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Abstract

The paper surveys several investigations into the
possibility of establishing sound probabilistic se-
mantics for various aspects of nonmonotonic
reasoning. One such semantics, based on
infinitessimal probabilities and Adams’ condi-
tional logic, is discussed at length and shown ca-
pable of serving as a universal core for a variety
of dialectic-based nonmonotonic logics.

1. Why Probabilistic Semantics?
Or, Conventions vs. Norms

In nonmonotonic logics, defeasible sentences are usually
interpreted as conversational conventions, as opposed to
descriptions of empirical reality [McCarthy 1986, Reiter
1987]. For example, the sentence "Birds fly" is taken to
express a communication agreement such as: "You and [
agree that whenever I want you to conclude that some
bird does not fly, I will say so explicitly; otherwise you
can presume it does fly." Here the purpose of the agree-
ment is not to convey information about the world but
merely to guarantee that in subsequent conversations, all
conclusions drawn by the informed match those intended
by the informer. Once the agreement is accepted by an
agent, the meaning of the sentence acquires a disposition-
al character: "If x is a bird and I have no reasons to
presume the contrary, then I am disposed to believe that x
flies.” Neither of these interpretations invokes any statisti-
cal information about the percentage of birds that fly nor
any probabilistic information about how strongly the
agent believes that a randomly chosen bird actually flies.
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However, the probabilistic statement
P[(Fly(x)|Bird (x)] = High (to read: "If x is a bird, then
x probably flies") offers such a clear interpretation of
"Birds fly", that it is hard to refrain from viewing defeasi-
ble sentences as fragments of probabilistic information.
With such declarative statements it is easier to define how
the fragments of knowledge should be put together
coherently, to characterize the set of conclusions that one
wishes a body of knowledge to entail, and to identify the
assumptions that give rise to undesirable conclusions, if
any.

The reasons are several. First, semantics has tradi-
tionally been defined as a relation between the speaking
agent and entities external to the agent. Probabilistic in-
formation is, by its very nature, a declarative summariza-
tion of constraints in a world external to the speaker. As
such, it is empirically testable (at least in principle), it is
often shared by many agents, and conclusions are less
subject to dispute. Second, in many cases, it is the
transference of probabilistic knowledge that is the ulti-
mate aim of common conversations, not the speaker’s
pattern of dispositions (which are often arbitrary). In such
cases, the empirical facts that caused the agent to commit
to a given pattern of dispositions are more important than
the dispositions themselves, because it is those empirical
facts that the listening agent is about to confront in the fu-
ture. Finally, being a centuries-old science, the study of
probabilistic inference has accumulated a wealth of
theoretical results that provide shortcuts between the se-
mantics and the intended conclusions. This facilitates
quick generation of meaningful examples and counterex-
amples, quick proofs of necessity andfor impossibility,
and thus, effective communication among researchers.

But even taking the extreme position that the only
purpose of default statements is to establish conversation-
al conventions, probabilists nevertheless believe that, as
long as we are in the process formulating those conven-
tions, we cannot totally ignore their empirical origin. Do-



ing so would resemble the hopeless task of formulating
qualitative physics in total ignorance of the quantitative
laws of physics, or, to use a different metaphor, designing
speech recognition systems oblivious to the laws of
phonetics.

The search for probabilistic semantics is motivated
by the assumption that the conventions of discourse are
not totally arbitrary, but rather, respect certain universal
norms of coherence, norms that reflect the empirical ori-
gin of these conventions. Probabilistic semantics, by sum-
marizing the reality that compelled the choice of certain
conventions over others, should be capable of revealing
these norms. Such norms should tell us, for example,
when one convention is incompatible with another, or
when one convention should be a natural consequence of
another; examples of both will be illustrated in Section 4.

The benefits of adopting probabilistic norms apply
not only to syntactical approaches to nonmonotonic rea-
soning, but also to semantical approaches, such as those
based on preferential models [Shoham 1987]. Inferences
based on preferential models are much less disciplined
than those based on probability, because the preferences
induced on possible worlds are not constrained a priori,
and can, in general, be totally whimsical. Indeed, such a
wide range of syntactical approaches to nonmonotonic
reasoning can be formulated as variants of preferential
models [Shoham 19871, that highly sophisticated restric-
tions must be devised to bring preferential models in line
with basic standards of rationality [Lehmann and Magidor
1988] (see Section 6.2).

2. Nonmonotonic Reasoning Viewed as
Qualitative Probabilistic Reasoning.

To those trained in traditional logics, symbolic reasoning
is the standard, and nonmonotonicity a novelty . To stu-
dents of probability, on the other hand, it is symbolic rea-
soning that is novel, not nonmonotonicity. Dealing with
new facts that cause probabilities to change abruptly from
very high values to very low values is a commonplace
phenomenon in almost every probability exercise and, na-
turally, has never attracted special attention among proba-
bilists. The new challenge for probabilists is to find ways
of abstracting out the numerical character of high and low
probabilities, and cast them in linguistic terms that reflect
the natural process of accepting and retracting beliefs.
Thus, while nonmonotonic reasoning is commonly
viewed as an extension to standard logic, it can also be
viewed as an exercise in qualitative probability, much like

In research on qualitative reasoning, it is customary
to discretize and abstract real quantities around a few
“landmark” values [Kuipers 1986]. For example, the
value O defines the abstraction: positive, negative and
zero. In probability, the obvious landmarks are {0, ¥4, 1},
where 0 and 1 represent FALSE and TRUE, respectively,
and Y represents the neutral state of total ignorance.
However, direct qualitative reasoning about {0, 1)}
reduces to propositional logic, while reasoning with the
intervals [0, %4] and [, 1] is extremely difficult — to
properly process pieces of evidence and determine if a
given probability should fall above % requires almost the
full power of numerical probability calculus [Bacchus
1988].

