
Artificial Intelligence 52 (1991) 121-149 121
Elsevier

On the consistency
databases*

of defeasible

M o i s 6 s G o l d s z m i d t * * a n d J u d e a P e a r l
Cognitive Systems Laboratory, Computer Science Department, 4731 Boelter Hall,
University of California, Los Angeles, CA 90024, USA

Revised May 1991

Abstract

Goldszmidt, M. and J. Pearl, On the consistency of defeasible databases, Artificial
Intelligence 52 (1991) 121-149.

We propose a norm of consistency for a mixed set of defeasible and strict sentences which,
guided by a probabilistic interpretation of these sentences, establishes a clear distinction
between exceptions, ambiguities and outright contradictions. A notion of entailment is then
defined which represents a minimal core of beliefs that must follow from the database if one
is committed to avoid inconsistencies.

The paper establishes necessary and sufficient conditions for consistency, and provides a
simple decision procedure for testing the consistency of a database or whether a given
sentence is entailed by the database. It is also shown that if all sentences are of Horn type,
consistency and entailment can be tested in polynomial time. Finally, we discuss procedures
for reasoning with inconsistent databases and identifying sentences directly responsible for
the inconsistency.

I. Introduction

There is a sharp difference between exceptions and outright contradictions.
Two statements like "typically penguins do not fly" and "red penguins fly", can
be accepted as a description of a world in which redness defines an abnormal or
exceptional type of penguins. However , the statements s l: "typically birds fly"
and s2: "typically birds do not fly" stand in outright contradiction to each
other. Whatever interpretation we give to "typically", it is hard to imagine a
world containing birds in which both s I and s 2 would make sense simultaneous-
ly. Curiously, such conflicting pairs of sentences can perfectly coexist in

* This work was supported in part by National Science Foundation Grant #IRI-88-21444 and
State of California MICRO 90-127. An earlier version of this paper was presented at the Workshop
on Uncertainty in AI, August 1989.

** Supported by an IBM graduate fellowship 1990-92.

0004-3702/91/$03.50 (~) 1991 - - Elsevier Science Publishers B.V. All rights reserved

TECHNICAL REPORT
R-122-AI

122 M. Goldszmidt, J. Pearl

circumscriptive (McCarthy [19]) or default logic (Reiter [25]) theories. Using
the ab predicate advocated by McCarthy [19], a straightforward way to
represent them in the context of circumscription would be:

s I • Vx.bird(x) A Tab(x) D fly(x),

s 2 • Vx.bird(x)/x -Tab(x) ~ -7fly(x), (1)

which is logically equivalent to Vx.bird(x)3 ab(x). Similarly, expressing s~ and
s: as default rules I

bird(x) : M f ly(x)
t l ,

sl f ly(x) '

b i rd(x) : M ~ f l y (x) (2)
s'(" ~ f l y (x) '

default logic will produce two consistent sets of beliefs: One in which "birds
fly" and one in which "birds do not fly".

We contend that a pair such as s 1 and s 2 is not normally used to encode the
information that "all birds are exceptional (or abnormal)" as in the case of
circumscription, or to express an ambiguous property 2 of birds as in the case of
default logic. Rather, this kind of contradictory information is more likely to
originate from an unintentional mistake. Remarkably, although the distinction
between exceptions, ambiguity and contradictions is readily recognized by
humans, there is no comprehensive analysis of such utterances in defeasible
databases, one that could alert the user to the existence of contradictory,
possibly unintended statements. This paper proposes a semantically sound
norm for consistency, accompanied by effective procedures for testing inconsis-
tencies and isolating their origins.

It is tempting to assume that pairs such as sl and s 2 constitute the only source
of inconsistency and that once we eliminate such contradictory pairs, the
remaining database will be consistent, i.e., all conflicts could be rationalized as
conveying exceptions or ambiguities. Touretzky [27] has shown that this is
indeed the case in the domain of acyclic and purely defeasible inheritance
networks. However, once the language becomes more expressive, allowing
hard rules as well as arbitrary formulae in the antecedents and consequents of
the rules, the criterion for consistency becomes more involved. Consider the
database

f l ' ' zl {"all birds y , "typically, penguins are birds",
"typically, penguins do not f ly"}.

This set of rules, although void of contradictory pairs, also strike us as

E The de fau l t rule bird(x):Mfly(x)/fly(x) is in fo rmal ly i n t e rp r e t ed as " I f x is a bird and it is
cons i s t en t to a s sume tha t x can fly. then infer tha t x can fly" (see [25]).

: A p r o p e r t y f is a m b i g u o u s if ne i t he r [nor 7 f can be ver i f ied f rom the da tabase .

Consistency of defeasible databases 123

inconsistent: If all birds fly, there cannot be a nonempty class of objects
(penguins) that are "typically birds" and yet "typically, do not fly". We cannot
accept this database as merely depicting exceptions; it appears to be more of a
programming "bug" than a genuine description of some state of affairs. If we
now change the first sentence to read "typically, birds fly" (instead of "all birds
fly"), consistency is restored; we are willing to accept penguins as exceptional
birds. This interpretation will remain satisfactory even if we made the second
rule strict (to read "all penguins are birds"). Yet, if we further add to A the
sentence "typically, birds are penguins" we again face intuitive inconsistency.

In this paper we propose a probability-based formalism that captures these
intuitions. We will interpret a defeasible sentence "typically, if ~b then 0"
(written ~b----~0), as the conditional probability statement P(qJ[~b)~>l-e ,
where e > 0 is an infinitesimal quantity. Intuitively, this amounts to according
the consequence qJ a very high likelihood whenever the antecedent ~b is all that
we know. The strict sentence "if q~ then definitely o-" (written q~ ~ ~r), will be
interpreted as an extreme conditional probability statement P(o-lq~) = 1. Our
criterion for testing consistency translates to that of determining if there exists
a probability distribution P that satisfies all these conditional probabilities for
every e > 0. Furthermore, to match our intuition that conditional sentences do
not refer to empty classes, nor are they confirmed by merely "falsifying" their
antecedents, we also require that P be proper, i.e., that it does not render any
antecedent as totally impossible. These two requirements constitute the es-
sence of our proposal.

Translated to the language of ranked models (see [16]), our proposal
assumes a particularly simple form. A defeasible sentence ~b ~ qJ imposes the
constraints that $ holds in all minimally-ranked models of ~b and that there will
be at least one such model. A strict sentence ~ ~ ~ imposes the constraint that
no model satisfies ~ ^-7o- and that at least one satisfies q~. Consistency
amounts to requiring the existence of a ranking (mapping of models to
integers) that simultaneously satisfies all these constraints (see [13]).

The idea of attaching probabilistic semantics to conditional sentences goes
back to Adams [1, 2] who developed a logic of indicative conditionals based on
infinitesimal probabilities. More recently, infinitesimal probabilities were men-
tioned in [19] as a possible interpretation of circumscription, and were used in
[20] to develop a graphical consistency test for inheritance networks, extending
that of Touretzky [27]. The proposals in [8, 10, 21] have extended Adams' logic
to default schemata, and Lehmann and Magidor [17] have shown the equiva-
lence between Adams' logic and a semantics based on ranked models. 3

Unfortunately, the notion of consistency treated in [2, 20] was restricted to
systems involving purely defeasible sentences. This paper extends Adams'

3 This equivalence invites another argument in support of our consistency norm: It ensures that
the database does not violate, explicitly or implicitly, any of the rules of cumulative (and
preferential) reasoning [15]. A formal treatment of infinitesimal probabilities using nonstandard
analysis is given in [17], and also mentioned in [26].

