were we to observe w),
then k(A4 |B) can be thought of as the degree of disbelief (or surprise) in A4,
given that B is true. It is easy to verify that x satisfies the following
properties:

1. k(A) = min{k(w)|w € 4}

2. k(A)=0o0rx(14) =0, or both

3. k(A U B) = min{k(A),(B)}

4. k(AN B) = k(A|B) + x(B) (3)
These reflect the usual properties of probabilistic combinations (on a
logarithmic scale) with min replacing addition, and addition replacing
multiplication. The result is a probabilistically sound calculus, employing
integer addition, for manipulating order of magnitudes of disbeliefs. For

example. if we make the following correspondence between linguistic quan-
tifiers and "

P(A) = & Aisbelievable K(A) =0
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P(A) =¢' Aisunlikely K(A) =1
P(A) = ¢ Aisvery unlikely K(A) =2
P(A) =¢* Aisextremely unlikely x(4) =3

then Spohn’s system can be regarded as a nonmonotonic logic to reason
about likelihood (contrast with the modal logic of Halpern and Rabin
1987). It takes sentences in the form of quantified conditional sentences, for
example, “Birds are likely to fly” (written x(71f|b) = 1), “Penguins are
most likely birds” (written k(71b | p) = 2), “Penguins are extremely unlikely
to fly,” (written k(f|p) = 3), and returns quantified conclusions in the form
of “If x is a penguin-bird then x is extremely unlikely to fly” (written
K(flp A b)=3). -

The weakness of Spohn’s system, shared by numerical probability, is
that it requires the complete specification of a distribution function before
reasoning can commence. In other words, we must specify the k associated
with every world w. In practice, of course, such specification need not be
enumerative, but can use the decomposition facilities provided by Baye-
sian networks. However, this too might require knowledge that is not
readily available in common discourse. For example, we might be given
the information that birds fly (written x( 71 f|b) = 1) and no information
at all about properties of non-birds, thus leaving x(f A 71b) unspecified.
Hence, inferencial machinery is required for drawing conclusions from
partially specified models, like those associating a k with isolated default
statements. Such machinery is provided by the conditional logic of Adams
(1975), to be discussed next.

Adams’s logic can be regarded a bi-valued infinitesimal analysis, with
input sentences specifying « values of only 0 and 1, corresponding to
“likely” and “unlikely” rankings. However, instead of insisting on a complete
specification of k(w), the logic admits fragmentary sets of conditional
sentences, treats them as constraints over the distribution of x, and infers
only such statements that are compelled to acquire high likelihood in every
distribution x(w) satisfying these constraints.

Because of its importance as a bridge between probabilistic and logical
approaches, we will provide a more complete introduction to Adams's
logic, using excerpts from chapter 10 of Pearl 1988. We will see that the
semantics of infinitesimal probabilities (called e-semantics in Pearl 1988)
leads to a two-level architecture for nonmonotonic reasoning:
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1. A conservative, consistency-preserving core, embodied in a semimono-
tonic logic, which derives only conclusions that are safe relative to the
addition of new domain knowledge.

2. An adventurous shell, sanctioning a larger body of less grounded in-
ferences. These inferences reflect probabilistic independencies that are not
explicit in the input, yet, based on familiar patterns of discourse, are
presumed to hold in the absence of explicit dependencies.

8.3 The Conservative Core

8.3.1 e-Semantics

We consider a default theory T = (F,A) in the form of a database contain-
ing two types of sentences: factual sentences (F) and default statements (A).
The factual sentences describe findings or observations specific to a given
object or a situations; for example, p(a) asserts that individual a has the
-property p. The default statements are of the type “p’s are typically ¢'s”,
written p(x) — q(x) or simply p — g, which is short for saying “any in-
dividual x having property p typically has property ¢q”. The properties
p. g, r ... can be compound boolean formulas of some atomic predicates
PysPas--- Pn» With x as their only free variable. However, no ground defaults
(e.g., p(a) = q(a)) are allowed in F and no compound defaults (e.g., p —
(g — r)) are allowed in A. The default statement S': p — ~1q will be called
the denial of S: p — g.

Nondefeasible generic statements such as “all birds are animals” can be
written Birds(x) A 71 Animal(x) - FALSE. This facilitates the desirable
distinction between a generic law-like rule “all p’s are ¢’s” (to be encoded

in A as p A 71g - FALSE) and a factual observation p(a) o g(a), which
must enter F as 71p v gq. Indeed, the theory ({p(a)}, {p A 1¢ » FALSE}),
will give rise to totally different conclusions (about a) than {{p(a), 71p(a) v
g(a)},{ }>,inconformity with common use of conditionals. A more natural
treatment of nondefeasible conditionals is given in (Goldszmidt and Pearl
1989) where a new connective = is used to retain the law-like character of
these statements. However, to simplify our discussion we will henceforth
assume that all statements are defeasible.

Let L be the language of propositional formulas, and let a truth-valuation
for L be a function ¢ that maps the sentences in L to the set {1,0}, (1 for
TRUE and 0 for FALSE) such that t respects the usual Boolean connec-
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tives. To define a probability assignment over the sentences in L, we regard
each truth valuation t as a world w and define P(w) such that } ,, P(w) = 1.
This assigns a probability measure to each sentence s of L via P(s) =
Y W P(w) w(s).

We now interpret A as a set of restrictions on P, in the form of extreme
conditional probabilities, infinitesimally removed from either 0 or 1. For
example, the sentence Bird(x) — Fly(x) is interpreted as P (Fly(x)|Bird(x))
> | — ¢, where ¢ is understood to stand for an infinitesimal quantity that
can be made arbitrarily small, short of actually being zero.

The conclusions we wish to draw from a theory T = {(F, A) are, likewise,
formulas in L that, given the input facts F and the restrictions A, are forced
to acquire extreme high probabilities. In particular, a propositional for-
mula r would qualify as a plausible conclusion of T, written F |~, r, whenever
the restrictions of A force P to satisfy lim,_ o P(r|F) = L.

It is convenient to characterize the set of conclusions sanctioned by this
semantics in terms of the set of facts-conclusion pairs that are entailed by
a given A. We call this relation e-entailment® formally defined as follows:

Definition: Let 2, , stand for the set of distributions licensed by A for any
given ¢, 1.e.,

Py,={P:P(wluy>=1—e¢and P(u) >0 whenever u - v e A} (4)

A conditional statement S: p — g is said to be e-entailed by A, if every
distribution P € 2, , satisfies P(q|p) = 1 — O(e), (i.e., for every 6 > O there
exists a ¢ > 0 such that every P € 2, , would satisfy P(g|p) > 1 — ).

