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Abstract 

We propose a norm of consistency for a 
mixed set X of defeasible and strict sen­
tences, based on a probabilistic interpre­
tation of these sentences. This norm es­
tablishes a clear distinction between knowl­
edge bases depicting exceptions and those 
containing outright contradictions. We 
then define a notion of entailment based 
also on probabilistic considerations and 
provide a characterization of the relation 
between consistency and entailment. 

We derive necessary and sufficient condi­
tions for consistency, and provide a simple 
decision procedure for testing the consis­
tency of X and identifying the inconsistent 
subset of sentences (in the case that X is in­
consistent). The same procedure can also 
be used to test whether a sentence is en­
tailed by X. Finally, it is shown that if 
the sentences in X are Horn clauses, con­
sistency and entailment can be tested in 
polynomial time. 

1 Introduction

There is a sharp difference between exceptions and 
outright contradictions. Two statements like "typ­
ically, penguins do not fly" and "red penguins can 
fly", can be accepted as a description of a world 
in which redness defines an abnormal type of pen­
guin. However, the statements "typically, birds fly" 
and "typically, birds do not fly" stand in outright 
contradiction to each other (unless birds are non ex­
istent). Whatever interpretation we give to "typi­
cally", it is hard to imagine a world containing birds 
in which both statements can hold simultaneously. 

"This work was supported in part by National Sci" 
ence Foundation grant #IRI-86-10155 and Naval Re­
search Laboratory grant #N00014-89-J-2007. 
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Yet, in spite of this clear distinction, there is no for­
mal treatment of inconsistencies in existing propos­
als for non-monotonic reasoning. 

Consider a database .:l containing the following 
sentences: "all birds fly", "typically, penguins are 
birds" and "typically, penguins don't fly". A cir­
cumscriptive theory ( [McCarthy, 86]) consisting of 
the sentences in .:l plus the fact that Tweety is a pen­
guin, will render the conclusion that either Tweety 
is a flying penguin (and therefore is an exception to 
the rule "typically, penguins don't fly"), or Tweety 
is an exception to the rule "typically, penguins are 
birds" and Tweety does not fly. A formalization of 
the database in terms of a default theory (see [Re­
iter, 80]) will render similar conclusions for our pen­
guin Tweety. Nevertheless, the above set of rules 
strike our intuition as being inherently wrong: if all 
birds fiy, there cannot be a nonempty class of ob­
jects (penguins) that are "typically birds" and yet 
"typically, don't fly". We cannot accept this data­
base as merely depicting exceptions between classes 
of individuals; rather, it would seems that there is 
no possible state of affairs in which this set of sen­
tences can hold simultaneously1• However, if we now 
change the first sentence of .:l from strict to defea­
sible (to read "typically, birds fly" instead of "all 
birds fly"), we are willing to cope with the apparent 
contradiction by considering the set of penguins as 
exceptional birds. This interpretation will remain 
satisfactory even if we made the second rule strict 
(to read "all penguins are birds"). Yet, if we further 
add to .:l the sentence "typically, birds are penguins" 
we are faced again with an intuitive inconsistency. 

This paper deals with the problem of formal­
izing, detecting and isolating such inconsistencies 
in knowledge bases containing both defeasible and 
strict information2• We will interpret a defeasible 
sentence such as "typically, if l/J then ¢" (written 

1 Provided that the set of penguins is nonempty.
2The consistency of systems with only defeasible sen­

tences is analyzed in [Adams, 75] and [Pearl, 87] .

In Proceedings, 5th Workshop on Uncertainty in AI, Windsor, Ontario, Canada, 134-141, August 1989.  
Also in M. Henrion, R.D. Shachter, L.N.  Kanal, and J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, 5, 
Elsevier Science Publishers B.V. (North Holland), 87-97, 1990. 
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tjJ - 1/J), as the conditional probability P(t/Jit/J) ;?: 
1-� , where � > 0 3• A strict sentence such as "if rp it 
must be the case that u" (written rp => u), will be in­
terpreted as the conditional probability P(ulrp) = 1. 
Our criterion for testing inconsistency translates to 
that of determining if there exists a probability dis­
tribution P that satisfies all these conditional prob­
abilities for all � > 0. Furthermore, to match our 
intuition that conditional sentences do not refer to 
empty classes, nor are they confirmed by merely "fal­
sifying" their antecedents, we also require that P be 
proper, i.e., that it does not render any antecedent as 
totally impossible. We shall show that these two re­
quirements properly capture our intuition regarding 
the consistency of conditionals sentences. 