124 M. Goldszmidt, J. Pearl

consistency results to mixed systems, containing both defeasible and strict
information and, as we shall see, the extension is by no means trivial, since a

strict sentence b f f f must be given a totally different semantics than its
material counterpart b 3 f . For example, whereas the set of sentences {b DJ,

b 3 ~ f } is logically consistent, our semantics must now render the set
• • 4

{ b ~ f , b ~ ~ f } inconsistent.
In addition to extending the consistency criterion to include mixed systems,

this paper also presents an effective syntactic procedure for testing this
criterion and identifying the set of sentences responsible for the inconsistency.
Finally, the paper analyzes a notion of entailment based on consistency
considerations. Intuitively, a conclusion is entailed by a database if it is
guaranteed an arbitrarily high probability whenever the premises are assigned
sufficiently high probabilities. This weak notion of entailment was named
p-entailment by Adams [2], e-entailment by Pearl [21] and preferential entail-
ment by Kraus et al. [15], and it yields (semimonotonically) the most conserva-
tive "core" of plausible conclusions that one would wish to draw from a
conditional database [22].

The definition for probabilistic entailment can be partially extended to
databases containing strict information using a device suggested by Adams [1]
where, by definition, conditional sentences whose antecedents have probability
zero are assigned probability one. Thus, one could conceivably encode a strict
sentence like q~ ~ o- as the defeasible sentence

(q~ /x ~) ~ False .

A more natural proposal was made in the preferential models analysis of Kraus
et al. [15]. In their words [15, p. 172]:

We reserve to ourselves the right to consider universes of reference
that are strict subsets of the sets of all models of L. In this way we
shall be able to model strict constraints such as, penguins are birds,

in a simple and natural way, by restricting ~ to the set of all worlds
that satisfy the material implication penguin D bird.

These two proposals suffer from the following weaknesses: First, they do not
capture the common understanding that the opposing pair "all birds fly" and
"all birds don' t fly" is inconsistent, but permit instead the conclusion that birds
do not exist, together with other strange consequences such as "typically birds
have property P " where P stands for any imaginable property. Our semantics
reflects the view, also expressed by Delgrande [5], that one of the previous
sentences must be invalid, and that no admissible model should support both

4 The need to distinguish between b =), f and b ~ f is further advocated in [5, 8, 10, 24], where
the former is used to express generic knowledge and the latter as an item of evidence. This issue
will be further discussed in Section 7.

Consistency of defeasible databases 125

sentences. Second, these two proposals do not permit us to entail new strict
sentences in a more meaningful way than logical deduction. For example, 7 a
should not entail a ::> b, in the same way that "I am poor" should not entail " if
I were rich, this paper would be accepted". Thus, the special semantics we give
to conditional sentences, defeasible as well as strict, avoids such paradoxes of
material implication [3] and, hence, it brings mechanical and plausible reason-

ing closer together.
The paper is organized as follows: Section 2 introduces notation and some

preliminary definitions. Consistency and entailment are explored in Section 3.
An effective procedure for testing consistency and entailment is presented in
Section 4, while Section 5 contains illustrative examples. Section 6 deals with
entailment in inconsistent databases and in Section 7 we summarize the main
results of the paper. All proofs are given in the appendix.

2. Notation and preliminary definitions

Let ~ be a closed set of well-formed propositional formulas, built in the
usual way from a finite set of propositional variables and the connectives " v "
and " 7 " (the other connectives will be used as syntactic abbreviations). Lower
case Greek letters ~b, 4', ~0, o- will stand for formulas of Zf, and lower case
letters from the ordinary alphabet (except d, s and x) will stand for proposition-
al variables.

Let 4) and 4' be two formulas in ~7. We will use a new binary connective "---;'
to construct a defeasible sentence (h---) 4', which may be interpreted as "if ~b
then typically 4'". ~ will denote the set of all defeasible sentences, and D will
denote a particular set of such sentences. Similarly, given ¢ and o" in ~ , the
binary connective " ~ " will be used to form a strict sentence ~0 ~ tr, which is to
be interpreted as "if ~0 then definitely or". 5 We will denote the set of all strict
sentences by b ~, and a particular set of such sentences will be denoted by S.
Both " - - ; ' and " ~ " can occur only as the main connective. We will use ~ to
stand for the union of @ and b ~ (X for the union of some set D and some set
S), and x, d, s as variables for sentences in ~, @ and 6e respectively. We will
use the term conditional when talking about a sentence that can be either
defeasible or strict. If x denotes a conditional sentence with antecedent ~ and
consequent 4', then the negation of x, denoted by - x , is defined as a
conditional with antecedent ~b and consequent 74' . Finally, the material
counterpart of a conditional sentence with antecedent ~b and consequent 4' is
defined as the formula ~b 3 4' (where " 3 " denotes material implication), and

5 In the domain of nonmonoton ic multiple inheritance networks, the interpretat ion for the
defeasible sentence $ ~ $ would be "typically $ ' s are ~,'s", while the interpretation for the strict
sentence ~o => tr would be "all ~ ' s are ~ ' s " .

126 M. Goldszmidt, J. Pearl

the material counterpart of a set X of conditional sentences (denoted by X), is
defined as the conjunction of the material counterparts of the sentences in X.

A model M is an assignment of truth values to the propositional variables in
~ . If there are n propositional variables in ~ , there will be 2" different models
(or truth assignments) for ~ . Let M denote the set of all possible models for ~ .
The satisfaction of a formula 05 by a model M is defined as usual, and will be
written as M ~ 05. We say that a sentence x E ~' with antecedent 05 and
consequent ~b is verified by M, if M ~ 05 A ~b. x is falsified by M, if M ~ 05 A

~. Finally, x is considered as satisfied by M, if M ~ 05 D ¢p (M satisfies the
material counterpart of x).

Definition 2.1 (Probability assignment). Let P be a probability function on
models, :ach that P(M)>~O and ~ M ~ P(M)= 1. We define a probability
assignment P on a formula 05 ~ ~ as:

P(05) = ~] P (M) . (3)
M~,l,

A probability assignment on a defeasible sentence 05--> ~b E ~ is defined as:

P(05 ^ tp) _ p(~bl05) if P(05)> 0 (4a)
P(05 ---> ~b) = P (0 5) ' '

1, if P(05) = 0. (4b)

We assign probabilities to the sentences in 5 ~ in exactly the same fashion. P will
be considered proper for a conditional x, if P(05) # 0, and it will be proper for a
set X = D LJ S if it is proper for every conditional in X.

The probability assignment above attaches a conditional probability interpre-
tation to the sentences in ~. Equation (4a) states that the probability of a
conditional sentence x with antecedent 05 and consequent ~b is equal to the
probability of x being verified (i.e. M ~ 4, ^ g,), divided by the probability of
its being either verified or falsified (i.e. M ~ 05).

Up to this point the only difference between defeasible sentences and strict
sentences was syntactic. They were assigned probabilities in the same fashion
and were verified and falsified under the same truth assignments. Their
differences will become clear in the next section, where we formally introduce
the notion of consistency.

3. Probabilistic consistency and entailment

In all theorems and definitions below, we will consider the language 5~ as
fixed, and d', s', x' will stand for new defeasible, strict and conditional
sentences respectively, with antecedents and consequents in ~Lf.