Following the tradition of qualitative reasoning in
physics and mathematics, two avenues are still available
for qualitative analysis:

1. "Perturbation” analysis, to determine the direction of
CHANGE induced in the probability of one proposi-
tion as a result of learning the truth of another, and

2. An "order-of-magnitude” analysis of proximities to
the landmark values.

The first approach has been pursued by Wellman [1987]
and Neufeld & Poole [1988], and the second by Adams
[1975], Spohn [1988], Pearl [1988] and Geffner [1988].

2.1 Perturbation Analyses

Both Wellman [1987] and Neufeld & Poole [1988] inves-
tigated the Ilogic behind the qualitative relation of
influence or support, namely, the condition under which
the truth of one proposition would yield an increase in the
probability of another. Wellman’s analysis focuses on
variables with ordered domains (e.g., "An increase in
quantity a is likely to cause an increase in quantity b.")
as a means of providing qualitative aids to decisions,
planning and diagnosis. Neufeld and Poole, focused on
the relation of confirmation between propositions (e.g.,
Quaker(Nixon) adds confirmation to Pacifist(Nixon) ), and
viewed this relation as an important component of default
reasoning,

Both approaches make heavy use of conditional in-
dependence and its graphical representation in the form of
Bayesian networks or influence diagrams [Pearl 1988].
The reason is that, if we define the relation "A supports
B " (denoted S (A ,B)) as

_S(A.B) iff P(BIA)Y>P(B) )

physicists view current Al research in qualitative physics.

then this definition in itself is too weak to yield interesting



inferences. For example, whereas we can easily show
symmetry S(A,B) < S(B,A) and contraposition
SA,B) & §(=B,—-A), we cannot conclude cumula-
tivity (i.e. that S(A A B, C) follows from S(A,B) and
S(A, C)), nor transitivity (i.e., that S (4, C) follows from
S(A,B)and S (B, C)). For the latter to hold, we must as-
sume that C is conditionally independent of A, given B,

P(ClA,BYy=P(CIB), )

namely, that knowledge of A has no influence on the pro-
bability of C', once we know B

Conditional independence is a 3-place nonmonotonic
relationship that forms a semi-graphoid [Pearl and Verma
1987, Pearl 1988]. Semi-graphoids are structures that
share some properties of graphs (hence the name) but, in
general, are difficult to encode completely, in a compact
way. The assumption normally made in probabilistic rea-
soning (as well as in most nonmonotonic logics, though
not explicitly) is that if we represent dependence relation-
ships in the form of a directed (acyclic) graph, then any
link missing from the graph indicates the absence of
direct dependency between the corresponding variables.
For example, if we are given two defeasible rules,a — b
and b — ¢, we presume that @ does not have any direct
bearing on c, but rather, that ¢ is independent of a, given
the value of b. An important result from the theory of
graphoids states that there is indeed a sound and complete
procedure (called d -separation) of inferring conditional
independencies from such a graph. However, this re-
quires that the graph be constructed in a disciplined,
stratified way: Every variable x should draw arrows from
all those perceived to have direct influence on x, ie.,
those that must be known to render x independent of all
its predecessors in some total order (e.g., temporal). In
practice, this presumes that the knowledge provider has
taken pains to identify all direct influences of each vari-
able in the system.

Neufeld and Poole have assumed that if we take iso-
lated default statements and assemble them to form a
directed graph, the resulting graph would display all the
dependencies that a stratified graph would. Unfortunately,
this is not always the case, and may lead to unsound con-
clusions. For example, from the defaults A — B,
C —— B, we will conclude (using the d -separation cri-
terion) that A is independent of C (there is no directed
path between A and C). Often, however, two classes 4
and C whose members differ substantially in one typical
property (B vs. —B) will be found dependent on one
another.

Wellman has circumvented this difficulty by starting
from a well structured Bayesian network, and by defining
"support” in a more restrictive way. Instead of Eq. (1),
Wellman’s definition reads:

§*a,b,G) iff PBIA,x)=P(Blx) 3

where S*(a, b, G) stands for "a positively influences b,
in the context of graph G ", and the inequality should hold
for every valuation x of the direct predecessors of b (in
G). This stronger definition of support defines, in fact, the
conditions under which inferences based on graphically-
derived dependencies are probabilistically sound. Com-
pared with the system of Neufeld and Poole, soundness is
acquired at the price of a more elaborate form of
knowledge specification, namely, the structure of a Baye-
sian network.

2.2 Infinitesimal Analysis

Spohn [1989] has introduced a system of belief revision
(called OCF for Ordinal Conditional Functions) which re-
quires only integer-value addition, and yet retains the no-
tion of conditionalization, a facility that makes probability
theory context dependent, hence nonmonotonic.
Although Spohn has proclaimed OCF to be "non-
probabilistic," the easiest way to understand its power and
limitations is to interpret OCF as an infinitesimal (i.c.,
non-standard) analysis of conditional probabilities.