We also define a notion of entailment in which 
plausible conclusions are guaranteed arbitrarily high 
probabilities in all proper probability assignments in 
which the defeasible premises have arbitrarily high 
probabilities and in which the strict premises have 
probabilities equal to one. A characterization of 
the relation between entailment and consistency is 
shown through the theorems of section 3. 

The paper is organized as follows: section 2 in­
troduces notation and some preliminary definitions. 
Consistency and entailment are explored in sec­
tion 3. An effective procedure for testing consistency 
and entailment is presented in section 4. Section 5 
contains illustrative examples, and in section 6 we 
summarize the main results of the paper. All proofs 
are given in the appendix. 

2 Notation and Preliminary 
Definitions 

We will use ordinary letters from the alphabet (ex­
cept d, s and x) as propositional variables. Let F 
be a language built up in the usual way from a fi­
nite set of propositional variables and the connec­
tives"-." and "V" (the other connectives will be used 
as syntactic abbreviations), and let the greek letters 
t/J, 1/J, rp, u stand for formulas of :F. 

Let tjJ and 1/J be two formulas in F. We will use a 
new binary connective "-" to construct a defeasi­
ble sentence tjJ _.. t/J, which may be interpreted as "if 
tP then typically t/J". The set of defeasible sentences 
will be denoted by D. Similarly, given rp, u in :F, the 
binary connective "=>" will be used to form a strict 
sentence cp => u, which is to be interpreted as "if cp 
then it must be the case that u"4• The set of strict 

3Intuitively we would like defeasible sentences to be 
interpreted as conditional probabilities with very high 
likelihood and � to be an infinitesimal quantity. For 
more on probabilistic semantics for default reasoning the 
reader is referred to [Pearl, 88]. 

4In the domain of non-monotonic multiple inheritance 
networks, the interpretation for the defeasible sentence 
1/J -+ ?/; would be "typically 1/J's are '1/;'s", while the inter­
pretation for the strict sentence 'f' =* rr would be "all 'f'1S 
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sentences will be denoted by S 5• We will use X to 
stand for the union of D and S and x, d, s as vari­
ables for sentences in X, D and S respectively. We 
will use the term conditional when talking about a 
sentence that can be either defeasible or strict. If 
x denotes a conditional sentence with antecedent cp 
and consequent t/J, then the negation of x, denoted 
by .- x, is defined as a conditional with antecedent 
cp and consequent -.1/J. Finally, the material coun­
terpart of a conditional sentence with antecedent ¢ 
and consequent 1/J is defined as the formula tjJ ::> t/J 
(where "::>" denotes material implication). 

Given a factual language :F, a truth assignment 
for :F is a function t, mapping the sentences in :F 
to the set {1, 0}, {1 for True and 0 for False), such 
that t respects the usual boolean connectives 6• A 
sentence x E X with antecedent tjJ and consequent 
t/J will be verified by t, ift(t/J) = t(t/J) = 1. Ift(t/J) = 
1 but t(t{J) = O, the sentence x will be falsified by 
t. Finally, when t(tjJ) = 0, x will be considered as 
neither verified nor falsified. 

Definition 1 (Probability assignment). Let P be 
a probability function on truths assignments, such 
that L:;j P(tj) = 1. We define a probability assign­
ment P on a sentence tjJ - 1/.J from D as: 

(1) 

where ft, . . . , t; are all the possible truth assignments 
to the propositional variables in :F and P(tj) is the 
probability assigned to ti. We assign probabilities 
to the sentences in S in exactly the same fashion. P 
will be considered to be proper, if the denominator 
of Eq (1) is non-zero for every sentence inDUS. 

The definition of probability assignment above, 
attaches a conditional probability interpretation 

P(t/Jit/J) = 
P(t/J" ¢) 

P(tjJ) 
(2) 

to the sentences in X. Eq. (1) states that the prob­
ability of a conditional sentence x with antecedent 
tjJ and consequent t/J is equal to the probability of 
x being verified (i.e. tj(tP t\ t/J) = 1), divided by the 
probability of its being either verified or falsified (i.e. 
tj(tP) = 1). 