In essence, this definition guarantees that an e-entailed statement S is
rendered highly probable whenever all the defaultsin A are highly probable.
The connection between e-entailment and plausible conclusions, is simply:

F |~, riff (F > r) is ¢-entailed by A (5)
8.3.2 Axiomatic Characterization

The conditional logic developed by Adams (1975) faithfully represents this
semantics by qualitative inference rules, thus facilitating the derivation of
new sound sentences by direct symbolic manipulations on A. The essence
of Adams’s logic is summarized in the following theorem, restated for
default theories in (Geffner and Pearl 1988).

! Adams (1975) named this p-entailment. However. e-entailment better serves to distinguish
this from weaker forms of probabilistic entaiiment. section <.
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THEOREM 1:  Let T = (F,A) be a default theory where F is a set of ground
proposition formulas and A is a set of default rules. r is a plausible conclu-
sion of F in the context of A, written F |~ r, iff r is derivable from F using
the following rules of inference:

Rule 1 (Defaults) (p > g)e A=pl~,g

Rule 2 (Logic Theorems) p~ g=p ~, g

Rule 3 (Cumulativity) p vy g, phear=(p A q) a7
Rule 4 (Contraction) p i~y q,(p A @Q)epar=p 7
Rule 5 (Disjunction) p vy 1, ghar=(p v q) o 7

Rule 1 permits us to conclude the consequent of a default when its
antecedent is all that has been learned and this permission is granted
regardless of the content of A. Rule 2 states that theorems that logically
follow from a set of formulas can be concluded in any theory containing
those formulas. Rule 3 (called triangularity in Pearl 1988 and cautious
monotony in Lehmann and Magidor 1988) permits the attachment of any
established conclusion (g) to the current set of facts (p), without affecting the
status of any other derived conclusion (r). Rule 4 says that any conclusion
(r) that follows from a fact set (p) augmented by a derived conclusion (g)
also follows from the original fact set alone. Finally, rule 5 says that a
conclusion that follows from two facts also follows from their disjunction.

Some Meta-Theorems:

ey

T-1 (Logical Closure)p g, p A ghr=ph,r
T-2 (Equivalent Contexts) p =g, phyr=q,r
T-3 (Exceptions)p A gbyr,phy TIr=phy g
T-4 (Right Conjunction) p vy r,phagq=phasq A r

Some Non-Theorems:

(Transitivity) p > g, g vy r=ph,r

(Left Conjunction) p vy r, gy r=p A ghy,r
(Contraposition) p ~, r= TIr ~, T1p
(Rational Monotony)

Phar, NOT(phy T1g)=p A gy (6)
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This last property (similar to CV of conditional logic) has one of its
antecedents negated, hence, its consequences cannot be derived from A
using the five rules above. It is, nevertheless, a desirable feature of a
consequence relation, and was proposed by Makinson as a standard for
nonmonotonic logics (Lehmann and Magidor 1988). Rational monotony
can be restored within e-semantics if we limit out attention to families of
distributions P, that are parameterized by ¢ and are analytic in ¢ (Gold-
szmidt et al 1990). Alternatively, rational monotony obtains if we interpret
¢ as a nonstandard infinitesimal (in a non-standard analysis), which also
amounts to interpreting p —¢q as an OCF constraint k(g|p) < x(™g| D)
(see section 8.4.1 and Pearl 1990).

The reason transitivity, positive conjunction, and contraposition are not
sanctioned by the ¢-semantics is clear: There are contexts in which they fail.
For instance, transitivity fails in the penguin example—all penguins are
birds, birds typically fly, yet penguins do not. Left conjunction fails when
p and g create a new condition unshared by either p or g . For example, if
you marry Ann (p) you will be happy (r), if you marry Nancy () you will be
happy as well (r), but if you marry both (p A g), you will be miserable (7Ir).
Contraposition fails in situations where ~1p is incompatible with 717 . For
example, let p — r stand for Birds — Fly. Now imagine a world in which
the only nonflying objects are a few sick birds. Clearly, Bird — Fly holds,
yet if we observe a nonflying object we can safely conclude that it is a bird,
hence 71r — p, defying contraposition.

THEOREM 2 (A-monotonicity): The inference system defined in theorem |1
is monotonic relative to the addition of default rules, that is,

ifpi~yrand A< A, thenp g r (7)

The proof follows directly from the fact that 2,., < 2, . because each
default statement imposes a new constraint on £, ,. Thus, the logic is
nonmonotonic relative to the addition of new facts (in F) and monotonic
relative to the addition of new defaults (in A). Full nonmonotonicity will
be exhibited in section 8.4, where we consider stronger forms of entailment.

8.3.3 Consistency and Ambiguity

An important feature of the system defined by rules 1-5 is its ability
to distinguish theories portraying inconsistencies (e.g., {p = g, p — 71¢D),
from those conveying ambiguity (e.g., {p Aq,p = r, g — 7Ir)), and those
conveying exceptions (e.g2.. {p = g,p A r — T1g)).
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Definition: A is said to be e-consistent if 2, . 1s non-empty for every ¢ > 0,
else, A is e-inconsistent. Similarly, a set of default statements {S,} is said to
be e-consistent with A if A U {S,} is e-consistent.

Definition: A default statement S is said to be ambiguous, given A, if both
S and its denial are consistent with A.

THEOREM 3 (Adams 1975): If A is e-consistent, then a statement S: p — q
is e-entailed by A iff its denial S': p — g is ¢-inconsistent with A.

In addition to rules 1-5 of theorem 1, the logic also possesses a systematic
procedure for testing e-consistency (hence, e-entailment), involving a mod-
erate number of propositional satisfiability tests.

Definition:  Given a truth-valuation ¢, a default statement p — g is said to
be verified under ¢ if t assigns the value 1 to both p and q. p — g is said to be
falsified under t if p is assigned a 1 and g is assigned a 0. A default statement
S:p— q is said to be tolerated by a set A’ of such statements if there is a
t that verifies S and does not falsify any statement in A’

THEOREM 4 (Adams 1975): Let A be a finite set of default statements. A is
e-consistent iff in every non-empty subset A’ of A there exists at least one
statement that is tolerated by A’.

COROLLARY 1 (Goldszmidt and Pearl 1989). Consistency (hence entail-
ment) can be tested in |A|?/2 propositional satisfiability tests.

The procedure is simply to find every default statement that is tolerated
by A, remove those from A, and repeat the process on the remaining set of
statements, until there are no more default statements left. If this process
leads to an empty set then A is e-consistent, else it is inconsistent.

If the material counterpart of p > g of each statement p—>gin Ais a
Horn expression, then consistency can be tested in time quadratic with the
number of literals in A.

When A can be represented as a network of default rules, the criterion
of theorem 4 translates into a simple graphical test for consistency, gen-
eralizing that of Touretzky (1986):

COROLLARY 2 (Pearl 1987a): Let A be a default network, that is, a set of
default statements p — g where both p and q are atomic propositions (or
negation thereof). A is consistent iff for every pair of conflicting arcs p; — ¢
and p, — Tlg
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1. p, and p, are distinct, and
2. There is no cycle of positive arcs that embraces both p, and p,.