Imagine an ordinary probability function P defined
over a set W of possible worlds (or states of the world),
and let the probability P (w) assigned to each world w be
a polynomial function of some small positive parameter &,
for example, o, Be, ¥e2, ..., etc. Accordingly, the proba-
bilities assigned to any subset A of W, as well as all con-
ditional probabilities P (A1B), will be rational functions
of . Now define the OCF function k(4 |B) as

k(A |B)=lowest n such that limOP(A IB)/e" is finite .
€

In other words, x(AIB)=n iff P(AIB) is of the same
order as €", or equivalently, ¥(AIB) is of the same
order-of-magnitude as [P (A 1B)]™.

If we think of n for which P (w)=¢" as measuring
the degree to which the world w is disbelieved (or the de-
gree of surprise were we to observe w), then k(A |B) can
be thought of as the degree of disbelief (or surprise) in A,
given that B is true. Itis easy to verify that x satisfies the
following properties:

1. x(A)=min {x(w)lw e A}

2. ¥(A)=0orx(-A)=0,orboth



3. k(A UB)=min{x(4), x(B)}
4. %A NB)=x(AIB)+x(B)

These reflect the usual properties of probabilistic combi-
nations (on a logarithmic scale) with min replacing addi-
tion, and addition replacing multiplication. The resultis a
probabilistically sound calculus, employing integer addi-
tion, for manipulating order-of-magnitudes of disbeliefs.
For example, if we make the following correspondence
between linguistic quantifiers and " :

P(A)=£" | A isbelievable k(A)=0
P(A)=¢' | A isunlikely K(A)=1
P(A)=g% | A isvery unlikely K(A)=2
P(A)=¢> | A is extremely unlikely xA4)=3

then Spohn’s system can be regarded as a nonmonotonic
logic to reason about likelihood (contrast with the modal
logic of Halpern and Rabin [1987)). It takes sentences in
the form of quantified conditional sentences, e.g., "Birds
are likely to fly", "Penguins are most likely birds",
"Penguins are extremely unlikely to fly," and returns
quantified conclusions in the form of “If Tim is a
penguin-bird then he is extremely unlikely to fly"

The weakness of Spohn’s system, shared by numeri-
cal probability, is that it requires the specification of a
complete probabilistic model before reasoning can com-
mence. In other words, we must specify the x associated
with every world w. In practice, of course, such
specification need not be enumerative, but can use the
decomposition facilities provided by Bayesian networks.
However, this too might require knowledge that is not
readily available in common discourse. For example, us-
ing the language of defaults, we must specify
k(plxy, %o, ..., X,) for each proposition p, where
X1, X2, ..., X,, TEpresents any valuation of the antecedents
of all defaults of the form x; —»p. No symbolic
machinery is provided for drawing conclusions from par-
tially specified models, for example, from those that asso-
ciate a ¥ merely with each individual default. Such
machinery is provided by the conditional logic of Adams
[1975], to be discussed next.

Adams’ logic can be regarded as a variant of Spohn’s
OCF system, with input sentences specifying k values of
only 0 and 1. However, instead of insisting on a complete
specification, the logic admits fragmentary statements of
conditional-probabilities;-treats-them-as-constraints-over
the distribution of «, and infers only such statements that

are compelled to acquire high likelihood by virtue of
these constraints.

Due to its importance as a bridge between probabilis-
tic and logical approaches, we will provide a more com-
plete introduction to Adams’ logic, using excerpts from
Chapter 10 of [Pearl 1988]. We will see that the seman-
tics of infinitesimal probabilities (called e-semantics in
[Pearl 1988]) leads to a two-level architecture for non-
monotonic reasoning :

1. A conservative, consistency-preserving core, em-
ploying a semi-monotonic logic, and producing only
inferences that are actually entailed by the input in-
formation.

2. An adventurous shell, sanctioning a larger body of
less grounded inferences. These inferences reflect
probabilistic information that is not included in the
input, yet, based on familiar pattems of discourse,
can reasonably be assumed to be implicit in the input.

3. The Conservative Core

3.1 € -Semantics

We consider a default theory T = <F, A> in the form of
a database containing two types of sentences: factual sen-
tences (F) and default statements (A). The factual sen-
tences assign properties to specific individuals; for exam-
ple, p(a) asserts that individual a has the property p.
The default statements are of the type "p’s are typically
q’s", written p(x) - g(x) or simply p — ¢, which is
short for saying "any individual x having property p typi-
cally has property ¢". The properties p,q,r -+ - can be
compound boolean formulas of some atomic predicates
D1, P2 Pp» With x as their only free variable. However,
no ground defaults (e.g., p(a) — ¢ (a)) are allowed in F
and no compound defaults (e.g., p — (g —r)) are al-
lowed in A. The default statement S”:p — —g will be
called the denial of S :p — q.

Nondefeasible statements such as "all birds are an-
imals" will be written
Birds(x) A — Animal (x) — FALSE. This facilitates the
desirable  distinction between a generic rule
pxy=>q(x) (o be encoded in A as
pA—-q —>FALSE) and a factual observation
pa)> q(a), which must enter F as —p v q. Indeed,
the information [p(a), p(x)==>g(x)} will give rise to
totally  different conclusions (about @) than
{pla);—pla)vgla)};inconformity with common use -
of conditionals. (A more natural treatment of nondefeasi-



ble conditionals, retaining their rule-like character, is
given in [Goldszmidt and Pearl 1989]).

Let L be the language of propositional formulas, and
let a truth-valuation for L be a function ¢, that maps the
sentences in L to the set {1,0}, (1 for TRUE and 0 for
FALSE,) such that ¢ respects the usual Boolean connec-
tives. To define a probability assignment over the sen-
tences in L, we regard each truth valuation ¢ as a world w
and define P (w) such that ¥° P (w)=1. This assigns a
probability measure to each sentence s of L via

P@s)=3 Pw)w(s).