Up to this point the only difference between de­
feasible sentences and strict sentences was syntactic. 
They were assigned probabilities in the same fash­
ion and they were verified and falsified under the 
same truth assignments. Their differences will be­
come clear in the next section, and it rests upon the 
way they enter the definition of consistency. 

are rr's". 
6Note that both "-+" and"=*" can occur only as the 

main connective. 
�!Note that if there are n propositional variables in :F, 

there will be 2n different truth assignments for :F. 



3 Probabilistic Consistency 
and Entailment 

In all theorems and definitions below, we will con­
sider that the language :F is fixed, and d1, s1, :1/ 
will stand for new defeasible, strict and conditional 
sentences respectively, with antecedents and conse­
quents in :F. 
Definition 2 (Probabilistic consistency) Let D and 

S be sets of defeasible and strict sentences respec­
tively, constructed from formulas in :F. We say 
that X = D U S is probabilistically consistent (p­
consistent) if, for every e: > O, there is a proper 
probability assignment P such that P(d) � 1 - e 
for all defeasible sentences din D, and P(s) = 1 for 
all strict sentences s in S. 

Intuitively, consistency means that it is possible 
for all defeasible sentences to be as close to abso­
lute certainty as desired, while the probability as­
signment for strict sentences is fixed at one (i.e., we 
have absolute certainty about the strict sentences). 
Another way of formulating consistency is as follows: 
consider a constant e > 0 and let Px e stand for the 
set of probability distributions proper for X such 
that if P E Px,e then P(d) � 1- e and P(s) = 1 
for all defeasible sentences d E D and all strict sen­
tences s E S. Consistency guarantees that Px,e is 
non-empty for every e > 0. 

Before developing a syntactical test for consis­
tency (Theorem 1), we need to define the concepts 
of tolerance and confirmation. 

Definition 3 ( Tolerance) Let x be a sentence in X 
with antecedent ¢; and consequent 'tj;. We say that 
x is tolerated by the rest of the sentences in X, if 
there exists a truth assignment t such that the for­
mula¢; 1\ 1/J 1\ XM is satisfied by t where XM denotes 
the conjunction of the material counterparts of the 
sentences in X. 

Thus, x is tolerated by a set of conditional sentences 
X, if there is a truth assignment t such that x is 
verified while no sentence in X is falsified by t. 

Definition 4 (Confirmation) We will say that a 
non-empty set of sentences X = DUS is confirmable 
when: 

1. If D is non-empty, at least one sentence d E D 
is tolerated by the rest of the sentences in X. 

2. If D is empty, each sentence s in S is tolerated 
by the rest of the sentences in S. 

Theorem 1 Let X = D U S be a non-empty set 
of defeasible and strict sentences. X is p-consistent 
if and only if every non-empty subset of X is con­
firmable. 

Theorem 1 yields a simple decision procedure for 
determining p-consistency and identifying the incon­
sistent set in X (see section 4). 

Before turning our attention to issues of entailing 
new conditional sentences from a consistent data­
base, we need to make explicit a particular form of 
inconsistency: 

Definition 5 (Substantive inconsistency) Let X be 
a p-consistent set of conditional sentences, and let 
x1 be a conditional sentence with antecedent ¢;. We 
will say that X U { x1} is substantively inconsistent 
if XU {True -t ¢} is p-consistent but XU {.r1} is 
p-inconsistent. 

Non-substantive inconsistency occurs whenever the 
antecedent of a conditional sentence has probability 
equal to zero in all the probabilistic models support­
ing the sentences in a consistent set X. It will be­
come apparent from the theorems to follow, that a 
set XU { x} is non-substantively inconsistent iff both 
X U { x} and X U {"" x} are inconsistent. 

The concept of entailment introduced below is 
based on the same probabilistic interpretation for 
defeasible and strict sentences used in the definition 
of p-consistency and on the requirements of proper­
ness for their probabilistic models. Intuitively, we 
want p-entailed conclusions to receive arbitrarily 
high probability in all proper probability distribu­
tions in which the defeasible premises have also ar­
bitrarily high probability, and in which the strict 
premises have probability equal to one. 