Theorems 3, 4, and their corollaries are valid only when A consists of
purely defeasible conditionals. For mixtures of defeasible and nondefeasible
statements, consistency and entailment require a slightly modified proce-
dure (Goldszmidt and Pearl 1989). This procedure attributes a special
meaning to a strict conditional a = b, different than the material implica-
tion a > b. For example, conforming to common usage of conditionals,
it proclaims {a=>b,a=> 71b} as inconsistent and will entail a = b from
T1b = Tla but not from T1a. Another extension of e-semantics, permitting
defaults to be given different strength, is treated in (Goldszmidt and Pearl

1991).
8.3.4 Illustrations

To illustrate the power of e-semantics and, in particular, the syntactical and
graphical derivations sanctioned by theorems 1, 3, and 4, consider the
celebrated “Penguin triangle” of figure 8.1. T comprises the sentences:

F = {Penguin (Twee{_v], Bird(Tweery)}, (8)
A = {Penguin — 7 fly, Bird — Fly, Penguin — Bird}; )
Fly (f)
Bird (b)
Penguin (p)
Tweety
Figure 8.1

A network representing the knowledge base of equations (8) and (9). Heavy arcs represent
evidence about individuals, thin arcs represent default statements, slashed arcs represent

default denials. The arc between Penguin and Bird imposes specificity preference, yielding
the conclusion “Tweety does not fly.”
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Although A does not specify explicitly whether penguin-birds fly, the de-
sired conclusion is derived in three steps, using rules 1 and 3 of theorem 1:

1. Penguin (Tweety) ~, T1Fly (Tweety) (from Rule 1)
2. Penguin (Tweety) ~, Bird (Tweety) (from Rule 1)

3. Penguin (Tweety), Bird (Tweety) ~, T1Fly (Tweety)
(Applying rule 3 to lines 1, 2)

Note that preference toward subclass specificity is maintained despite the
defeasible nature of the rule Penguin — Bird, which admits exceptional
penguins in the form of non-birds.

We can also derive this result using theorems 3 and 4 by showing that
the denial of the conclusion p A b — 71f is e-inconsistent with

A={p—="f,b—f p-b} (10)
Indeed, no truth-valuation of {p,b, f} can verify any sentence in
AN={p->"f,p>bprb-f} (11)

without falsifying at least one other sentence.

Applying theorem T-3 to the network of figure 8.1 yields another plau-
sible conclusion. Bird — 71 Penguin, stating that when one talks about birds
one does not have penguins in mind, that is, penguins are exceptional kind
of birds. It is a valid conclusion of A because every P in 2, , must yield
P(p|b) = O(¢). Of course, if the statement Bird — Penguin is artificially
added to A, inconsistency results; as ¢ diminishes below a certain level (1/3
in our case), 2, , becomes empty. This can be predicted from purely topo-
logical considerations (corollary 2), since adding the arc Bird — Penguin
would create a cycle of positive arcs embracing “bird” and “penguin,”
and these sprout two conflicting arcs toward “fly.” Moreover, theorem 3
implies that if a network becomes inconsistent by the addition of S, then
that network e-entails its denial, S". Hence, the network of Figure 8.1 e-entails
Bird — 71 Penguin. By the same graphical method one can easily show that
the network also e-entails the natural conclusion, Fly — 71 Penguin. This
contraposition of Penguin — 71 Fly is sanctioned only because the existence
of flying objects that are not penguins (i.e., normal birds) is guaranteed by
the other rules in A.
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8.4 The Adventurous Shell

The preceding adaptation of Adams’s logic of conditionals yields a system
of defeasible inference with rather unique features:

1. The system provides a formal distinction between exceptions, ambigui-
ties, and inconsistencies and offers systematic methods of testing and main-
taining consistency.

2. Multiple extensions do not arise, and preferences among arguments (e.g.,
toward higher specificity) are respected by natural deduction.

3. There is no need to specify abnormality relations in advance (as in
circumscription); such relations (e.g., that penguins are abnormal birds) are
automatically inferred from the knowledge base.

However, default reasoning requires two facilities: one which forces conclu-
sions to be retractable in the light of new refuting evidence; the second
which protects conclusions from retraction in the light of new but irrelevant
evidence. Rules 1-5 excel on the first requirement but fail on the second.
For instance, in the example of figure 8.1, if we are told that Tweety is also
a blue penguin, the system would retract all previous conclusions (as
ambiguous), even though there is no rule which in any way connects color
to flying. (The opposite is true in default logics—they excel on the second
requirement but do not retract conclusions refuted by more specific in-
formation, unless all exceptions are enumerated in advance [Reiter 1987].)

The reason for this conservative behavior lies in our insistence that any
issued conclusion attains high probability in all probability models licensed
by A and one such model reflects a world in which blue penguins do fly. It
is clear that if we want the system to respect the communication convention
that, unless stated explicitly, properties are presumed to be irrelevant to
each other, we need to restrict the family of probability models relative to
which a given conclusion must be checked for soundness. In other words,
we should consider only distributions which minimize dependencies rela-
tive to A, that is, they embody dependencies which are absolutely implied
by A, and no others.

8.4.1 System Z

One way of suppressing irrelevant properties is to restrict our attention to
the “most normal” or “least surprising” probability models that comply
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with the constraints in A. This can be most conveniently done within
the nonstandard analysis of Spohn (see section 8.2.2), where x(w) represents
the degree of surprise associated with world w. To ratify a sentence p — g
within this paradigm, we must first find the minimal x distribution per-
mitted by the constraints in A and, then, test whether x(q|p) < x(q|p)
holds in this distribution.

Translating the constraints of equation (4) to the language of non-
standard analysis, yields

KvAau<k(Tlvau) fu-oueA (12.a)
where x of a formula f is given by

K(f) = min {k(w):wk f} (12.b)

Remarkably, these constraints admit a unique minimal x distribution
whenever A is e-consistent. Moreover, finding this minimal distribution,
which was named Z-ranking in Pearl 1990, requires no more computation
than testing for e-consistency according to corollary 1. We first identify all
default statements in A that are tolerated by A, assign to them a Z-rank of
0, and remove them from A. Next we assign a Z-rank of 1 to every default
statement that is tolerated by the remaining set, and so on. Continuing in
this way, we form an ordered partition of A = (Ag, A, A,,...,Ay), where
A; consists of all statements tolerated by A—Ay,— A, —...A,_,. This
partition uncovers a natural priority among the default rules in A, and
represents the relative “cost” associated with violating any of these defaults,
with preference given to the more specific classes.

Once we establish the Z-ranking on defaults, the minimal ranking on
worlds is given as follows:

THEOREM 5 (Pearl 1990): Out of all ranking functions x(w) satisfying the
constraints in equation (12) the one that achieves the lowest x for each
world w is unique and is given by

Zw)=min{n:wk (vou), Z(v » u) > n} (13)

In other words, Z(w)is equal to 1 plus the rank of the highest-ranked default
statement falsified in w.