Consistency of defeasible databases 127

Definition 3.1 (Probabilistic consistency). Let D and S be sets of defeasible and
strict sentences respectively. We say that X = D U S is probabilistically consis-
tent (p-consistent) if, for every e > 0, there is a probability assignment P, which
is proper for X, such that P(tOl~b)/> 1 - e for all defeasible sentences th--> tO in
D, and P(t r l¢) = 1 for all strict sentences ¢ ~ tr in S.

i

Intuitively, consistency means that it is possible for all defeasible sentences
to become as close to certainty as desired, while all strict sentences hold with
absolute certainty. Another way of formulating consistency is as follows:
consider a constant e > 0 and let ~x.~ stand for the set of proper probability
assignments for X such that if P ~ ~x,~ then P(tOl 4')/> 1 - e for every th ~ tO E
D, and P (o - I ¢) = l for every ~ o - E S . Consistency insists on ~x.~ being
nonempty for every e > 0.

Before developing a syntactical test for consistency (Theorem 3.3), we need
to define the concept of toleration:

Definition 3.2 (Toleration). Let x be a sentence with antecedent ~b and
consequent tO. We say that x is tolerated by a set X, if there exists a model M
such that M satisfies the formula & ^ tO ^ ~.6

Thus, x is tolerated by a set of conditional sentences X, if there is a model M
which verifies x and satisfies every sentence in X (i.e., no sentence in X is
falsified by M).

Theorem 3.3. Let X = D U S be a nonempty set o f defeasible and strict sen-

tences. X is p-consistent i f f every nonempty subset X ' = D' U S' o f X complies
with one o f the following:

(1) I f D' is not empty, then there must be at least one defeasible sentence in
D' tolerated by X' .

(2) I f D' is empty (i.e., X ' = S ') , each strict sentence in S' must be tolerated
by S'.

The following corollary ensures that, in order to determine p-consistency, it
is not necessary to literally check every nonempty subset of X.

Corollary 3.4. X = D U S is p-consistent iff we can build an ordered partition o f

D = [D l, D 2 D,,] where:
(1) for all 1 <<- i <~ n, each sentence in D i is tolerated by S U Ui-i'+ I Dj,
(2) every sentence in S is tolerated by S.

Corollary 3.4 reflects the following considerations (see proof in Appendix

Recall that k denotes the conjunction of the material counterparts of the sentences in X.

128 M. Goldszmidt, J. Pearl

A). If X is p-consistent, Theorem 3.3 ensures the construction of the ordered
partition. Conversely, if this partition can be built, the proof of Theorem 3.3
shows that a probability assignment can be constructed to comply with the
requirements of Definition 3.1. Corollary 3.4 yields a simple and effective
decision procedure for determining p-consistency and identifying the inconsis-
tent subset in X (see Section 4).

Before turning our attention to the task of entailing new sentences, we need
to make explicit a particular form of inconsistency:

Definition 3.5 (Substantive inconsistency). Let X be a p-consistent set of
conditional sentences, and let x' be a conditional sentence with antecedent Oh.
We will say that x' is substantively inconsistent with respect to X, if
X U {qS---~ True} is p-consistent but X U {x'} is p-inconsistent.

Nonsubstantive inconsistency occurs whenever the antecedent of a condition-
al sentence is logically incompatible with the strict sentences of a consistent set
X. It will become apparent from the theorems to follow, that a sentence x is
nonsubstantively inconsistent with respect to a consistent X, iff both X U {x}
and X U { - x } are inconsistent.

The concept of entailment introduced below is based on the same probabilis-
tic interpretation as the one used in the definition of p-consistency. Intuitively,
we want p-entailed conclusions to receive arbitrarily high probability in every
proper probability distribution in which the defeasible premises have sufficient-
ly high probability, and in which the strict premises have probability equal to
one.

Definition 3.6 (p-entailment). Given a p-consistent set X of conditional sen-
tences, X p-entails ~ ' ~ ~0' (written X ~ p ~b' ~ ~0') if for all e > 0 there exists
6 > 0 such that:

(1) there exists at least one P E ~ 7 x,8 such that P is proper for 4~'---~ ~b';
(2) every P ' E ~x,~ satisfies P ' (q , ' [~ ') i> 1 - e.

Theorem 3.7 relates the notions of entailment and consistency:

Theorem 3.7, I f X is p-consistent, X p-entails O' ~ qJ' iff 4~' --~ -1 ~' is substan-
tively inconsistent with respect to X.

Definition 3.8 and Theorem 3.9 below characterize the conditions under
which conditional conclusions are guaranteed not only very high likelihood but
also absolute certainty. We call this form of entailment strict p-entailment:

7 Recall that given a consistent X = D U S, 3~x.~ s tands for the set of probability ass ignments
proper for X, such that if P E ~x. , then P(~0 I~b) I> 1 - 6 for every $--~ qt E D, and P(~r I~o) = 1 for
every q~ ~ ~r E S (see Definition 3.1).

Consistency of defeasible databases 129

Definition 3.8 (strict p-entailment). Given a p-consistent set X of conditional
sentences, X strictly p-entails q~' ~ tr' (written X ~s ~o' ~ tr ') if for all e > 0:

(1) there exists at least one P E ~x, , such that P is proper for q~ '~ tr';
(2) every P ' E ~x,~ satisfies P'(cr'lq~') = 1.

Theorem 3.9. I f X = D U S is p-consistent, X strictly p-entails ~ ' ~ tr' iff
S tO {q~'---> True} is p-consistent and there exists a subset S' of S such that
q~' ~ -7 tr' is not tolerated by S'.

Examples of strict p-entailment are contraposition,

{4'~tO} ~s ~tO~7~, 8

and chaining,

Note that strict p-entailment subsumes p-entailment, i.e., if a conditional
sentence is strictly p-entailed then it is also p-entailed. Also, to test whether a
conditional sentence is strictly p-entailed we need to check its status only with
respect to the strict set in X. This confirms the intuition that we cannot deduce
"ha rd" rules from "soft" ones. However, strict p-entailment is different from
logical entailment because the requirements of substantive consistency and
properness for the probability distributions distinguishes strict sentences from
their material counterpart. For example, consider the database X = S =
{c ~ 7 a } which is clearly p-consistent. While X logically entails c A a ~ b, X
does not strictly p-entail c A a ~ b , since the antecedent c A a is always
falsified.

For completeness, we now present two additional theorems relating con-
sistency and entailment. Similar versions of these theorems, for the case of
purely defeasible sentences, first appeared in [2]. They follow from previous
theorems and definitions.

Theorem 3.10. I f X does not p-entail ~b'---~ tO', and ~b'---~ tO' is substantively
inconsistent with respect to X, then for all e > 0 there exists a probability
assignment P' E ~ x.~ which is proper for X and qb'---~ tO' such that P'(tO'I 4") ~< e.

Theorem 3.11. I f X = D U S is p-consistent, then
• it cannot be the case that both ~b--~ tO and 49---~-q to are substantively

inconsistent with respect to X;
• it cannot be the case that both q~ ~ or and ~o ~ - 7 o are substantively

inconsistent with respect to S.

8 Whenever -~ ~k is satisfiable.

130 M. Goldszmidt, J. Pearl

4. An effective procedure for testing consistency

In accordance with Theorem 3.3 and following Corollary 3.4, the consistency
of a database X = D U S can be tested in two phases: In the first phase, until D
is empty, we repeatedly remove a sentence from D that is tolerated by the rest
of the sentences in D U S. In the second phase we must test whether every
sentence in S is tolerated by the rest of S (without removing any sentence). If
both phases can be successfully completed X is consistent, else X is incon-

sistent.