Definition 6 (p-entailment). Given a p-consistent 
set X of conditional sentences, X p-en tails d' (writ­
ten X FP d') if: 

1. There exists a non-empty set of probability dis­
tributions which are proper for X U { d'} and 

2. For all e > 0 there exists 6 > 0 such that for 
all probability assignments P E Px,6 which are 
proper for d1, P(d1) � 1- t:. 

Theorem 2 relates the notions of entailment and 
consistency: 
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Theorem 2 If X is p-consistent, X p-entails d' if 
and only if XU{� d1} is substantively inconsistent. 

Definition 6 and Theorem 3 below characterize the 
conditions under which conclusions are guaranteed 
not only very high likelihood but absolute certainty. 
We call this form of entailment strict p-entailment: 

Definition 7 (Strict p-entailment). If X is p­
consistent, then X strictly p-entails s' (written 
X 1=. s1) if: 

1. There exists a non-empty set of probability dis­
tributions which are proper for XU {s1} and 

2. For all e > 0, every probability assignment 
P E Px,e that is proper for X and s1 satisfies 
P(s1) = 1. 

Theorem 3 If X = DuS is p-consistent, X strictly 
p-entails </> :::::> tjJ if and only if there exists a subset 
S' of S such that S U {True -t rjJ} is p-consistent 
and ¢ :::::> •1/J is not tolerated by S'. 



Note that strict p-entailment subsumes p­
entailment, i.e., if a conditional sentence is strictly 
p-enta.iled then it is also p-entailed. Also, to test 
whether a conditional sentence is strictly p-entailed 
we need to check its status only with respect to the 
strict set in X. This confirms the intuition that 
we can not deduce "hard" rules from "soft" ones. 
However, strict p-entailment is different than logical 
entailment because the requirements of substantive 
consistency and properness for the probability distri­
butions distinguishes strict sentences from their ma­
terial counterpart. For example, consider the data­
base X = S = {True =} •a} which is clearly p­
consistent. While X logically entails a :> b, X does 
not strictly p-entails a =} b, since the antecedent a 
is always falsified. 

For completeness, we now present two more the­
orems relating consistency and entailment. Similar 
versions of these theorems, for the case of purely 
defeasible sentences, first appeared in [Adams, 75]. 
They follow from previous theorems and definitions. 

Theorem 4 If X does not p-entail d' and XU {d'} 
is substantively inconsistent, then for all e > 0 there 
exists a probability assignment P E Px,. which is 
proper for X and d1 such that P(d') � e. 

Theorem 5 If X = D US is p-consistent, then 

• It cannot be the case that both d' and - d' are 
substantively inconsistent with respect to X. 

• It cannot be the case that both s1 and "' s1 are 
substantively inconsistent with respect to any 
subset of S. 

4 An Effective Procedure for 
Testing Consistency 

A procedure to test the consistency of a database 
X = DuS in accordance with Theorem 1 will consist 
of two phases: In the first phase, until D is empty, 
we repeatedly remove a sentence from D that is tol­
erated by the rest of the sentences in D U S. In 
the second phase we must test whether every sen­
tence in S is tolerated by the rest of the sentences in 
S (without removing any sentence). If both phases 
can be successfully completed X is consistent, else 
X is inconsistent. 

The same procedure can be used for entailment, 
since to determine whether a defeasible sentence d' 
is entailed by X we need only test the consistency 
of XU{ ...... d'} and XU {d'} (to make sure that the 
former is substantively inconsistent). The following 
theorem and the correctness of the procedure out­
lined above are proven in the appendix. 

Theorem 6 The worst case complexity of testing 
consistency (or entailment) is bounded by [PS x 
( lPf. + jS\)1 where \DI and lSI are the number of de­
feasible and strict sentences respectively, and PS is 
the complexity of propositional satisfiability for the 
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material counterpart of the sentences in the data­
base. 

Although the general satisfiability problem is NP­
complete, if the sentences in X are restricted to be 
Horn clauses then PS == O(N), where N is the total 
number of occurrences of literals in X [Dowling et. 
al., 84]. Thus, for the case of Horn clauses, testing 
consistency is polynomial. 