Given Z(w), we can now define a useful extension of e-entailment, which
was called I-entailment in Pearl 1990.




Definition (1-entailment): A formula g is said to be I-entailed by f, in the
context A, (written f ~ g), if g holds in all minimal-Z worlds satisfying f.
In other words,

fhig Mt Z(fAg) <Z(f Ag) (14)

Note that e-entailment is clearly a subset of 1-entailment.

Lehmann (1989) has extended e-entailment in a different way, syntacti-
cally closing it under the rational monotony rule of equation 6, thus obtain-
ing a new consequence relation which he called rational closure. Goldszmidt
and Pearl (1990) have shown that 1-entailment and rational closure are
identical whenever A is e-consistent. Thus, the procedure of testing e-
consistency also provides a |A?|/2-time procedure for testing entailment in
rational closure. -

Figure 8.2 represents a knowledge base formed by adding three rules to
that of figure 8.1:

1. “Penguins live in the antarctic” p—a
2. “Birds have wings” b—-w
3. “Animals that fly are mobile” f-m
The numerical labels on the arcs stand for the Z-ranking of the correspond-
ing rules. The following are examples of plausible consequences that can

be drawn from A by the various systems discussed in this section (ME will
be discussed in section 8.4.2):

Figure 8.2
A knowledge base containing six defaults together with their Z-labels.
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l-entailment sanctions many plausible inference patterns that are not
e-entailed, among them chaining, contraposition and discounting irrele-
vant features. For example, from the knowledge base of figure 8.2 we can
now conclude that birds are mobile, b |~, m, and that immobile objects are
non-birds, T1m |~ 71b, and that green birds still fly. On the other hand,
I-entailment does not permit us to conclude that penguins who do not live
in the antarctic still do not fly, p A Tla — 71f.

The main weakness of 1-entailment is its inability to sanction property
inheritance from classes to exceptional sub-classes. For example, from
A = {a—b,c—d} we cannot conclude a A 71b A ¢ — d. Likewise, given
the knowledge base of figure 8.2, 1-entailment will not sanction the conclu-
sion that penguins have wings (p — w) by virtue of being birds (albeit
exceptional birds). The reason is that according to the Z-ranking procedure
all statements conditioned on p should obtain a rank of 1, and this amounts
to proclaiming penguins an exceptional type of birds in all respects, barred
from inheriting any bird-like properties (e.g., laying eggs, having beaks). To
sanction property inheritance across exceptional classes, a more refined
ordering is required which also takes into account the number of defaults
falsified 1n a given world, not merely their rank orders. One such refinement
is provided by the maximum-entropy approach (Goldszmidt, Morris, and
Pearl 1990) where each world is ranked by the sum of weights on the
defaults falsified by that world. Another refinement is provided by Geffner’s
conditional entailment (Geffner 1989), where the priority of defaults in-
duces a partial order on worlds. These two refinements will be summarized
next.

8.4.2 The Maximum Entropy Approach

The maximum-entropy (ME) approach (Pearl 1988) is motivated by the
convention that, unless mentioned explicitly, properties are presumed to
be independent of one another, such presumptions are normally embedded
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in probability distributions that attain the maximum entropy subject to a
set of constraints. Given a set A of default rules and a family of probability
distributions that are admissible relative the constraints conveyed by A (i.e.,
P(f, > a,) > 1 —&Vre A), we single out a distinguished distribution P*,
having the greatest entropy “Zw P(w)log(w), and define entailment rela-
tive to this distribution by

fhweg Hf PY(g1f) =z, 1 (15)

An infinitesimal analysis of the ME approach also yields a ranking
function x on worlds, where x(w) corresponds to the lowest exponent of ¢
in the expansion of P¥,(w) into a power series in . It can be shown that
this ranking function can be encoded parsimoniously by assigning an
integer weight k, to each default rule r € A and letting k(w) be the sum of
the weights associated with the rules falsified by w. The weight «,, in turn,
reflects the “cost” we must add to each world w that falsifies rule r, so that
the resulting ranking function would satisfy the constraints conveyed by

A, namely,

min{k(w): w = o, A f,} <min{k(w:wk o, A T1B,}, ria, - B €A
| (16)

These considerations lead to a set of |A| nonlinear equations for the weights
k, which, under certain conditions, can be solved by iterative methods.
Once the rule weights are established, ME-entailment is determined by the
criterion of equation (15), translated to

fhumeg il min{k(whwk f A g} <min{kw:wk [ A g} (17)
where

K(w) = z K,
riwkEa, A f,

We see that ME-entailment requires minimization over worlds, a task that
is NP-hard even for Horn expressions (Ben-Eliyahu 1990). In practice,
however, this minimization is accomplished quite effectively in network
type databases, yielding a reasonable set of inference patterns. For
example, in the database of figure 8.2, ME-entailment will sanction the
desired consequences pi~w, p A TJa~T1f and p A Tlakw and,
moreover, unlike 1-entailment it will conclude ¢ A p v, 1f from AU
{c = f}, where c is an irrelevant property.
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An interesting feature of the ME approach is its sensitivity to the format
in which the rules are expressed. This is illustrated in the following example.
From A = {Swedes are blond, Swedes are well mannered}, ME will con-
clude that dark-haired Swedes are still well mannered, while no such
conclusion will be drawn from A = {Swedes are blond and well mannered}.
This sensitivity might sometimes be useful for distinguishing fine nuances
in natural discourse, indicating, for example, that behavior and hair color
are two independent qualities (as opposed, say, to hair color and eye color).
However, it stands at variance with most approaches to default reasoning,
where a — b A c is treated as a shorthand notation of a —» b and a — c.

The failure to respond to causal information (see Pearl 1988: 463, 519
and Hunter 1989) prevents the ME approach from properly handling tasks
such as the Yale shooting problem (Hanks and McDermott 1986), where
rules of causal character should be given priority over other rules. This
weakness may perhaps be overcome by introducing causal operators into
the ME formulation, similar to the way causal operators are incorporated
within other formalisms of nonmonotonic reasoning (e.g., Shoham 1986,
Geffner 1989).

8.4.3 Conditional Entailment

Geflner (1989) has overcome the weaknesses of 1-entailment by introducing
two new refinements. First, rather than letting rule priorities dictate a
ranking function on worlds, a partial order on worlds is induced instead.
To determine the preference between two worlds, w and w’, we examine the
highest priority default rules that distinguish between the two, that is, that
are falsified by one and not by the other. If all such rules remain unfalsified
in one of the two worlds, then this world is the preferred one. Formally, if
A[w]and A[w’] stand for the set of rules falsified by w and w’, respectively,
then w is preferred to w’ (written w < w') iff A[w’] # A[w’] and for every
rule rin A[w] —A[w’] there exists a rule ' in A[w'] — A[w] such that r’
has a higher priority than r (written r < r’). Using this criterion, a world
w will always be preferred to w’ if it falsifies a proper subset of the rules
falsified by w’. Lacking this feature in the Z-ordering has prevented
I-entailment from concluding p ~ w in the example of figure 8.2.