P R O C E D U R E T E S T _ C O N S I S T E N C Y
INPUT: a set X = D U S o f

defeasible and strict sentences
1. L E T D ' : = D
2. W H I L E D ' is not empty DO
3. Find a sentence d : qS--* ~ E D' such that

d is tolerated by S U D '
4. IF d is found then

LET D ' : = D ' - { d }
ELSE HALT: X is INCONSISTENT

E N D W H I L E
5. L E T S ' : = S
6. W H I L E S' is not empty DO
7. Pick any sentence s : q~ ~ o- ~ S' and test

if s is tolerated by S
8. IF s is tolerated then

LET S ' : = S' - {s}
9. ELSE HALT: X is INCONSISTENT
E N D W H I L E
10. X is CONSISTENT
END P R O C E D U R E

The same procedure can be used for entailment, since to determine whether
a defeasible sentence d ' is entailed by X we need only test the consistency of
X U { - d ' } and X U { d ' } (to make sure that the former is substantively
inconsistent). Given that the above procedure is correct, the next theorem
establishes an upper bound for the complexity of deciding p-consistency (and
p-entailment). Theorem 4.1 and the correctness of the procedure TEST_
CONSISTENCY are proven in the appendix.

Theorem 4.1. The worst-case complexity of testing consistency (or entailment) is
bounded by [~ x (I lDI 2 + ISI)] where ID[and ISI are the number of defeas-
ible and strict sentences respectively, and ~ is the complexity of propositional
satisfiability for the material counterpart of the sentences in the database.

Consistency of defeasible databases 131

Thus, the complexity of deciding p-consistency and p-entailment is no worse
than that of propositional satisfiability. Although the general satisfiability
problem is NP-complete, useful sublanguages (e.g. Horn clauses) are known to
admit polynomial algorithms [6].

The order in which sentences are removed in procedure TEST_CONSIS-
TENCY induces natural priorities among defaults that were used to great
advantage in several proposals for default reasoning [9, 11, 13, 23]. These
priorities have an alternative epistemic interpretation in the theory of belief
revision described by G/irdenfors [7]. The fact that a conditional q~ ~ tO is
tolerated by all those sentences that were not previously removed from X
means that if q~ holds, then tO can be asserted without violating any sentence in
X that is more deeply entrenched than this conditional. In other words, adding
the assertion q5 A tO would require a minimal revision of the set of beliefs
supported by X. The formal relation between the default priorities used in
system Z [23] and the postulates for epistemic entrenchment in believe revision
[7] is studied in [4]. The origin of this priority ordering can be traced back to
Adams [2], where it is used to build "nested sequences" of confirmable subsets
of X yielding consistent high probability models. Such "nested sequences" are
used in the proof of Theorem 3.3 (see Appendix A). A similar construction
was also used in [16, Theorem 5] to prove the co-NP-completeness of p-
entailment in purely defeasible databases. 9

Once a set of sentences is found to be p-inconsistent, it would be useful to
identify the sentences that are directly responsible for the contradiction.
Unfortunately, the toleration relation is not strong enough to accomplish this
task since it is incapable of distinguishing a sentence "causing" the inconsisten-
cy, from one that is a "victim" of the inconsistency. For example, consider the
inconsistent set

D i = {4~--> ~ , ~b-->--n ~ , 4~--> o-} .

Since no sentence in D i is tolerated, the consistency test will immediately halt
and declare Di inconsistent. Yet ~b ~ o- can hardly be held responsible for the
inconsistency; the reason ~b---~o- is not tolerated is due to the pair
{~b-->to, qS-->--nto}, whose material counterpart renders ~b impossible. ~° It
would be inappropriate to treat a sentence as the source of inconsistency
merely because it is not tolerated in the context of an inconsistent subset.
Rather, we would like to proclaim a sentence inconsistent if its removal would
improve the consistency of the database. In other words, a conditional
sentence x is inconsistent with respect to a set X if and only if there is an
inconsistent subset of X that becomes consistent after x is removed. Formally:

This was pointed out to us by an anonymous reviewer.
~ 'Note that {q5 D tO, ~b D-ntO} ~~q~.

132 M. Goldszmidt, J. Pearl

Definition 4.2 (i n c o n s i s t e n t s en t ence) . A sentence x is incons i s t en t wi th respect

to a se t X iff there exists a subset X' of X such that X' U {x} is p- incons i s t en t ,

but X' in itself is p-cons i s t en t .

The problem of deciding whether a given sentence is inconsistent is a tough
one because, unlike the test for set inconsistency, the search for the indicative
subset X' cannot be systematized as in procedure TEST_CONSISTENCY. All
indications are that the search for such a subset will require exponential time.
Simple minded procedures based on removing one sentence at a time and
testing for consistency in the remaining set do not yield the desired results. In

X ' = { a ---~ b, a --~ -7 b , a ---~ c, a ~ ~ c }

every sentence is inconsistent, however it is necessary to remove at least two
sentences at a time in order to render the remaining set consistent. Likewise, in

X " = { a---~ b, a--~ -Tb, a---~ c, c ~ T b }

every sentence is inconsistent, yet only the removal of a---~ b renders the
remaining set consistent. Approximate methods for identifying inconsistent
sentences are discussed in Section 6 and in the proof of Theorem 6.10 (see the
appendix).

5. Examples

Example 5.1. On birds and p e n g u i n s . We begin by testing the consistency 1~ of
the database presented in the introduction:

(1) b ~ f ("all birds fly"),

(2) p---~ b ("typically, penguins are birds"),

(3) p--*-7f ("typically, penguins don't fly").

Clearly none of the defeasible sentences in the example can be tolerated by
the rest. Consider a model M, such that M ~ p ^ b (testing whether sentence
(2) is tolerated); if M ~ f, sentence (3) will be falsified, while if M ~ 7f ,
sentence (1) will be falsified. Thus, we conclude that there is no model such
that sentence (2) is tolerated. A similar situation arises when we check if
sentence (3) can be tolerated. Changing sentence (1) to be defeasible yields
the familiar "penguin triangle"

Dp = {b--+ f , p - + b, p - + - T f }

~1 The terms consistency and p-consistency will be used interchangeably.

Consistency of defeasible databases 133

which is consistent: i.e., b---, f is tolerated by sentences (2) and (3) through the
model M', where M ' ~ b ^ f a n d M ' ~ ~p , and once sentence (1) is removed,
the remaining sentences tolerate each other. Dp becomes inconsistent by adding
the sentence b--->p ("typically, birds are penguins"), in conformity to the
graphical criterion of Pearl [20, 21]. Note that by Theorem 3.7, the sentence
b - - - ~ p ("typically, birds are not penguins") is then p-entailed by D 0. To
demonstrate an inconsistency that cannot be detected by such graphical
criteria, consider adding to Dp the sentence p A b ~ f. Again no sentence will
be tolerated and the set will be proclaimed inconsistent, thus showing (by
Theorem 3.7) that p ^ b---, ~ f is p-entailed by Dp as expected ("typically,
penguin-birds don't fly"). Interestingly, all these conclusions remain valid upon
changing sentence (2) into a strict conditional p f f b (which is the usual way of
representing the penguin triangle), showing that strict class subsumption is not
really necessary for facilitating specificity-based preferences in this example.

Example 5.2. On quakers and republicans. Consider a database containing the
following set of sentences:

(1) n---~ r

(2) n ~ q

(3) q ~ p

(4) r~- 'np

(5) p---, c

("typically, Nixonites ~2 are republicans"),

("typically, Nixonites are quakers"),

("all quakers are pacifists"),

("all republicans are non-pacifists"),

("typically, pacifists are persecuted").

Sentence (5) is tolerated by all others, but (1) is not tolerated by (2)-(4),
nor is (2) tolerated by {(1), (3), (4)}. Hence, the database is inconsistent. The
following modification renders the database consistent:

(1) n ~ r ("all Nixonites are republicans"),

(2) n ~ q ("all Nixonites are quakers"),

(3) q---~p ("typically, quakers are pacifists"),

(4) r---~ ~ p ("typically, republicans are non-pacifists"),

(5) p ~ c ("typically, pacifists are persecuted").