5 Examples 

Example 1 On birds and penguins. 
We begin by testing the consistency7 of the data-

base presented in the introduction: 

1. b => f ("all birds fly"). 
2. p ___. b ("typically, penguins are birds") 
3. p ___. •f ("typically, penguins don't fly") 

Clearly none of the defeasible sentences in the ex­
ample can be tolerated by the rest. If for exam­
ple t(p) == t(b) = 1 (testing whether sentence (2) 
is tolerated), the assignment t(f) = 1 will falsify 
sentence {3), while the assignment t(f) == 0 will fal­
sify sentence (1). A similar situation arises when 
we check if sentence (3) can be tolerated. Note 
that changing sentence ( 1) to be defeasible, ren­
ders the database consistent: b - f is tolerated by 
sentences {2) and (3) through the truth assignment 
t(b) == t(f) == 1 and t(p) = 0, while the remain­
ing sentences tolerate each other. If we further add 
to this modified database the sentence p A b -+ /, 
we get an inconsistent set, thus showing (by Theo­
rem 2) that p A b --+ •f is p-entailed, as expected 
("typically penguins_birds don't fly"). The set will 
become inconsistent again by adding the sentence 
b - p ("typically, birds are penguins"), in confor­
mity to the graphical criteria of [Pearl, 87]. 

Example 2 On quakers and republicans. 
Consider the following set of sentences: 

1. n--+ r ("typically, Nixonites8 are republicans") 
2. n--+ q ("typically, Nixonites are quakers") 
3. q =} p ("all quakers are pacifists") 
4. r =} •P ("all republicans are non-pacifists") 
5. p ___. c ("typically, pacifists are persecuted") 

Sentence (5) is tolerated by all others, but the re­
maining sentences (1)-(4) are not confirmable. Thus 
this set of sentences is inconsistent. Note that The­
orem 1 and the procedure outlined in the previous 
section not only provide a criteria to decide whether 
a database of defeasible and strict information is in­
consistent, but also identify the offending set of sen­
tences. 

We can modify the above set of sentences to be: 

7The terms consistency and p-consistencywill be used 
interchangeably. 

8 "Nixonites" are members of R. Nixon's family. 



1. n => r ("all Nixonites are republicans") 
2. n => q ("all Nixonites are quakers") 
3. q --+ p ("typically, quakers are pacifists") 
4. r --+ -,p ("typically, republicans are non­

pacifists") 
5. p--+ c ("typically, pacifists are persecuted) 

This database is consistent. There is an important 
difference between the former case and this one. If 
all quakers are pacifists and all republicans are non­
pacifists, our intuition immediately reacts against 
the idea of finding an individual that is both a quaker 
and a republican. On the other hand, this last set of 
sentences allows a "Nixonite" that is both a quaker 
and a republican to be either pacifist or non pacifist. 
Note that both w __. p and w --> ...,p are consistent so 
neither is p-entailed, and we can assert that the con­
clusion is ambiguous (i.e., we cannot decide whether 
a "Nixonite" is typically a "pacifist" or not). 

Finally, if we make (2) and (4) be the only strict 
rules, we get a database similar in structure to the 
example depicted by network r 6 in [Horty et. al., 
88]: 

1. n --+  r ("typically Nixonites are republicans") 
2. n => q ("<l:ll Nixonites are quakers") 
3. q __. p ("typically quakers are pacifists") 
4. r => -,p ("all republicans are non-pacifists") 
5. p __. c ("typically pacifists are persecuted) 

Not surprisingly, the criterion of Theorem 1 renders 
this database consistent and n --+ """'P is p-entailed in 
conformity with the intuition expressed in [Horty et. 
al., 88]. 

6 Conclusions 

The probabilistic interpretation of conditional sen­
tences yields a consistency criterion in line with 
human intuition. The criterion also identifies the 
smallest group of sentences that produces the incon­
sistency. A tight relation between entailment and 
consistency was established and an effective proce­
dure for testing both consistency and entailment was 
devised. 