The second refinement introduced by Geffner is allowing the rule-prior-
ity relation, <, to become a partial order as well. This partial order is
determined by the following interpretation of the rule o« — f; if « is all that
we know, then, regardless of other rules that A may contain, we are
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authorized to assert . This means that r: « — f should get a higher priority
than any argument (a chain of rules) leading from « to 71 and, more
generally, if a set of rules A’ < A does not tolerate r, then at least one rule

in A’ ought to have a lower priority thanr. In figure 8.2, for example, the rule

ry:p A T1fisnot tolerated by the set {r;: p — b, r,: b — f}, hence, we must

have ry <r; or r, <r,. Similarly, the rule r;: p— b is not tolerated by

{r,,r3}, hence, we also have r, <r, or r; <r,. From the asymmetry and

transitivity of <, these two conditions yield r, < ry and r, <r,. It is clear,

then, that this priority on rules will induce the preference w < w’ whenever

w validates p A b A 71f and w’ validates p A b A f; the former falsifies r,,

while the latter falsifies the higher priority rule r;. In general, we say that

a proposition g is conditionally entailed by f (in the context of A) if g holds

in all the preferred worlds of f induced by every priority ordering admis-

sible with A.

Conditional entailment bridges the conditional and dispositional ap-
proaches to default reasoning. It rectifies the shortcomings of 1-entailment
and ME-entailment. However, having been based on model minimization
as well as on enumeration of subsets of rules, its computational complexity
might be overbearing. A proof theory for conditional entailment and its
unification with causal theories can be found in Geffner 1989.

8.4.4 Dialectic Approaches

Dialectic approaches attempt to supplement the probabilistic interpreta-
tion of defaults with a set of assumptions about conditional independence
drawn on the basis of the syntactic structure of A. For a default p — g, these
approaches assume the probability of g to be high not only when p is all that
is known, but also in the presence of an additional body of evidence which
does not provide an argument against g (Loui 1987, Pollock 1987). This
interpretation is closer in spirit to the syntactic approaches to nonmono-
tonic reasoning proposed by Reiter (1980) and McDermott and Doyle
(1980), which allow us to infer g from p in the absence of “proofs” for 714.

In the systems reported in Geffner and Pearl 1988 and Geffner 1988,
these ideas take the form of an additional inference rule, similar to:

RULE 6: Irrelevance
Ifp—>reAandlI,(g TIrip),thenp A g, 1,

where the predicate I,(g, 71r|p), which reads: “qis irrelevant to 71r given p,”
expresses the conditional independence P(r|p) = P(r|p, q).
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The mechanism for evaluating the irrelevance predicate I,(g, 71r|p) ap-
peals to the set ¥’ of wffs formed by converting each default p — g in A
into a corresponding material implication p > g. In essence, ¢ is then said
to be relevant to T1r given p, if there is a a set Y’ of implications in ¥ which
permit an argument for 7Ir to be constructed, i.e if ', p, ¢ ~ Tr, with the
set of wifs " U p, g being logically consistent. The set ' is called the support
of the argument for 71r. If ¢ is not relevant to 7r given p, then g is assumed
to be irrelevant to 71r in that context, and I,(g, 71r|p) thus holds.

This simple extension permits us to infer, for instance, that red birds are
likely to fly given a default stating that birds fly, as “redness” does not
induce any argument in support of not flying. Further refinements are
installed to insure that arguments for 7r that are blocked by p (or its
consequences) do not bear on the predicate I,. With this refinement, most
examples analyzed in the literature yield the expected results.

Dialectic approaches constitute an alternative way of extending the
inferential power of the core set of probabilistic rules. An advantage of these
approaches over those based on maximum entropy 1s intelligibility: deriva-
tions under this approach can usually be justified in a more natural fashion.
On the other hand, these approaches lack the foundational basis of a
principle like maximum entropy, making it difficult to justify and make
precise the form these extensions should take.

8.5 Do People Reason with Extreme Probabilities (or Lotteries
and other Paradoxes of Abstraction)

Neufeld and Poole (1988) have raised the following objection (so-called
Dingo Paradox) in connection with the theorem of exceptions (T-3). We
saw that the penguin triangle (fig. 8.1) sanctions the conclusion Bird —
T1Penguin by virtue of the fact that penguins are an exceptional class of
birds (relative to flying). Similarly, if “sandpipers™ are birds that build nests
in sand, we would conclude Bird — ~1Sandpiper. Continuing in this manner
through all types of birds, and assuming that every subclass of birds has
a unique, distinguishing trait, we soon end up with the conclusion that

birds do not exist—birds are not penguins, not sandpipers, not canaries,

and so on—thus ruling out all types of birds.

This paradox is a variant of the celebrated Lottery Paradox (Kyburg
1961): Knowing that a lottery is about to have one winner is incom-
patible with common beliefs that each individual ticket is, by default, a
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loser. Indeed, the criterion provided by e-semantics would proclaim the
overall set of such statements e-inconsistent, since the set of conditional
probabilities

P(Loser(i)| Ticket(i)) > 1 — ¢ i=1,2,...,N

cannot be satisfied simultaneously for ¢ < 1/N. Perlis (1987) has further
shown that every default logic is bound to suffer from some version of the
lottery paradox if we insist on maintaining deductive closure among beliefs.

Are these paradoxes detrimental to e-semantics, or to nonmonotonic
logics in general? [ would like to argue that they are not. On the contrary,
I view these paradoxes as healthy reminders that in all forms of reasoning
we are dealing with simplified abstractions of real-world knowledge, that
we may occasionally step beyond the boundaries of one abstraction and
that, in such a case, a more refined abstraction should be substituted.

Predicate logic and probability theory are two such abstractions, and
e-semantics offers an abstraction that is somewhere between logic and
probability. It requires less input than probability theory (e.g., we need not
specify numerical probabilities), but more input than logic (e.g., we need to
distinguish between defaults, a — b, and observations, T1a v b). It is more
conservative than logic (e.g., it does not sanction transitivity), but more
adventurous than probability theory (e.g., it admits conclusions even if their
probabilities approach 1 very slowly, such as = (1 — ¢)".

Each abstraction constitutes an expedient simplification of reality,
tailored to serve a specialized set of tasks. Each simplification is supported
by a different symbol processing machinery and by a set of norms, to verify
whether the simplification and its supporting machinery are still applicable.
The lottery paradox represents a situation where e-semantics no longer
offers a useful abstraction of reality. Fortunately, however, the consistency
norms help us identify such situations in advance, and alert us (in case our
decisions depend critically on making extensive use of the disjunction
axiom) that a finer abstraction should be in order (perhaps full-fledged
probability theory).