We now interpret A as a set of restrictions on P, in
the form of extreme conditional probabilities,
infinitesimally removed from either O or 1. For example,
the sentence Bird(x)— Fly(x) 1is interpreted as
P(Fly(x)|Bird(x)) 2 1-¢. ¢ is understood to stand for
an infinitesimal quantity that can be made arbitrarily
small, short of actually being zero.

The conclusions we wish to draw from a theory

T =<F,A> are, likewise, formulas in L that, given the
input facts F and the restrictions A, are forced to acquire
extreme high probabilities. In particular, a propositional
formula » would qualify as a plausible conclusion of T,
written F |5 7, whenever the restrictions of A force P to

satisfy limOP rlF)y=1,
oY

It is convenient to characterize the set of conclusions
sanctioned by this semantics in terms of the set of facts-
conclusion pairs that are entailed by a given A. We call
this relation e-entailment © formally defined as follows:

Definition: Let P, . stand for the set of distributions
licensed by A for any given g, i.e.,

fl’A,e={P:P(vlu)21—~e if u-»)veA} 4

A conditional statement S: p — ¢ is said to be e-entailed
by A, if every distribution P e ®,. satisfies
Plglp)=1-0(e), (ie., for every §>0 there exists a
€>0 such that every P e P,, would satisfy
P{glp)y=1-29).

) Adams (1975) named this p-entailment. However, e-

In essence, this definition guarantees that an e-
entailed statement S is rendered highly probable whenev-
er all the defaults in A are highly probable. The connec-
tion between e-entailment and plausible conclusions, is
simply:

Flr iff (F —r)is e-entailed by A

3.2 Axiomatic Characterization

The conditional logic developed by Adams [1975] faith-
fully represents this semantics by qualitative inference
rales, thus facilitating the derivation of new sound sen-
tences by direct symbolic manipulations on A. The
essence of Adams’ logic is summarized in the following
theorem, restated for default theories in [Geffner and
Pearl 1988].

Theorem 1: Let 7 = <F, A> be a default theory where
F is a set of ground proposition formulas and A is a set of
default rules. r is a plausible conclusion of F in the con-
text of A, written F | r, iff r is derivable from F using
the following rules of inference:

Rule 1 (Defaults) (p - g)e A => pkgq

Rule 2 (Logic Theorems) p D g ==> pl ¢

Rule 3 (Cumulativity) pk g, plkr => (0 Ag)k 7
Rule 4 (Contraction) pl ¢, (p Aq)lzr => plr
Rule 5 (Disjunction) p kr, gk r => @ v )k r

Rule 1 permits us to conclude the consequent of a de-
fault when its antecedent is all that has been learned.
Rule 2 states that theorems that logically follow from a
set of formulas can be concluded in any theory containing
those formulas. Rule 3 (called triangularity in [Pearl
1988] and cautious monotony in [Lehmann and Magidor
1988]) permits the attachment of any established conclu-
sion (g) to the current set of facts (p), without affecting
the status of any other derived conclusion (r). Rule 4
says that any conclusion () that follows from a fact set
(p) augmented by a derived conclusion (g) also follows
from the original fact set alone. Finally, rule 5 says that a
conclusion that follows from two facts also follows from
their disjunction.

Some Meta-Theorems

T-1 (Logical Closure) p lz g, p Aq D7 => plr
T-2 (Equivalent Contexts) p =q,pkr => gk r
T-3 (Exceptions) p Aghkr,phk—r => pk —g

entailment better serves to distinguish this from weaker forms of
probabilistic entailment, Section 4.

T-4 (Right Conjunction) p 7, plkq ==> pl g ar



Some Non-Theorems:
pog.9kr=>pkr
(Left Conjunction) phkr,gkr=>paqglr

(Transitivity)

p }"A' F==> —r l‘A‘ —p
(Rational Monotony)
Pk r,NOT(pk—q) =>parqhkr

(Contraposition)

This last property (similar to CV of conditional logic)
has one of its antecedents negated, hence, it does not yield
new consequences from A. It is, nevertheless, a desirable
feature of a consequence relation, and was proposed by
Makinson as a standard for nonmonotonic logics [Leh-
mann and Magidor 1988]. Rational monotony can be esta-
blished within probabilistic semantics if we interpret
p —» g as an OCF constraint x(gl1p) < x(—g |p).

The reason transitivity, pogitive conjunction, and
contraposition are not sanctioned by the e-semantics is
clear: There are worlds in which they fail. For instance,
transitivity fails in the penguin example — all penguins
are birds, birds typically fly, yet penguins do not. Left
conjunction fails when p and ¢ create a new condition
unshared by either p or g. For example, if you marry
Ann (p) you will be happy (r), if you marry Nancy (g)
you will be happy as well (), but if you marry both
(p A q), you will be miserable (—r). Contraposition fails
in situations where —p is incompatible with —». For ex-
ample, let p — r stand for Birds — Fly. Now imagine a
world in which the only nonflying objects are a few sick
birds. Clearly, Bird — Fly holds, yet if we observe a
nonflying object we can safely conclude that it is a bird,
hence —r — p, defying contraposition.