Indeed, there is a basic conceptual difference between the former case and this
one. If all quakers are pacifists and all republicans are non-pacifists, our
intuition immediately reacts against the idea of finding an individual that is
both a quaker and a republican. The modified database, on the other hand,
allows a "Nixonite" that is both a quaker and a republican to be either pacifist
or non-pacifist. Note that both n ~ p and n ~ ~ p are consistent when added to
the database so neither one is p-entailed, and we can assert that the conclusion

~2 "Nixoni tes" is a fictitious name for people that share Richard Nixon 's cultural background.

134 M. Golds'zmidt, J. Pearl

is ambiguous (i.e., we cannot decide whether a "Nixonite'" is typically a
"pacifist" or not).

Finally, if we make sentences (2) and (4) be the only strict rules, we get a
database similar in structure to the example depicted by network Eo in [14]:

(1) n--~ r ("typically, Nixonites are republicans"),

(2) n ~ q ("all Nixonites are quakers") ,

(3) q---~p ("typically, quakers are pacifists"),

(4) r ~ p ("all republicans are non-pacifists"),

(5) p---~ c ("typically, pacifists are persecuted").

Not surprisingly, the criterion of Theorem 3.3 renders this database consistent
and n---~-~p is p-entailed in conformity with the intuition expressed in [14].

6. Reasoning with inconsistent databases

The theory developed in previous sections presents desirable features both
from the semantics and computational standpoints. However , the entailment
procedure insists on starting with a consistent set of conditional sentences. In
this section we plan to relax this requirement and explore two proposals for
making entailment insensitive to contradictory statements in unrelated portions
of the database, so that mistakes in the encoding of properties about penguins
and birds would not tamper with our ability to reason about politics (e.g.
quakers and republicans). The first proposal amounts to accepting local
inconsistencies as deliberate albeit strange expressions, while the second treats
them as programming "bugs".

In Definition 2.1 a conditional sentence ~--~ 0 was assigned the conditional
probability P(0]~b) if P was proper for ~b---~ tp (i.e., if P(~b) > 0) . In our first
proposal for reasoning with inconsistent databases, we will regard improper
probability assignments as admissible, and define P(~b]~b)=l whenever
P(~,) = 0.13 With this approach any set X of conditional sentences 14 can be
represented by the trivial high probability distribution in which some antece-
dents receive zero probability. Also, strict sentences like q ~ o - c a n be
represented as q~/x --q~r---~ False, since we can now use P(~ /x -7o-) = 0 to get
P(o-]q~) = 1. As before, we say that a sentence ~b---~ ~0 is implied 15 by a (possibly
inconsistent) set X if ~b --~ ~b receives arbitrarily high probability in all probabili-
ty assignments in which sentences in X receive arbitrarily high probability.

~3Even though P(qS---~tk)= 1 if P (~) = 0 in Definition 2.1, P(ch---~o) was not related to a
conditional probability in those cases.

~ As long as)(is satisfiable. If X is not satisfiable this proposal cannot do better than
proposit ional logic: any conditional sentence will be trivially entailed.

n~ We will use the term "'implication" instead of "en ta i lment" to stress the fact that the set of
premises may consti tute an inconsistent set. We will however keep the " ~ " symbol for simplicity.

Consistency of defeasible databases 135

Definition 6.1 (p~-implication). Given a set X of conditional sentences and a
conditional sentence 49'---~ ~O', X pl-implies 49'--* q/, written X ~ pl 49"-~ ~0', if
for all e > 0 there exists a 6 > 0 such that for all probability assignments P, if
P(tk149)~>1-6 for all 49---~q~EX, and P (t r [q 0 = l for all ~ o - E X then
P(~b'[49') ~ 1 - e.

The only difference between Definition 6.1 and that of p-entailment (Defini-
tion 3.6) is that none of the probability assignments in the definition above are
constrained to be proper.

Any inconsistent set X will have a nonempty subset violating one of the
conditions of Theorem 3.3. Given that almost all properties stated in this
section will refer to such sets, we find it convenient to introduce the following
definition:

Definition 6.2 (Unconfirmable sets). A set X = D U S is said to be unconfirm-
able if one of the following conditions is true:

(1) If D is nonempty, then there cannot be a defeasible sentence in D that is
tolerated by X.

(2) If D is empty (i.e., X = S) then there must be a strict sentence in S
which is not tolerated by X.

Note that a set X u can be unconfirmable, while both a superset of X u or one
of its subsets can be confirmable. The problem of deciding whether a sentence
is p l-implied is no worse than that of deciding p-entailment as shown by the
next theorem proven in [12]:

Theorem 6.3. A set o f conditional sentences X Pl-implies 49 ~ qJ iff 49 ~ --1 qJ
belongs to an unconfirmable subset o f X U (49 ~ --1 ~}.

This unconfirmable subset can be identified using the consistency test
discussed in Section 4, and it follows that pl-implication also requires a
polynomial number of satisfiability tests. Moreover, pl-entailment is equivalent
to pl-implication if the set X is consistent (see Theorem 6.9 below). As an
example, consider the union of

Dp = {b---, f, p--* b, p---~-nf}

(encoding the so-called penguin triangle), and the inconsistent set

D i = (49--+ t/t, (~------~ '11//, 49----~ o ') .

Some of the sentences pl-implied by X i = D v U Di are: p A b ~ ~ f (typically,
penguin-birds don't fly), b - - - ~ p (typically, birds are not penguins), and
49--~ o-. Some of the sentences not pl-implied by X~ are p A b--~f and p---~ qJ.
Thus, despite its inconsistency, not all sentences are p~-implied by X i. How-

136 M. Goldszmidt, J. Pearl

ever, this example also demonstrates a disturbing feature of p l-implication; not
only are 4) --> 4' and ¢h ---> -7 4' p~ -implied, but also & ~ -7 or and ¢h --> P. Thus,
although the natural properties of penguins remain unperturbed by the incon-
sistency of D~, strange sentences like oh--> p are deduced even though there is
no argument to support them (see [14] for similar considerations on inconsis-
tent sentences in the context of inheritance networks).

To reveal the source of this phenomenon, it is useful to declare a formula to
be inconsistent, if the formula is False by default:

Definition 6.4 (Inconsistent formulas). Given a set X and a formula ~b, we say
that tb is an inconsistent formula with respect to X, iff X p l-implies ~b ~ False.

The following theorem is an easy consequence of Theorem 6.3. It relates
pl-implication to Definition 6.4 above, and provides an alternative definition of
inconsistent formulas in terms of propositional entailment:

Theorem 6.5. Consider a set X o f conditional sentences and the formulas tr and

4':
(1) X ~ m tr--> 4' i f f or is an inconsistent formula with respect to X U

(4' } .

(2) I f cr is an inconsistent formula with respect to X , any conditional sentence

with cr as antecedent will be Pl-implied by X.

(3) A formula o" is inconsistent with respect to a set X iff there exists an

unconfirmable subset X ' o f X such that X '~- -74) 1~ where o" is the

antecedent o f a sentence in X ' .

Theorem 6.5(2) explains why a sentence like ~b---~p is pl-implied by X~: ~b is
an inconsistent formula with respect to X~, hence any sentence with ~b as
antecedent will be trivially p~-implied by X~.