Although our definition of p-entailment yields a 
rather conservative set of conclusions (e.g., one that 
does not permit chaining or contraposition (Pearl, 
88]), it constitutes a core of plausible consequences 
that should be common to every reasonable system 
of defeasible reasoning [Pearl, 89]. For example, the 
notion of p-entailment was shown to be equivalent 
to that of entailment in preferential models seman­
tics, whenever the sentences in X are purely defea­
sible (see [Lehmann et. al., 88]). Consequently, the 
decision procedure for both p-entailment and pref­
erential entailment should be identical (whenever S 
is empty). It is still interesting to compare our re­
sults and procedures with those obtained from pref-
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erential models semantics for databases containing a 
mixture of defeasible and strict sentences. 

Future work includes a graphical decision criterion 
for consistency in mixed inheritance networks (ex­
tending that of [Pearl, 87]), and an exploration into 
more powerful notions of entailment as suggested 
in [Pearl, 88]. 
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A Appendix: Theorems and Proofs 

Theorem 1 Let X = D U S be a non-empty set of defeasible and strict sentences constructed from the 
formulas in :F. X is p-consistent if and only if every non-empty subset of X is confirmable. 

Proof of the only if part: We want to show that if there exists a non-empty subset of X which is 
not confirmable, then X is not p-consistent. The proof is facilitated by introducing the notion of quasi­
conjunction ( [Adams, 75}): Given a set of defaults D = { ¢1 -+ 'lj;1, . .. , ¢., -+ 'lj;.,} the quasi-conjunction of 
D is the defeasible sentence, 

C(D) = [<;61 V ... V ¢.,]-+ [{4il ::> lj;I) A . . . A(¢., ::> 1/ln)] (3) 

The quasi-conjunction C(D) bears interesting relations to the set D. In particular, if D is confirmed by 
some assignment t, C(D) will be verified by t. This is so because the verification of at least one sentence of 
D by t guarantees that the antecedent of C(D) (i.e. the formula [¢1 V . . .  V ¢n] in Eq. (3)) is mapped into 
1, and the fact that no sentence in D is falsified guarantees that the consequent of C(D) (i .e. the formula 
[(¢1 :J lj;I) A . . . I\(¢., :J 'lj;.,)] in Eq. (3)) is also mapped into 1. Similarly, if at least one sentence of Dis 
falsified, its quasi-conjunction is also falsified. In this case, the consequent of C(D) is mapped into 0 since at 
least one of the material implication in the conjunction is falsified. Additionally, let Up(C(D)) = 1-P(C(D)) 
(the uncertainty of C( D)) where P( C( D)) is the probability assigned to the quasi-conjunction of D according 
to Eq. (1 ), then, it is shown in [Adams, 66] that the uncertainty of the quasi-conjunction of D is less or equal 
to the sum of the uncertainties of each of the sentences in D, i.e. Up(C(D)) � I;;(l- P(d;)) where the sum 
is taken over all d; in D. 

We are now ready to proceed with the proof. Let X' = D1 u S' be a subset of X where D' is a subset of 
D and S' is a subset of S. If X' is not confirmable then one of the following cases must occur: 
Case 1.- S' is empty and D' is not confirmable9• In this case, the quasi-conjunction for D' is not verifiable; 
from Eq. (1), we have that P(C(D')) = 0 and Up(C(D')) = 1. It follows, by the properties of the quasi­
conjunction outlined above that I;;(l- P(dD) over all di in D' is at least 1. If the number of sentences in 
D' is n > 1, then, 

n 

n- L P(d; )  > 1 (4) 
i=l 

1l 

L P(di) < n-1 (5) 
i=l 

which implies that at least one sentence in D' has probability smaller than 1- *· Hence, it is impossible to 
have P(d1) � 1- E:, for every E: > 0, for every defeasible sentenced' E D'. Thus, X is p-inconsistent. 
Case 2.- D' is empty. Proof by contradiction: assume that S1 is not confirmable and X' is p-consistent. If 
X1 is p-consistent, there must exist a probability assignment P satisfying definition 2, and a set T of truth 
assignments such that P(ti) > 0 for all t; in T. If S' is not confirmable, then either one of the following 
conditions must be true: there is at least one truth assignment t' in T such that t' falsifies a sentence s' in 

S', or there is a sentence s" in S' such that no truth assignment t" in T verifies s". The requirements of 
p-consistency state that for every sentence r.p � u inS, P(r.p � u) = 1. Thus, from Eq. (1), 