Probabilities that are infinitesimally close to O and 1 are very rare in the
real world. Most default rules used in ordinary discourse maintain a non-
vanishing percentage of exceptions, simply because the number of objects
in every meaningful class is finite. Thus, a natural question to ask is, why
study the properties of an abstraction that applies only to extreme proba-
bilities? Why not develop a logic that characterizes moderately high proba-
bilities. say probabilities higher than 0.5 or 0.9—or more ambitiously.
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higher than «, where « is a parameter chosen to fit the domains of the
predicates involved? Further, why not develop a logic that takes into
account utility information, not merely probabilities, thus formalizing
reasoning about actions, in addition to beliefs (Doyle 1988)?

The answer is that any such alternative logic would be too complicated;
it would need to invoke many of the axioms of arithmetic, and would
require more information than is usually available. Almost none of the
patterns of reasoning found in common conversation will remain sound
relative to such semantics. Take, for example, the logic of “majority,”
namely, interpreting the default rule a — b to mean “The majority of as are
bs,” or P(bla) > 0.5. Only the first two axioms of theorem 1 remain sound
in this interpretation. Even the cumulativity axiom (rule 3, theorem 1),
which is rarely disputed as a canon of default reasoning, is flatly violated
by some proportions (e.g., P(g|p) = 0.51 and P(r|p) = 0.51 could yield
P(rlp A g) = 0.02, in case P(T1g A 71r) = 0.)

How, then, do people reason qualitatively about properties and classes,
proportions and preferences? It appears that, if the machinery invoked by
people for such tasks stems from approximating numerical information by
a set of expedient abstractions, then the semantics of extreme probabilities
is one of the most popular among these abstractions. The axioms governing
this semantics (i.e., rules 1-5, theorem 1) appears to have been thoroughly
entrenched as inference rules in plausible reasoning. For example, from the
sentences “Most students are males” and “Most students will get an A,”
the cumulativity axiom would infer “Most male students will get an A.”
This conclusion can be grossly incorrect, as shown in the paragraph above,
yet it is a rather common inference made by people, given these two inputs.
In conclusion, it appears that the machinery of plausible reasoning reflects
a remarkable agreement with the rules of “almost all” logic.?

8.6 Relations to Other Nonmonotonic Systems

The logic closest in spirit to the probabilistic approaches presented in the
preceding sections are those based on model preferences, where conclusions

?In an earlier version of this paper, as well as in Pearl 1988, I have speculated that this
agreement indicates that plausible reasoning is more in line with the rules of “almost all” logic
than with those of “support” or “majority” logics. I am now in the opinion that this agreement
is more reflective of tacit assumptions of independence than of the type of logic chosen by
people to reason about proportions. In our example, the conclusion “most students will receive
an A" reflects the assumption that grades are independent of gender. The same holds for my
analysis of the Simpson paradox (Pearl 1988).
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~are sanctioned relative to the minimal (or least abnormal) models of the

theory. The reason for this closeness is that, if we regard probability
weights as measures of “normality,” then probability theory is essentially
a theory of preferences among models. The main point of departure,
however, is that in probability theory formulae are scored by the sum of
the weights on models that validate the formulae while in model-preference
logic a formula assumes the weight of its maximal-weight model. The
practical implications of this difference is best illustrated by comparing
qualitative and probabilistic approaches to abduction.

8.6.1 Probabilistic and Qualitative Abduction

In the probabilistic approach, abduction is considered the task of finding®
the “most probable explanation” of the evidence observed, namely, seeking
an instantiation of a set of explanatory variables that attains the highest
probability, conditioned on the evidence observed. Assume that we have a
probability function P defined on the set W of possible worlds. One way
of accounting for abductive beliefs is to posit that, at any state of knowl-
edge, beliefs are fully committed to a world that has the highest probability.
In other words, a proposition A is believed if A holds in some w* € W*,
where W* < W is the set of most probable worlds,

W* = {w*|P(w*) > P(w) Vwe W}.

To maintain coherence, we also demand that any set of propositions that
are simultaneously believed, must hold in the same w*. Nonmonotonic
behavior is obtained by conditionalization; given a body of evidence (facts)
e, the probability function P(w) shifts to P(w|e) and this yields a new set
of most probable worlds

Wk = {w*|P(w*|e) > P(wl|e) Ywe W}.

which, in turn, results in a new set of beliefs.

This approach to abduction was explored in Pearl 1987b, where a world
was defined as an assignment of values to a set of interdependent variables
(e.g., assignment of TRUE-FALSE values to a set of diseases in medical
diagnosis), and the worlds in W* were called most probable explanations
(MPE). It was shown that the task of finding a most probable explanation
of a body of evidence is no more complex than that of computing the
probability of a single proposition. In singly connected networks (directed
trees with unrestricted orientation) the task can be accomplished in linear
time. using a parallel and distributed message-passing process. In mult:ris
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connected networks, the problem is NP-hard; however, clustering, con-
ditioning and stochastic simulation techniques can offer practical solutions
in reasonable time if the network is relatively sparse. Applications to circuit
and medical diagnosis are described in Geffner and Pearl 1987, Pearl
1988, and Peng and Reggia 1987. '

The MPE approach provides a bridge between probabilistic reason-
ing and nonmonotonic logic. Like the latter, the method provides system-
atic rules that lead from a set of factual sentences (the evidence) to a set
of conclusion sentences (the accepted beliefs) in a way that need not be
truth-preserving. However, whereas the input-output sentences are cate-
gorical, the medium through which inferences are produced is numerical,
and the parameters needed for complete specification of P(w) may not be
readily available. In modeling man-made systems such as digital circuits
this problem is not too severe, because all internal relationships are pro-
vided with the system’s specifications. However, in medical diagnosis, as
well as in reasoning about everyday affairs, the requirement of specifying
a complete probabilistic model is too cumbersome and can be justified
only in cases where critical decisions are at stake.

The qualitative approaches demand fewer judgments in constructing
the knowledge base, but suffer from the lack of rating among competing
explanations and, closely related to it, the lack of rating among pend-
ing information sources. To overcome this deficiency, the qualitative ap-
proaches make explicit appeal to explanatory scenarios, and seek scenarios
that are both coherent and parsimonious.

A major challenge facing and the qualitative approaches is to enforce an
appropriate separation between the prospective and retrospective modes of
reasoning so as to capture the intuition that predictions should not trigger
suggestions. To use my favorite example: “Sprinkler On” predicts “Wet
Grass,” “Wet Grass” suggests “Rain,” but “Sprinkler On™ should not
suggest “Rain.” In the probabilistic approach such separation is enforced
via the patterns of independencies that are assumed to accompany causal
relationships. In the qualitative approaches the separation is accomplished
in two ways. One is to label sentences as either causally established (ie.,
explained) or evidentially established (i.e., conjectured) and subject each
type to a different set of inference rules (Pearl 1988a; Geffner 1989). The
second method is to regard abduction as a specialized metaprocess that
operates on a causal theory (Poole 1987; Reiter 1987).