This deficiency of p,-implication is removed in our second proposal for
reasoning with inconsistent databases which we call p2-implication. The intui-
tion behind P2-implication is to consider a sentence as "implied" only if its
negation would introduce a new inconsistency into the database. Previous
inconsistencies are thus considered as "bugs" and are simply ignored:

Definition 6.6 (pc-implication). Given a set X, we say that ~b ~ 4' is P2-implied
by X, written X ~p2 ~b---~ 4', iff ~b---~ 4' is not an inconsistent sentence with
respect to X (see Definition 4.2) but its negation ~b ~ - 7 4' is.

The requirement that not both ~b ~ 4' and th ~ -~ 4' be inconsistent serves two

16 Recall that 3f denotes the conjunction of the material counterparts of the conditional
sentences in X.

Consistency of defeasible databases 137

purposes: first, as with p-entailment, it constitutes a safeguard against sen-
tences being trivially implied by virtue of their antecedent being false. Second,
if both sentences were inconsistent, the contradiction that originates when
either of them is added to X must have been previously embedded in X, and
therefore cannot be new. In our previous example, the sentences

p A b--+--7f, b--+Tp , qb--+o"

are pz-implied by Xi, however, contrary to pl-implication the sentences

~b--+ ~0, 4~--+-7 q,, 4~--+-Ttr, ~b--+ p

are not. As stated in Theorem 6.9 below, pz-implication is strictly stronger
than pl-implication and is equivalent to p-entailment if the set X is p-
consistent.

Since the notion of pz-implication is based on the concept of an inconsistent
sentence (Definition 4.2) there is strong evidence that any procedure for
deciding pz-implication will be exponential (see Section 4). To obtain a more
efficient decision procedure, we propose to weaken the definition of an
inconsistent sentence. Instead of testing whether a given sentence is respon-
sible for an inconsistency, we will test whether the sentence is responsible for
creating an inconsistent formula (see Theorem 6.5(3) above).

Definition 6.7 (Weakly inconsistent sentence). A sentence x is weakly inconsis-
tent with respect to a set X, iff there exists an unconfirmable subset X u of
X U {x}, such that ~'u ~ -~b but X'u ~# -7~b where X' u = X u - (x}, and ~b is the
antecedent of some sentence in X, .

This leads naturally to the notion of weak p2-implication:

Definition 6.8 (wP2-implication). Given a set X, a sentence ~b--> ~0 is wp2-
implied by X, written X ~ wp2 ~b --> ~b, iff ~b--> --7 ~O is weakly inconsistent with
respect to X.

Similar to both Pl- and p2-implications, the set X i = Dp U D i wp2-implies the
sentences p A b--> ~ f , b---> ~ p , and ~b--> dr. More importantly, contrary to
pl-implication (but similar to p2-implication) the undesirable sentences
~b --> -7 cr and th ---> p are not wpE-implied by Xi, and, in general, wpE-implication
will not sanction a sentence merely because its antecedent is inconsistent.
However , unlike p2-implication, wpz-implication will sanction any sentence
whose consequence is the negation of an inconsistent formula (for example
p~-16).

The notion of wp2-implication is situated somewhere between pl-implication
and pE-implication as the next couple of theorems indicate. It rests semantically
on both, since it requires the concepts of inconsistent formulas and inconsistent

138 M. Goldszmidt , J. Pearl

sentences, and preserves some of the computational advantages of p~-impli-
cation.

Theorem 6.9.
(1) Given a p-consistent set X, the notions of p-entailment, p~-implication,

wp2-implication and p2-implication are equivalent.
(2) Given a p-inconsistent set X, p2-implication is strictly stronger than

wp2-implication, and wp2-implication is strictly stronger than p~-impli-
cation.

Theorem 6.10.17 If the set X is acyclic and of Horn form, wp2-implication can
be decided in polynomial time.

The reason wpz-implication is harder than pl-implication is the need to
search for a suitable unconfirmable subset X u (see Definition 6.8).

7. Discussion

We have formalized a norm of consistency for mixed sets of conditionals,
ensuring that every group of sentences be satisfiable in a nontrivial way, one in
which the antecedent and consequent of at least one sentence are both true.
We showed that any group of sentences that is not satisfiable this way must
contain conflicts that cannot be reconciled by appealing to exceptions or
ambiguities, and are normally considered contradictory, i.e., unfit to represent
world knowledge. Using this norm, an effective procedure was devised to test
for inconsistencies, and a tight relation between entailment and consistency
was established, permitting entailment to be decided using consistency tests.
These tests were shown to require polynomial complexity relative to proposi-
tional satisfiability. We also discussed ways of drawing conclusions from
inconsistent databases as well as uncovering sets of sentences directly respon-
sible for such inconsistencies.

One of the key requirements in our definition of consistency is that no
conditional sentence in X should have an impossible antecedent and, more-
over, that no antecedent should become absolutely impossible as exceptions
(to default sentences) become less likely (i.e., as e becomes small). This
requirement mirrors our understanding that it is fruitless to build databases for
nonexisting classes, and counterintuitive to deduce (even defeasibly) condition-
al sentences having impossible antecedents. Consequently, pairs such as
{ 4' ~ tp, 4' --~ -7 ~ } or { 4' ~ ~O, 4, ~ -1 qJ } are labeled inconsistent and treated as
unintentional mistakes. The main application of the procedures proposed in

~v The proof of this theorem can be found in the appendix.

Consistency of defeasible databases 139

this paper is to warn users and knowledge providers of such "bugs", lest they
yield undesirable inferences.

This paper also presents a new formalization of strict conditional sentences
within the analysis of probabilistic consistency, totally distinct from their
material counterpart. The importance of this distinction has been recognized
by several researchers (e.g., Poole [24], Delgrande [5], Geffner [8], Geffner
and Pearl [10] and others) and has both theoretical and practical implications.

In ordinary discourse conditionals are recognized by universally quantified
subsumptions such as "all penguins are birds" or, in case of ground sentences,
by the use of the English word "If" (e.g., "If Tweety is a penguin then she is a
bird"). The function of these indicators is to alert the listener that the assertion
made is not based on evidence pertaining to the specific individual, but rather
on generic background knowledge pertaining to the individual's class (e.g.,
being a penguin). It is this pointer to the background information that is lost if
one encodes a conditional sentence as a Boolean expression, and it is this
information that is crucial for adequately processing specificity preferences.

Intuitively, background knowledge encodes the general tendency of things to
happen, i.e., relations that hold true in all worlds, while evidential knowledge
describes that which actually happened, i.e., relations in our particular world.
Thus, conditional sentences, both defeasible and indefeasible, play a role
similar to that of meta-inference rules: they tell us how to draw conclusions
from specific observations about a particular situation or a particular in-
dividual, but do not themselves convey such observations. It is for this reason
that we chose to use a separate connective " ~ " to denote strict conditionals,
as is done by Horty and Thomason [14] in the context of inheritance networks.
Strict conditionals, by virtue of pointing to generic background knowledge, are
treated as part of the database, while propositional formulas, including materi-
al implications, are used only to formulate queries, but are excluded from the
database itself. By so doing, the sentence p ~ b is treated as a constraint over
the set of admissible probability assignments, while the propositional formulae
p ~ b is treated as a specific evidence or observation, on which these probabili-
ty assignments are to be conditioned.

It does indeed make a profound difference whether our knowledge of
Tweety's birdness comes from generic background knowledge about penguins,
or from specific observations conducted on Tweety. In natural language, the
latter case would normally be phrased by nonconditional sentences such as "it
is not true that Tweety is both a penguin and a nonbird", which is equivalent to
the material implication

penguin(Tweety) ~ bird(Tweety) .

The practical aspects of this distinction can best be demonstrated using the
penguin example, t8 Assume we know that "typically, birds fly" and "typically,

~s Taken from [10].