P()O�u) = 
P(tl)t1(r.pt\u)+ .. ·+P(tn)t.,(r.pt\u) = 1 

P(ti)ti('P) + • · · + P(tn)tn()O) (6) 

which immediately implies that, no sentence s' E S' can be falsified by any t E T. Hence, the first condition 
for the unconfirmability of S1 cannot occur. On the other hand, if there is no t" in T that verifies (nor 
falsifies) a sentences" inS', the denominator of P(s11) is 0 (see Eq.( 1)), and Pis not proper as required. 
Since by the definition of confirmability these two are the only conditions under which a set of purely strict 
sentences can be unconfirmable, we conclude that S' cannot be confirmable while X is p-consistent. 
Case 3.- Neither D' nor S' are empty and X' is not confirmable. That is, either D' is not confirmable 
or every t' in 1' that verifies a sentence in D' falsifies at least one sentence in S'. The first situation will 
lead us back to case 1 while the second to a contradiction similar to case 2 above. In either case, X is not 
p-consistent. 
Proof of the if part: Assume that every non-empty subset of X= DUS is confirmable. Then the following 
two constructions are feasible: 

9This ca.se is covered by Theorem 1.1 in [Adams, 75). 
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• We can construct a finite "nested decreasing sequence" of non-empty subsets of X, namely X 1, • • .  , Xm, 
(X == Xl), and an associated sequence of truth assignments t�, ... , tm confirming X11 . . •  1 Xm respec­
tively, with the following characteristics: 

1. X;+t is the proper subset of X; consisting of all the sentences of D; not verified by t;, for i = 
1, . . .  , m- 1. 

2. All sentences in Dm are verified by tm. 
• We can construct a sequence tm+t. ... , t,.. that will confirm Xm+l = S. That is, the sequence tm+t, . . .  1 tn 

will verify every sentence in S without falsifying any. We will associate with tm+t• ... , tn the "nested 
decreasing sequence" Xm+l• ... , Xn where X;+l is the proper subset of X; consisting of all the sentences 
of S; not verified by t; fori= m + 11 • • •  , n. 

We can now assign probabilities to the truth-assignments t1, • • •  , tn in the following way: 
For i = 1, . . .  , n - 1 

and 
P(t,.) := e;n-1 

(7) 

(8) 
We must show that, in fact, every sentence d in D obtains P( d) � 1 - e: and that every sentence s in S 

obtains P(s) = 1. Since every sentenced is verified in at least one of the member of the sequence X1, • . •  , Xn, 
using Eq. (1) we have that fori< n: 

e;i-1(1- e) P(d;) � e;i-1(1- e)+ e'(l- e:) + ... + en-1 = 
1- e: (9) 

and P(dn) = 1 if it is only verified by the last truth assignment when S is originally empty. Finally, since no 
sentence s in S is ever falsified by the sequence of truth assignments t11 • • •  , tn and each and every s in S is 
verified at least once, it follows from Eq (1) and the process by which we assigned probabilities to t � ,  . . .  1 tn 
that indeed P(s) = 1 for every s E S. 

Theorem 2 If X is p-consistent , X p-en tails d' if and only if X U {--.. d'} is substantively inconsistent. 

Proof of the only if part: (If X p-entails d' then XU{- d'} is substantively inconsistent.) Let X �P d'. 
t.From the definition of p-entailment, if X �P d' then for all e > 0 there exists a 6 > 0 such that for all 
P E 'Px,6 which are proper for X and d', P("' d') ::; e:. This means that for all proper probability assignments 
P for X and d' 10, the sentence "'"' d' gets an arbitrarily low probability whenever all defeasible sentences 
in X can be assigned arbitrarily high probability and all strict sentences in X can be assigned probability 
equal to 1. Thus X U {'""' d'} is substantively inconsistent. 
Proof of the if part: (If X U {"' d'} is substantively inconsistent then X p-en tails d'.) Let X U {"' d'} be 
substantively inconsistent. From Theorem 1, we know that there must be a subset X' of X U {,..., d'} that 
is not confirmable. Furthermore, since X is p-consistent, X' = X" U {- d'}. Let 'Ps stand for the set of 
probability distributions that are proper for X and ,.._. d' such that if P E 'Ps, then P(s) = 1 for all s in X 
1 1 • We will consider two cases depending on the structure of X": 
Case 1.- X" does not include any defeasible sentences. t.From Theorem 11 we know that ,.._. d' cannot be 
tolerated by X" for otherwise X' wouldn't be inconsistent. It follows from Eq. (1) (probability assignment) 
that P(- d') = 0 for all P E 'Ps. Thus, P(d') = 1 in all P E 'Ps and since any probability distribution that 
is in 'Px,< must also belong to 'Ps, it follows from the definition of p-entailment that X �P d'. 
Case 2.- X" includes defeasible and a possible empty set of strict sentences. Since X"U{- d'} is substantively 
inconsistent, from the proof of Theorem 1, the following must be true for all probability distributions P E 'Ps: 