Theorem 2 (A-monotonicity): The inference system
defined in Theorem 1 is monotonic relative to the addition
of default rules, i.e.,

if plkr and AcA’, then ph r

The proof follows directly from the fact that Py . < Py ¢
because each default statement imposes a new constraint
on %4 . Thus, the logic is nonmonotonic relative to the
addition of new facts (in /') and monotonic relative to the
addition of new defaults (in A). Full nonmonotonicity will
be exhibited in Section 4, where we consider weaker
forms of entailment.

3.3 Consistency and Ambiguity

An important feature of the system defined by Rules 1-5
is its ability-to-distinguish-theories portraying inconsisten-
cies (e.g., <p —¢,p — —q>), from those conveying

ambiguity (e.g., <p(a@)agqg(a),p —=r,q ——r>, and
those conveying exceptions (e.g.,

<pla)rqa),p > —qg>).

Definition: A is said to be e-consistent if P, . is non-
empty for every € > 0, else, A is e-inconsistent. Similarly,
a set of default statements {S,} is said to be e-consistent
with Aif A L {S,} is e-consistent,

Definition: A default statement S is said to be ambigu-
ous, given A, if both § and its denial are consistent with
A.

Theorem 3 (Adams, 1975): - If A is e-consistent, then a
statement § :p — ¢ is e-entailed by A iff its denial
§’:p —>— ¢ is e-inconsistent with A,

In addition to Rules 1-5 of Theorem 1, the logic also
possesses a systematic procedure for testing e-consistency
(hence, e-entailment), similar to the method of truth-table
proofs in propositional calculus.

Definition: Given a truth-valuation ¢, a default statement
P —> q is said to be verified under ¢ if ¢ assigns the value
Ttobothp and g. p — g is said to be falsified under ¢ if
p is assigned a 1 and ¢ is assigned a 0.

Theorem 4 (Adams, 1975): Let A be a finite set of de-
fault statements. A is e-consistent iff for every non-empty
subset A" of A there exists a truth-valuation ¢ such that no
statement of A” is falsified by ¢ and at least one is verified
under ¢.

When A can be represented as a network of default
rules, the criterion of Theorem 4 translates into a simple
graphical test for consistency:

Theorem 5 (Pearl, 1987a): Let A be a default network,
Le., a set of default statements p — ¢ where both p and
g are atomic propositions (or negation thereof). A is con-
sistent iff for every pair of conflicting arcs p; — ¢ and
P2—>—q

1. pyand p, are distinct, and

2. There is no cycle of positive arcs that embraces both
p1and p,.

Theorem 5 generalizes Touretzky’s (1986) consisten-
cy criterion to networks containing cycles as well as arcs
emanating from negated proposition, (e.g., —p — g ).




3.4 Illustrations

To illustrate the power of € -semantics and, in particular,
the syntactical and graphical derivations sanctioned by
Theorems 1, 3 and 5, consider the celebrated ‘‘Penguin
triangle”’ of Figure 1.

Fly (f)

Bird (b)

Penguin (p)

Tweety
Figure 1

T comprises the sentences:

F = {Penguin (Tweety), Bird (Tweety)},

A= (Penguin — —fly, Bird — Fly, Penguin — Bird};

Although A does not specify explicitly whether penguin-
birds fly, the desired conclusion is derived in three steps,
using Rule 1 and 3 of Theorem 1:

1. Penguin (Tweety) |z —Fly (Tweety) (from Rule 1)

2. Penguin (Tweety) |z Bird (Tweety) (from Rule 1)

3. Penguin (Tweety), Bird (Tweety) |z —Fly (Tweety)
(Applying Rule 3 to lines 1, 2)

Note that preference toward subclass specificity is main-
tained despite the defeasible nature of the rule
Penguin — Bird, which admits exceptional penguins in
the form of non-birds.

We can also derive this result using Theorems 3 and
4 by showing that the denial of the conclusion
p Ab —>— f is e-inconsistent with

A={p > =f,b>f,p—>b}.

Indeed, no truth-valuation of {p,b,f} can verify any
sentence in

AN={p>—f,p>b,parb-f)

Applying theorem T-3 to the network of Figure 1
yields another plausible conclusion, Bird — — Penguin,
stating that when one talks about birds one does not have
penguins in mind, i.e., penguins are exceptional kind of
birds. It is a valid conclusion of A because every P in
Py, must yield P(p 1b) =0 (g). Of course, if the state-
ment Bird — Penguin is artificially added to A, incon-
sistency results; as € diminishes below a certain level (1/3
in our case), P, . becomes empty. This can be predicted
from purely topological considerations (Theorem 5),
since adding the arc Bird — Penguin would create a cy-
cle of positive arcs embracing “‘bird”’ and ‘penguin’’,
and these sprout two conflicting arcs toward ‘‘fly’.
Moreover, Theorem 3 implies that if the network be-
comes inconsistent by the addition of S then that network
e-entails its denial, §’. Hence, the network of Figure 1 ¢-
entails Bird — —Penguin. By the same graphical
method one can easily show that the network also e-
entails the natural conclusion, Fly -» — Penguin. This
contraposition of Penguin > — Fly is sanctioned only
because the existence of flying objects that are not
penguins (i.e., normal birds) is guaranteed by the other
rules in A,

4. The Adventurous Shell

The preceding adaptation of Adams’ logic of conditionals
yields a system of defeasible inference with rather unique
features:

1. The system provides a formal distinction between ex-
ceptions, ambiguities and inconsistencies and offers
systematic methods of maintaining consistency in da-
tabases containing defaults.

2. Multiple extensions do not arise and preferences
among arguments (e.g., toward higher specificity) are
respected by natural deduction.