In qualitative theories simplicity is enforced by explicitly encoding the
preference of simple theories over complex ones, where simple and complex
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are given syntactical definitions, for example, smallest number of (cohesive)
propositions (Thagard 1989) or minimal covering (Reiter 1987; Reggia et al.
1983). These syntactic ratings do not always coincide with the notion of
plausibility, for example, two common diseases are often more plausible
than a single rare disease in explaining a given set of symptoms (Reggia
1989). In probabilistic theories, coherence and simplicity are managed
together by one basic principle—maximum posterior probability.

8.6.2 Relation to Model Preference Semantics

The model preference approach to nonmonotic reasoning (Shoham 1987)
leaves room for widely different interpretations of defaults, ranging from
the adventurous to the conservative. The adventurous approach takes
the statement A — B to mean: Every world where A A B holds has a prima
facie preference over the corresponding world where A A 1B holds, every-
thing else being equal (the terms “world” and “models” are used inter-
changeably in the literature). Conflicts are later resolved by extra logical
procedures (Selman and Kautz 1988). The conservative school (Lehmann
and Magidor 1988, DelGrande 1988) takes A — B to be a faint reflection
of a preexisting preference relation, saying merely: B holds in all the most
preferred worlds compatible with A. Whether a collection of such faint clues
is sufficient to reveal information (about the preference relation) that entails
a new statement x — y, depends on the type of restrictions the preference
relation is presumed to satisfy.

Lehmann and Magidor (1988) have identified the class of preference
relations, whose consequence relation satisfies a reasonable set of rational-
ity requirements including, for example, cumulativity and rational mono-
tony. In essence, the restriction is that states of worlds be ranked (e.g., by
some numerical score r) such that a state of lower rank is preferred to a
state of higher rank. Lehmann and Magidor proved that the consequence
relation induced by this class of ranked worlds coincides exactly with
Adams’s e-entailment relation defined in equation (4) and, of course, its
properties coincide with rules 1-5 of theorem 1.

It is remarkable that two totally different interpretations of defaults yield
identical sets of conclusions and identical sets of reasoning machinery.
Note that, even if we equate rank with probability, the interpretation
P(B|A) > 1 — ¢ is different from the model preference interpretation, be-
cause, for any finite ¢, the former permits the most probable world of
A to be incompatible with B. Fortunately, the two interpretations coincide
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in the language of non-standard analysis (see sections 8.2.2 and 8.4.1). Based
on this coincidence, it is now possible to transport shortcuts and intuitions
across semantical lines. For example, theorem 3 establishes a firm connec-
tion between preferential entailment and preferential consistency. Simi-
larly, theorems 4 and 5 determine the complexity of proving entailment in
model preference semantics.

Perhaps the deepest point of tension between probability and traditional
nonmonotonic logics revolves around the issue of specificity-based argu-
ments, that is, finding ways to ensure that inferences be based on the most
specific classes for which information is available (e.g., the inference that a
penguin cannot fly must override the inference that a bird can fly). In the
case of Reiter’s default logic (Reiter 1980), this requires semi-normal rules,
which explicitly enumerate exceptions (e.g. birds fly, unless they are pen-
guins or ostriches or ...). In the case of circumscription, we must supply
priorities among abnormalities (McCarthy 1986). Touretzky (1986) has
argued that the enumeration of exceptions places an impractical burden
on the management of inheritance networks, and he showed how attention
to “inferential distance” in the network can assure priority for more specific
arguments without such explicit enumeration. In section 8.3, we saw
that specificity-based priorities were obtained naturally from probability
theory, even if numerical probabilities are not used, provided that we inter-
pret defaults as statements of high conditional probability, infinitesimally
close to one. Identical facility is provided by the conditional logics of
Lehmann and Magidor (1988) and of DelGrande (1988).

What sets these systems apart from circumscription and Reiter’s default
logics is the distinction between knowledge and facts (A and F) a distinction
that, for some reason has not been totally accepted throughout the non-
monotonic community. Intuitively, the knowledge component specifies
the tendency of things to happen, that is, relations that hold true in all
worlds, while the facts or “observations” describe that which actually
happened, that is, one particular world. In other words, the knowledge base
A contains information that is equivalent to meta inference rules, telling us
how to process “observations” to get conclusions about a particular situa-
tion or a particular individual.

In section 8.3 we saw, for example, that it makes a profound difference
whether the sentence “all penguins are birds” is treated as a rule p— b in
the knowledge base A, or as observational formula 71p v bin F. The latter
would represent the English sentence “It has been observed that Tweety 1s




Probabilistic Semantics for Nonmonotonic Reasoning 185

either a non-penguin or a bird.” The former is treated as constraint that
shapes the set of admissible probability distributions (or k rankings) while
the latter serves as evidence upon which the admissible distributions are to
be conditioned. The former gives the intended results, properly treating
penguins as subclass of birds. The latter does not, because the observation
1p v b can be totally subsumed by other observations, say p A b, thus
yielding identical conclusions regardless of whether penguins are a subclass
of birds or birds are a subclass of penguins.?

Acknowledgments

I am grateful to Ernest Adams, Hector Geffner, Moises Goldszmidt, Daniel
Lehmann, David Makinson, Menachen Magidor, and Paul Morris for pro-
viding helpful comments on several topics of this paper. This work was
supported in part by National Science Foundation Grant # IRI-8821444
and Naval Research Laboratory Grant # N00014-87-K-2029. An earlier
version of this paper was presented at the First International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR ’89),
Toronto, May 1989.

References

Adams, E. 1975. The logic of conditionals. Dordrecht, Netherlands: D. Reidel.

Bacchus, F. 1988. Representing and reasoning with probabilistic knowledge. Ph.D. disserta-
tion, Dept. of Computer Science, University of Alberta, Edmonton.

Ben-Eliyahu, R. 1990. Minimizing Horn-Clause violations is NP-hard UCLA Cognitive
Systems Laboratory, Computer Science Dept., Technical Report R—1358.

DelGrande, J. P. 1988. An approach to default reasoning based on first-order conditional
logic; revised report. Artificial Intelligence, 36:63-90.

Doyle, J. 1988. On universal theories of defaults. Technical Report CMU-CS~-88~11. Carne-
gie Mellon University.

Geffner, H., and J. Pearl. 1988. A framework for reasoning with defaults. UCLA Cognitive
Systems Laboratory, Technical Report 870058 (R-94), March 1988. Also in Kyburg et al.
(eds.) Knowledge Representation and Defeasible Reasoning, Kluwer, pp. 61-87 1990.