2:: Up(d) +Up(- d') � 1 
dE X" 

which implies that 

E Up(d) � 1- Up("' d') = Up(d') 
dE X 

10Note that from the definition of p-entailmentthere must exists at least one P proper for X and d'. 

(10) 

(11) 

11We know that Psis not empty due to the first condition of substantive inconsistency, a.s applied to XU{� d'}. 
Also in the case where X does not contain any strict sentences, 'Ps simply denotes all probability distributions that 
are proper for X and "' d'. 
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Since Up(d) = 1- P(d) and Up(d') = 1- P(d'), Eq. (11) says that 1- P(d') can be made arbitrarily small 
by requiring the values 1 - P(d) for d E D to be sufficiently small and the values of P(s) to be 1 for all 
s E S. This is equivalent to say that X Fp d1• 
Theorem 3 If X = D U S is p-consistent, X strictly p-entails <P => 1/J if and only if there exists a subset S' 
of S such that S' U {True -+ <P} is p-consistent and ¢J => ...,¢ is not tolerated by S'. 
Proof It follows from the proof of Theorem 2 (see case 1 of the if part). 

Theorem 6 Let :F be a set of propositional formulas, and let X = D U S be the a set of defeasible and 
strict sentences constructed from the formulas in :F. The worst case complexity of testing the consistency 

of X is bounded by [PS x ( � + ISI)J where IDI and lSI are the number of defeasible and strict sentences 
respectively, and 'PS is the complexity of propositional satisfiability for the material counterpart of the 
sentences in X. 

Proof The following procedure for testing consistency finds a "nested decreasing sequence", (see proof of 
Theorem 1), if one exists; otherwise, it returns failure. 

PROCEDURE TEST_COISISTENCY 

INPUT: a set X= DU S ot 
defeasible and strict sentences 

1. LET D1 := D 
2. WHILE D' is not empty DO 
3. Find a sentence d E  D1 such that 

d is tolerated by S U D' 
4. IF d is found then 

LET D' := D' - d 
ELSE HALT: the set is 

IlJCOISISTEli'! 

END WHILE 

5. LETS':= S 
6. WHILE S' is not empty DO 
7. Pick any sentence s E S' and test 

if s is tolerated by S 
8. IF s is tolerated then 

LETS':= 51-s 
9. ELSE HALT: the set is 

IICOISISTEll'! 

EirDWHILE 

10. The set is COJSISTEHT 
EID PROCEDURE 

If the procedure stops at either line ( 4) or line (9) a non confirmable subset is found, and by theorem 1 
the set of sentences is inconsistent. On the other hand, if the procedure reaches line (10), X cannot possibly 
contain a subset that is not confirmable. Any such subset (see Definition 4) would have halted the procedure 
either at line (4) or at line {9), thus, by Theorem 1, X must be consistent. It follows that the procedure is 
correct. 

To assess the time complexity, note that the WHILE-loop of line (6) will be executed lSI times in the worst 
case, and each time we must do at most PS work to test the satisfiability of S- s; thus, its complexity is 
lSI x PS. In order to find a tolerated sentence d = <P --+ '1/1 in D', we must test at most \D'I times (once for each 
sentenced ED') fm the satisfiability of the conjunction of ¢;A¢ and the material counterparts of the sentences 
in SuD'-{ d}. However, the size of D' is decremented by at least one sentence in each iteration of the WHILE­
loop in line (2), therefore the number of times that we test for satisfiability is IDI + IDI � 1 + \DI- 2 + . . . + 1 
which is bounded by �· Thus, the overall time complexity is O[PS x (�+lSI)]. 
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