3. There is no need to specify abnormality relations in
advance (as in circumscription); such relations (e.g.,
that penguin are abnormal birds) are automatically
inferred from the input.

However, default reasoning requires two facilities:
one which forces conclusions to be retractable in the light
of new refuting evidence; the second which protects con-
clusions from retraction in the light of new but irrelevant
evidence. Rules 1-5 excel on the first requirement but fail
on the second (The opposite is true in default logics). For

without falsifying at least one other sentence.

instance;, in-the example Fig. 1, if we are told that Tweety
is also a blue penguin, the system would retract all previ-



ous conclusions (as ambiguous), even though there is no
rule which in any way connects color to flying.

The reason for this conservative behavior lies in our
insistence that any issued conclusion attains high proba-
bility in all probability models licensed by A and one such
model reflects a world in which blue penguins do fly. It is
clear that if we want the system to respect the communi-
cation convention that, unless stated explicitly, properties
are presumed to be irrelevant to each other, we need to
restrict the family of probability models relative to which
a given conclusion must be checked for soundness. In
other words, we should consider only distributions which
minimize dependencies relative to A, i.e., they embody
dependencies which are absolutely implied by A, and
none others.

4.1 The Maximum-Entropy (ME) Approach

A traditional way of defining 2 minimal dependency ex-
tension to a given set of constraints is to invoke the
maximum-entropy (ME) method [Jaynes 1979]. The
method amounts to selecting from 2,,. a single-
distribution, P}, ., defined by

HPp)ZH®P) VP e Py,

where H (P ) is the entropy function
H[PwW)]=-Y, P(w)logP(w)

The definition of entailment would then invoke P}  in-
stead of P, ., and would yield:

Definition: A theory T = <F, A> weakly-entails a con-
clusion 7, written F |2 7, iff

imPy  (riF)=1.
e—0

e-entailment clearly subsumes weak entailment, because
Pre€ Py

When applied to small default system, the ME
method yields patterns of reasoning which are rather per-
vasive in common discourse. For example, if a theory T
involves only three primitive propositions p, ¢, and 7, the
ME approach gives rise to the following patterns of rea-
soning:

(1) Accepting Irrelevant Properties (Strengthening
the Antecedents)

If A={gq—r}, then gaplk r

(2) Mediated Inheritance (Weak Transitivity)

If A={p —>q,q—>r), then pk

(3) Left Conjunction

If A={p —>r,q—>r), then paghk r

(4) Contraposition

If A={p—>r)then —rl —p

Applying the ME principle to larger systems reveals
intriguing phenomena and challenging possibilities. For
example, if the link in Figure 1 between Penguin and
Bird is mediated by an intermediate property, say Winged
animal, the conclusion —Fly (Tweety) still follows from
F = {Penguin(Tweety), Bird (Tweety)}. In other words,
the intermediate property seems not to weaken the cumu-
lativity rule which gives priority to subclasses over su-
perclasses.  Strangely, however, the conclusion
Bird(Tweety) no longer follows from F =
{Penguin (Tweety)}. Two competing arguments (paths)
now lead from Penguin to Bird; transitivity sanctions the
path Penguin — Winged animal — Bird, and contrapo-
sition sanctions Penguin —» —Fly — —Bird. As a result,
Tweety’s "birdness” becomes ambiguous.

4.2 Dialectic Approaches

The ME approach has several shortcomings, one being its
improper handling of causation [Hunter 1988, Pearl
1988], the second being its computational complexity; no-
body yet has been able to extract from this semantics a
complete system of qualitative axioms similar to those en-
capsulating e-semantics.

Dialectic approaches attempt to supplement the pro-
babilistic interpretation of defaults with a set of assump-
tions about conditional independence drawn on the basis
of the syntactic structure of A. For a default p — g, these
approaches assume the probability of ¢ to be high not
only when p is all that is known, but also in the presence
of an additional body of evidence which does not provide
an argument against ¢. This interpretation is closer in
spirit to the syntactic approaches to non-monotonic rea-
soning proposed by Reiter [1980] and McDermott and
Doyle [1980], which allow to infer ¢ from p in the ab-

sence of ‘proofs’ for — q.



In the systems reported in [Geffner and Pearl 1987)
and [Geffner 1988] these ideas take the form of an addi-
tional inference rule, similar to:

Rule 6: Irrelevance
If p—>reAand INg,—rlp), thenp agkr,

where the predicate I, (g, —rlp), which reads: "g is ir-
relevant to —r given p," expresses the conditional in-
dependence P (rip)=P(rip,q).

The mechanism for evaluating the irrelevance predi-
cate Ia(g, —rlp) appeals to the set \;/ of wifs formed by
converting each default p —» ¢ in A into a corresponding
material implication p > ¢. In essence, ¢ is then said to
be relevant to — r given p, if there is a a set " of impli-
cations in Wy which permit an argument for —r to be
constructed, i.e if V,p,qF—r, with the set of wifs
Y U p, g being logically consistent. The set y is called
the support of the argument for — r. If ¢ is not relevant
to —r given p, then g is assumed to be irrelevant to —r
in that context, and I, (g, — r|p) thus holds.

This simple extension permits us to infer, for in-
stance, that red birds are likely to fly given a default stat-
ing that birds fly, as ‘redness’ does not induce any argu-
ment in support of not flying. Further refinements are in-
stalled to insure that arguments for — r that are blocked
by p (or its consequences) do not bear on the predicate
I,. With this refinement, most examples analyzed in the
literature yield the expected results.