140 M. Goldszmidt, ,l. Pearl

penguins do not fly". If we are told that Tweety is a penguin, and that "all
penguins are birds", we would like to conclude that Tweety does not fly. By
the same token if we are told that Tweety is a bird and that "all birds are
penguins" we would have to conclude that Tweety does fly. However, note
that both {p, p D b} and {b, b Dp} are logically equivalent to {p, b}, which
totally ignores the relation between penguins and birds, and should yield
identical conclusions regardless of whether penguins are a subclass of birds or
the other way around. Thus, when treated as material implications, informa-
tion about class subsumption is permitted to combine with properties attributed
to individuals and this crucial information gets lost.

This distinction was encoded in [10] by placing strict conditionals together
with defaults in a "background context", separate from the "evidential set"
which was reserved for observations made on a particular state of affairs. In
[16] it is stated that "dealing with hard constraints, in addition to soft ones,
involves relativizing to some given set of tautologies". Here, again, strict
conditionals would receive different treatment than ground formulas; only the
former are permitted to influence rankings among worlds. We believe that the
separate connective " ~ " used in our treatment makes this distinction clear and
natural, and the uniform probabilistic semantics given to both strict and
defeasible sentences adequately captures the notion of consistency in systems
containing such mixtures.

The notion of p-entailment is known to yield a rather conservative set of
conclusions (e.g., one that does not permit chaining or contraposition), we
therefore do not propose p-entailment as a complete characterization of
defeasible reasoning. It nevertheless yields a core of plausible consequences
that should be maintained in every system that reasons defeasibly. Extensions
of p-entailment can be found in [9, 11, 16]. All these formalisms, as well as
circumscription (McCarthy [19]), default logic (Reiter [25]) and argument-
based systems (Loui [18], Horty and Thomason [14]) could benefit from a
preliminary test of consistency such as the one proposed in this paper.

Appendix A. Theorems and proofs

Since some of the proofs below refer to unconfirmable sets, we recall their
definition:

Definition 6.2 (Unconfirmable sets). A set X = D U S is said to be unconfirm-
able if one of the following conditions is true:

(1) If D is nonempty, then there cannot be a defeasible sentence in D that is
tolerated by X.

(2) If D is empty (i.e., X = S) then there must be a strict sentence in S
which is not tolerated by X.

Consistency of defeasible databases 141

Essentially, unconfirmable sets are those that violate the conditions of
Theorem 3.3.

Theorem 3.3. Let X = D U S be a nonempty set of defeasible and strict sen-
tences. X is p-consistent iff every nonempty subset X ' = D' t_J S' of X complies
with one of the following:

(1) I f D' is not empty, then there must be at least one defeasible sentence in
D' tolerated by X'.

(2) I f D' is empty (i.e., X ' = S') , each strict sentence in S' must be tolerated
by S'.

Proof. We first prove the only-if part. We want to show that if there exists a
nonempty subset of X which is unconfirmable, then X is not p-consistent. The
proof is facilitated by introducing the notion of quasi-conjunction (see [2]):
Given a set of defeasible sentences

D = { ~ 1 "---~ ~/1 , (~n ' ' ~ On}

the quasi-conjunction of D is the defeasible sentence,

C(D)=[dPl V ' " v q ~ n] - - ~ [(q b , ~ l) A ' " A (q b n ~ b ,)] . (A.1)

The quasi-conjunction C(D) bears interesting relations to the set D. In
particular, if there is a defeasible sentence in D which is tolerated (by D) by
some model M, C(D) will be verified by M. This is so because the verification
of at least one sentence of D by M guarantees that the antecedent of C(D)
(i.e., the formula [~b I v . . . v ~b,] in equation (A.1) is satisfied by M, and the
fact that no sentence in D is falsified guarantees that the consequent of C(D)
(i.e., the formula [(~b 1D 01) ^ " " ^ (~b, D ~,)] in equation (A.1) is also satis-
fied by M. Similarly, if at least one sentence of D is falsified by a model M', its
quasi-conjunction is also falsified by M' since in this case, the consequent of
C(D) is not satisfied by M' (at least one of the material implications in the
conjunction is falsified by M') . Additionally, let

Up(C(D)) = 1 - P(C(D))

(the uncertainty of C(D)) where P(C(D)) is the probability assigned to the
quasi-conjunction of D according to equation (4a), then, it is shown in [1] that
the uncertainty of the quasi-conjunction of D is less or equal to the sum of the
uncertainties of each of the sentences in D, i.e.,

Up(C(D)) <- • (1 - P(¢,1¢i)),
i

where the sum is taken over all ~)i~ I~i in D.
We are now ready to proceed with the proof. Let X ' = D ' U S ' be a

nonempty subset of X where D' is a subset of D and S' is a subset of S. If X' is
unconfirmable, then one of the following cases must occur:

142 M. Goldszmidt, J. Pearl

Case 1: S' is empty and D' is unconfirmable] ~ In this case, the quasi-
conjunction for D ' is not verifiable; from equation (4a), we have that for any P
which is proper for C(D') , P(C(D')) = 0 and Up(C(D')) = 1. It follows, by the

properties of the quasi-conjunction outlined above that Zi (1 - P(01 Idol)) over
all (bl --) t); in D ' is at least 1. If the number of sentences in D' is n/> 1, then,

n - 2 P(qJ;I(;bl) ~> 1 , (A.2)
i - I

P(qJl](bl) ~< n - 1, (A.3)
i 1

which implies that at least one sentence in D ' has probability smaller than
1 - 1/n. Hence, it is impossible to have P(0;]~b~)~ > 1 - e, for every e > 0 , for
every defeasible sentence (b; ---) 01 E D'. Thus, X is p-inconsistent.

Case 2: D' is empty. If S' is unconfirmable, then there must be at least one
sentence ~ ' ~ o-' C S' such that no model M' verifies ~ ' ~ (~' without falsify-
ing another sentence in S'. We show by contradiction that there is no
probability assignment P to the sentences in S' such that P(~lq~) = 1 for all

~ o- E S' and P is proper for every sentence in S'. Assume there exists such a
P. From equation (4a)

2~,b,~,, ~ P(M)
P(°-Iq~) = ~MI=~A,, P(M) + 2 M p ~ ^ ~ P(M) = 1, (A.4)

which immediately implies that if a model M" falsifies any sentence ¢ ' ~ o-" E
S' (including q~ '~ or'), then P(M") must be zero, else P(o"l¢') will not equal
1. Thus, P (M ') = 0 for every M' verifying g~ '~ o-' since M' must falsify
another sentence in S'. But then either P(~'I~')= 0, or P is not proper for
q~' ~ o": A contradiction. We conclude that if S' is unconfirmable then X is
p-inconsistent.

Case 3: Neither D' nor S' are empty and X ' is unconfirmable. That is, either
the quasi-conjunction C(D') is not verifiable or every M' that verifies a
defeasible sentence in D ' falsifies at least one sentence in S'. The first situation
will lead us back to Case 1 while the second leads to a contradiction similar to
Case 2 above. In either case, X is not p-consistent.

We now prove the if part. Assume that every nonempty subset of X = D U S
complies with the conditions of Theorem 3.3. Then the following two construc-
tions are feasible:

• We can construct a finite "nested decreasing sequence" of nonempty
subsets of X, namely X 1 X m (X = XI), and an associated sequence of
truth assignments M~ M m such that M i satisfies all the sentences in X i

~ This case is cove red by [2, T h e o r e m 1.1].

Consistency of defeasible databases 143

and verifies at least one defeasible sentence in X~, and the sets in the
sequence present the following characteristics:

(1) Xg+ 1 is the proper subset of X i consisting of all the sentences of D~ not

verified by Mi, for i = 1 m - 1, plus the sentences in S;

(2) all sentences in D m are verified by M,,.