Geffner, H. 1988. On the logic of defaults. Proceedings of the National Conference on Al
(AAAI-88), St. Paul, 449-454. -

>The story of the paper (Geffner and Pearl 1988) exemplifies the traditional resistance
to distinguishing between knowledge and observations. This paper was rejected by the
CSCSI-88 Conference Committee, because the referee would not allow conclusions to change
as sentences move from F to A.



186 Judea Pearl

Geffner, H. 1989. Default reasoning: causal and conditional theories. Ph.D. dissertation,
UCLA Computer Science Department, Cognitive Systems Laboratory Technical Report
(R-137).

Goldszmidt, M., and J. Pearl. 1989. On the consistency of defeasible databases. Proceedings
of the 5th Workshop on Uncertainty in AI. Windsor, Canada, 134-141. Also, Uncertainty in
AI-5. North Holland, 1990, 8§7-97.

Goldszmidt, M., and J. Pearl. 1990. On the relation between rational closure and System-Z.
Proceedings, Third International Workshop on Nonmonotonic Reasoning. S. Lake Tahoe, CA,
May 1990, 130-140.

Goldszmidt, M., and J. Pearl. 1991. System Z*: A formalism for reasoning with variable-
strength defaults. Proceedings of the National Conference on Al (AAA-91). Anaheim, CA.

Goldszmidt, M., P. Morris, and J. Pearl. 1990. A maximum entropy approach to non-
monotonic reasoning. Proceedings of the National Conference on Al (AAAI-90). Boston,
MA, pp. 646-652.

Halpern, J. Y., and M. Rabin. 1987. A logic to reason about likelihood. Artificial Intelligence
32(3):379-406.

Hanks, S., and D. V. McDermott. 1986. Default reasoning, nonmonotonic logics, and the
frame problem. Proceedings of the 5th National Conference on Al ( AAAI-86 ). Philadelphia,
328-333.

Hunter, D. 1989. Causality and maximum entropy updating. International Journal of Ap-
proximate Reasoning 3(1):87-114.

Jaynes, E. T. 1979. Where do we stand on maximum entropy? In The maximum entropy
formalism. R. D. Levine and M. Tribus, eds. Cambridge: MIT Press.

Kuipers, B. 1986. Qualitative simulation. Artificial Intelligence, 29:289-338.
Kyburg, H. E. 1961. Probability and the logic of rational belief. Middleton, Conn.: Wesleyan
University Press.

Lehmann, D., and Magidor, M. 1988. Rational logics and their models: a study in cumulative
logics. Department of Computer Science, Hebrew University, Jerusalem, Israel, Technical
Report TR-88-16.

Lehmann, D. 1989. What does a conditional knowledge base entail? Proceedings of the First
International Conference on Principles of Knowledge, Representation, and Reasoning, 212-222.
San Mateo: Morgan Kaufmann.

Loui, R. 1987. Defeat among arguments: A system of defeasible inference. Computational
Intelligence.

McCarthy, J. 1980. Circumscription—A form of non-monotonic reasoning. Artificial Intel-
ligence 13(1), 27-70.

McCarthy, J. 1986. Applications of circumscription to formalizing common-sense knowledge.
Artificial Intelligence 28(1):89-116.

McDermott, D. V., and J. Doyle. 1980. Non-monotonic logic 1. Artificial Intelligence 13(1,2):
41-72.

Neufeld. E., and D. Poole. 1988. Probabilistic semantics and defaults. Proceedings of the 4th
“AAAI Workshop on Uncertainty in AL Minneapolis. 275=281.— =

Pearl, J. 1987. Deciding consistency in Inheritance Networks. UCLA Cognitive Systems
Laboratory, Technical Report 870053 (R-96).

Pearl. J. 1987. Distributed revision of composite beliefs. Artificial Intelligence 33(2):173-215.



Probabilistic Semantics for Nonmonotonic Reasoning 187

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: networks of plausible inference.
San Mateo: Morgan Kaufmann.

Pearl, J., and T. S. Verma. 1987. The logic of representing dependencies by directed graphs.
Proceedings of the 6th National Conference on AI (AAAI-87), Seattle, 374-379.

Pearl, J. 1990. System Z: A natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In R. Parikh (ed.), Theoretical Aspects of Reasoning about Knowl-
edge (TARK ~III). San Mateo: Morgan Kaufmann, pp. 121-135.

Peng, Y., and J. A. Reggia. 1987. Plausibility of diagnostic hypotheses. Proceedings of the 5th
National Conference on AI (AAAI-86), Philadelphia, 140-145.

Perlis, D. 1987. On the consistency of common sense reasoning. Computational Intelligence,
2:180-190.

Poole, D. L. 1987. Defaults and conjectures: Hypothetical reasoning for explanation and
prediction. Research Report CS—-87-54, University of Waterloo.

Pollock, J. 1987. Defeasible Reasoning, Cognitive Science, 11:481-518.

Reggia, J. A. 1989. Measuring the plausibility of explanatory hypotheses. Behavioral and Brain
Sciences. 12(3):486—-487.

Reggia, J. A,,D.S. Nau, and Y. Wang. 1983. Diagnostic expert systems based on a set-covering
model. International Journal of Man-Machine Studies 19:437-460.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13:81-132.
Reiter, R. 1987. A theory of diagnosis from first principles. Artificial Intelligence 32(1):57-95.

Reiter, R. 1987. Nonmonotonic reasoning. In Annual review of computer science 2, 147-186.
Palo Alto, Calif: Annual Reviews.

Selman, B. and H. Kautz. 1988. The complexity of model-preference default theories. Proc.
CSCSI-88, Seventh Canadian Conference on Artificial Intelligence, Edmonton, Alberta,
102-109. '

Shoham, Y. 1986. Chronological ignorance: Time, nonmonotonicity, necessity, and causal
theories. Proceedings of the 5th National Conference on AI (AAAI-86 ), Philadelphia, 389-
393.

Shoham, Y. 1987. Nonmonotonic logics: meaning and utility. Proceedings of International
Joint Conference on Al (1JCAI-87), Milan, 388-393.

Spohn, W. 1988. A general non-probabilistic theory of inductive reasoning, Proceedings of
the 4th Workshop on Uncertainty in Al, Minneapolis, 315-322. Also, in W. L. Harper and
B. Skyrms, eds. Causation in Decision, Belief Change, and Statistics, Vol. 2. Reidel, Dordrecht,
Netherlands, 1988, 105-134.

Thagard, P. 1989. Explanatory coherence. Behavioral and Brain Sciences 12(3):435-468.

Touretzky, D. 1986. The mathematics of inheritance systems. Los Altos, Calif.: Morgan
Kaufmann.

Wellman, M. 1987. Probabilistic semantics for qualitative influences. Proceedings of the
National Conference on AI (AAAI-87 ), Seattle, 660—-664.