Dialectic approaches constitute an alternative way of
extending the inferential power of the core set of proba-
bilistic rules. An advantage of these approaches over
those based on maximum entropy is intelligibility: deriva-
tions under this approach can usually be justified in a
more natural fashion. On the other hand, these ap-
proaches lack the foundational basis of a principle like
maximum entropy, making it difficult to justify and make
precise the form these extensions should take.

5. Do People Reason with Extreme
Probabilities (or Lotteries and
other Paradoxes of Abstraction)

Neufeld and Poole [1988] have raised the following ob-
jection (so-called "Dingo Paradox™) in connection with
the theorem of exceptions (T-3). We saw that the
penguin triangle (Fig. 1) sanctions the conclusion
Bird — — Penguin by virtue of the fact that penguins are
an exceptional-class-of birds (relative-to-flying). Similar-
ly, if "sandpipers" are birds that build nests in sand, we

would conclude Bird — — Sandpiper. Continuing in this
manner through all types of birds, and assuming that
every subclass of birds has a unique, distinguishing trait,
we soon end up with the conclusion that birds do not exist
— birds are not penguins, not sandpipers, not canaries...,
thus ruling out all types of birds.

This paradox is a variant of the celebrated Lottery
Paradox [Kyburg 1961]: Knowing that a lottery is about
to have one winner is incompatible with common beliefs
that each individual ticket is, by default, a loser. Indeed,
the criterion provided by e-semantics would proclaim the
overall set of such statements e-inconsistent, since the set
of conditional probabilities

P(Loser (x)! Ticket(x))21-¢ x=1,2,...N

cannot be satisfied simultaneously for € < 1/N. Perlis
[1987] has further shown that every default logic is bound
to suffer from some version of the lottery paradox if we
insist on maintaining deductive closure among beliefs.

Are these paradoxes detrimental to e-semantics, or to
nonmonotonic logics in general? I would like to argue
that they are not. On the contrary, I view these paradoxes
as healthy reminders that in all forms of reasoning we are
dealing with simplified abstractions of real-world
knowledge, that we may occasionally step beyond the
boundaries of one abstraction and that, in such a case, a
more refined abstraction should be substituted.

Predicate logic and probability theory are two such
abstractions, and e-semantics offers an abstraction that is
somewhere between logic and probability, It requires less
input than probability theory (e.g., we need not specify
numerical probabilities), but more input than logic (e.g.,
we need to distinguish between defaults, @ — b, and
facts, — a v b). Itis more conservative than logic (e.g., it
does not sanction transitivity), but more adventurous than
probability theory (e.g., it admits conclusions even if their
probabilities approach 1 very slowly, such as = (1 —g)",

Each  abstraction constitutes an  expedient
simplification of reality, tailored to serve a specialized set
of tasks. Each simplification is supported by a different
symbol processing machinery and by a set of norms, to
verify whether the simplification and its supporting
machinery are still applicable. The lottery paradox
represents a situation where e-semantics no longer offers
a useful abstraction of reality. Fortunately, however, the
consistency norms help us identify such situations in ad-
vance, and alert us (in case our decisions depend critically
on-making extensive-use-of the disjunction-axiom)-that-a
finer abstraction should be in order (perhaps OCF or full-



fledged probability theory).

Probabilities that are infinitesimally close to 0 and 1
are very rare in the real world. Most default rules used in
ordinary discourse maintain a non-vanishing percentage
of exceptions, simply because the number of objects in
every meaningful class is finite. Thus, a natural question
to ask is, why study the properties of an abstraction that
applies only to extreme probabilities? Why not develop a
logic that characterizes moderately high probabilities, say
probabilities higher than 0.5 or 0.9 — or more ambitious-
ly, higher than o, where o is a parameter chosen to fit the
domains of the predicates involved? Further, why not
develop a logic that takes into account utility information,
not merely probabilities, thus formalizing reasoning about
actions, in addition to beliefs [Doyle 1988]?

The answer is that any such alternative logic would
be extremely complicated; it would need to invoke many
of the axioms of arithmetics, and would require more in-
formation than is usually available. Almost none of the
patterns of reasoning found in common conversation will
remain sound relative to such semantics. Take, for exam-
ple, the logic of "majority,"” namely, interpreting the de-
fault rule @ — b to mean "The majority of a s are b ’s,"
or P (b la) > 0.5. Only the first two axioms of Theorem 1
remain sound in this interpretation. Even the cumulativity
axiom, which is rarely disputed as a canon of default rea-
soning, is flatly violated by some proportions (e.g.,
@ Aq)p=51%, p Ar)lp =51%, —q A—r =D, giv-
ing( Ag Ar)ip Aq)=2%).

How, then, do people reason qualitatively about pro-
perties and classes, proportions and preferences? It ap-
pears that, if the machinery invoked by people for such
tasks stems from approximating numerical information by
a set of expedient abstractions, then the semantics of ex-
treme probabilities is one of the most popular among
these abstractions. The axioms governing this semantics
(ie., Rules 1-5, Theorem 1) appears to have been
thoroughly entrenched as inference rules in plausible rea-
soning. For example, from the sentences "Most students
are males” and "Most students will get an A," the cumula-
tivity axiom would infer "Most male students will get an
A." This conclusion can be grossly incorrect, as shown in
the example above, yet it is a rather common inference
made by people, given these two inputs. Separating utili-
ties from probabilities is another useful abstraction, com-
monly used in reasoning about actions.

Important information about the logic chosen by peo-
ple to reason-about proportions-and-actions-is provided by
many so called "paradoxes" of statistics. Take, for in-

stance, the celebrated Simpson’s Paradox [Simpson
1951]. It involves a hypothetical test of the effectiveness
of a certain drug on a population consisting of males and
females, and the numbers are contrived so that this drug
seems to work on the population as a whole, but it has an
adverse effect on males and an adverse effect on females.
A person’s first reaction would normally be that of
surprise. Only when we look at the numbers and agree to
interpret the phrase "has a positive effect” as a statement
about an increase in the ratio of recovery to non-recovery
cases do we begin to see that the calculus of proportions
clashes with our intuitive predictions. The surprise with
which people react to Simpson’s Paradox suggests that
the disjunction axiom (Rule 5) has been adopted as one of
the canons of plausible reasoning. While this axiom is
not sound relative to the semantics of increased propor-
tions (which is also the semantics of "support" as in Eq.
(1)), it is sound relative to the e-semantics. In conclusion,
it appears that the machinery of plausible reasoning is
more in line with the rules of "almost-all” logic than with
those of "support” or "majority" logics.

6. Relations to Possible Worlds Approaches
6.1 The Most Probable World Approach

A straightforward way of relating probabilistic methods to
possible worlds approaches is to assume that we have a
probability function P defined on the set W of possible
worlds, and that at any state of knowledge, beliefs are ful-
Iy committed to a world that has the highest probability.
Formally, let W* < W be the set of most probable worlds,

W =W IPW)Y2PW)Vwe W},

A proposition A is believed if A holds in some w* € W".
To maintain coherence, we also demand that any set of
propositions that are simultaneously believed, must hold
in the same w". Non-monotonic behavior is obtained by
conditionalization; given a body of evidence (facts) e, the
probability function P (w) shifts to P(wle) and this
yields a new set of most probable worlds

W.,={w"IPWw"le)2P(wle)Vwe W}

which, in tum, results in a new set of beliefs,

This approach was explored in [Pearl 1987b] where a
world was defined as an assignment of values to a set of
interdependent variables (e.g., assignment of TRUE -
FALSE values to a set of diseases in medical diagnosis),
and the worlds in W* were called most probable explana-
tions (MPE). It was shown that the task of finding a most
probable-explanation-te-a-body-of -evidence-is-no-mere
complex than that of computing the probability of a single



proposition. In singly-connected networks (directed trees
with unrestricted orientation) the task can be accom-
plished in linear time, using a parallel and distributed
message-passing process. In multiply-connected net-
works, the problem is NP-hard, however, clustering, con-
ditioning and stochastic simulation techniques can offer
practical solutions in reasonable time if the network is re-
latively sparse. Applications to circuit diagnosis are
described in [Geffner & Pearl 1987, Pearl 1988].

The MPE approach provides a bridge between proba-
bilistic reasoning and nonmonotonic logic. Like the
latier, the method provides systematic rules that lead from
a set of factual sentences (the evidence) to a set of conclu-
sion sentences (the accepted beliefs) in a way that need
not be truth-preserving. However, whereas the input-
output sentences are categorical, the medium through
which inferences are produced is numerical, and the
parameters needed for complete specification of P(w)
may not be readily available. In modeling digital circuits
this problem is not too severe, because all internal rela-
tionships are provided with the system’s specifications.
However, in medical diagnosis, as well as in reasoning
about everyday affairs, the requirement of specifying a
complete probabilistic model is too cumbersome and can
be justified only in cases where critical decisions are at
stake.

6.2 Relation to Preferential Model Semantics

The preferential models approach to nonmonotic reason-
ing [Shoham 1987] leaves room for widely different in-
terpretations of defaults, ranging from the adventurous to
the conservative. The adventurous approach takes the
statement A — B to mean: Every world where A AB
holds has a prima facie preference over the corresponding
world where A A — B holds, everything else being equal
(the terms "world" and "models” are used interchangeably
in the literature). Conflicts are later resolved by extra log-
ical procedures [Selman and Kautz 1988]. The conserva-
tive school [Lehmann and Magidor 1988] [Delgrande
1988] takes A — B to be a faint reflection of a pre-
existing preference relation, saying merely: B holds in all
the most preferred worlds among those compatible with
A. Whether a collection of such faint clues is sufficient to
reveal information (about the preference relation) that en-
tails a new statement x — y, depends on the type of res-
trictions the preference relation is presumed to satisfy.

Recently, Lehmann and Magidor [1988] have
identified a restricted class of preferential models, whose
entailment relation satisfies a reasonable set of rationality

that a state of higher rank is preferred to a state of lower
rank. Lehmann and Magidor proved that the entailment
relation induced by this class of ranked models coincides
exactly with Adams’ e-entailment relation defined in Eq.
4) and, of course, its properties coincide with Rules 1
through 5 of Theorem 1.

It is remarkable that two totally different interpreta-
tions of defaults yield identical sets of conclusions and
identical sets of reasoning machinery. (Note that, even if
we equate rank with probability, the interpretation
P(BIA)> 1~ ¢is different from the preferential interpre-
tation, because, for any finite €, the former permits the
most probable world of A to be incompatible with B).
Based on this coincidence, it is now possible to transport
shortcuts and intuitions across semantical lines. For ex-
ample, Theorem 3 establishes a firm connection between
preferential entailment and preferential consistency. Simi-
larly, Theorems 4 and 5 determine the complexity of
proving entailment in preferential models.
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