• We can construct a sequence M m + 1 M~ that will confirm Xm+ 1 = S.
That is, the sequence M m + 1 M, will verify every sentence in S

without falsifying any. We will associate with M m + l M n the "nested
decreasing sequence" X,,+ ~ , . . . , X n where X~+ 1 is the proper subset of X~
consisting of all the sentences of S~ not verified by M~ for i = m + 1 n.

We can now assign probabilit ies to the truth assignments M ~ , . . . , M, in the

following way: For i = 1 n - 1,

P(M~) = e i - ' (l - e) (A.5)

and

P (M ,) = e ' ' - t (A.6)

We must show that, in fact, every tk ~ qJ in D obtains P(q,[6) >/1 - e and

that every q~ ~ o- in S obtains P(s) = 1. Since every 4) --* ~O is verified in at least
one of the members of the sequence X~ X , , using equations (4a), (A.5)

and (A.6) we have that for i < n:

e ' - ' (1 - e)
P(6,16,)/> ,- , , = 1 - e (A.7)

e 1(1 - e) + ei-2(1 - e) + . . . + e

and P(tp, l~b,) = 1 if it is only verified by the last model when S is originally
empty . Finally, since no q~ ~ or in S is ever falsified by the sequence of truth

assignments M 1 , M, and each and every q~ ~ ~r is verified at least once, it
follows f rom equation (4a) and the process by which we assigned probabilit ies
to M 1 , M, that indeed P(tr] q~) = 1 for every ~ ~ o- ~ S. []

Corol lary 3.4. X = D U S is p-consistent iff we can build an ordered partition o f

D = [Dr, D 2 , . . . , Dn] where:
(1) for all 1 ~ i <~ n, each sentence in D i is tolerated by S U (-J i-7+ l D j ,
(2) every sentence in S is tolerated by S.

Proof. If X is p-consistent, by Theo rem 3.3 we must be able to find a tolerated
defeasible sentence in every subset X ' -- D ' U S' (of X) where D ' is nonempty ,

and it follows that the construction of the ordered partition D =

[D l, D 2 , . . . , Dn] is possible. Similarly, by Theorem 3.3, if X is p-consistent
every strict sentence in S must be tolerated by S. On the other hand, if both
conditions in the corollary hold, we use the set of models (Mi) that renders the
sentences in each D i tolerated by the set S U U j=n 1=i+1 Dj to construct a high

144 M. Goldszmidt, J. Pearl

probability model for X, following the probability assignments of equations
(A.5) and (A.6). []

Theorem 3.7. I f X is p-consistent, X p-entails 4~' ~ tO' iff c#' ~ -7 tO' is substan-
tively inconsistent with respect to X.

Proof. We first prove the only-if part. (If X p-entails ~b'---~ to', then 4~'--*-~to'
is substantively inconsistent with respect to X.) Let X ~p ~b'---~ to'. From the
definition of p-entailment (Definition 3.6), for all e > 0 there exists a 6 > 0
such that for all P E ~x,~ which are proper for X and ~b'---, to', P (~ to'[~b')~< e.
This means that for all proper probability assignments P for X and ~b'---~ to'Y
the sentence qS'---~ ~ to' gets an arbitrarily low probability whenever all defeas-
ible sentences in X can be assigned arbitrarily high probability and all strict
sentences in X can be assigned probability equal to 1. Thus ~b'---~to' is
substantively inconsistent with respect to X.

We now prove the if part. (If ~b'---~ 7to ' is substantively inconsistent with
respect to X, then X p-entails ~b'---~ to'.) Let ~b ' - -~ to ' be substantively
inconsistent with respect to X. From Theorem 3.3, we know that there must be
a subset X ' of X U { ~b' ~ -7 to'} that is unconfirmable. Furthermore, since X is
p-consistent, X ' = X" U { ~b' ~ -7 to'}. Let 3~s stand for the set of probability
distributions that are proper for X and ~b'---~--1 tO' such that if P E ~s, then
P(o-lw) -- 1 for all ~ ~ o- in X. :~ We will consider two cases depending on the
structure of X":

Case 1: X" does not include any defeasible sentences. From Theorem 3.3, we
know that qS'---~ ~tO' cannot be tolerated by X" for otherwise X' wouldn't be
inconsistent. It follows from equation (4a) (probability assignment) that
P(~tO'l~b') = 0 for all P E ~s. Thus, P(tO'I4")= 1 in all P E ~s and since any
probability distribution that is in ~x.~ must also belong to ~s, it follows from
the definition of p-entailment that X ~p 4~ '~ tO'.

Case 2: X" includes defeasible and a possible empty set o f strict sentences.
Since X"U {~b'---~ ~tO'} is unconfirmable, we have from the proof of Theorem
3.3, that for all probability distributions P E ~s:

Up(~---~ tO) + Up(~'--~-~tO')>~ l , (A.8)
~ h ~ X "

which implies that

Z Up(~b---~ to) ~ 1 - Up(~'---->--qtO') -- Up(c~'---~tO') . (A.9)

20 Note that from the definition of p-entailment there must exist at least one P proper for X and
4 / ~ q/,

z, We know that ~s is not empty since XU {q~'--~ True} must be p-consistent according to
Definition 3.5. In the case where X does not contain any strict sentences, ~s simply denotes all
probability distributions that are proper for X U {~b'--* True}.

Consistency of defeasible databases 145

Since Up(C~---~ tO) = 1 - P(ck---~ tO) and Up(qb'---~ tO') = 1 - P(4~'---~ tO'), equation
(A.9) says that 1 - P(~b'---~ tO') can be made arbitrarily small by requiring the
values 1 - P(~b ~ tO) for ~b ~ tO E D to be sufficiently small and the values of
P(cr]~) to be 1 for all q ~ o ' E S . This is equivalent to saying that

X ~ 6 ' ~ to'. []

Theorem 3.9. I f X = D U S is p-consistent, X strictly p-entails q~'~ tr' iff
SU {q/---~ True} is p-consistent and there exists a subset S' o f S such that
q~' ~ --1 or is not tolerated by S'.

Proof. It follows from the proof of Theorem 3.7 (see Case 1 of the if part). []

Lemma A.1. T E S T _ C O N S I S T E N C Y constitutes a decision procedure for test-
ing the p-consistency o f a set X o f conditional sentences.

Proof. If the procedure stops at either line 4 or line 9 an unconfirmable subset
is found, and by Theorem 3.3 the set of sentences is p-inconsistent. If, on the
other hand, the procedure reaches line 10, the order in which the sentences are
tolerated can be used to build a high probability model for X using the
construction (of the "nested decreasing sequence") in the proof of Theorem
3.3, and X must therefore be p-consistent. []

Theorem 4.1. The worst-case complexity o f testing consistency (or entailment) is
bounded by [~Se × (½1ol 2 + IsI)] where Iol and ISI are the number o f defeas-
ible and strict sentences respectively, and ~SP is the complexity o f propositional
satisfiability for the material counterpart o f the sentences in the database.

Proof. Given that TEST_CONSISTENCY constitutes a decision procedure for
p-consistency (see Lemma A.1 above), a complexity bound for this procedure
will be an upper bound for the problem of deciding p-consistency. To assess
the time complexity of TEST_CONSISTENCY, note that the WHILE-loop of
line 6 will be executed ISI times in the worst case, and each time we must do at
most ~O ° work to test the satisfiability of S - { s } ; thus, its complexity is
IS[x ~b °. In order to f ind a tolerated sentence d : ~b ~ ~O in D', we must test at
most Io'l times (once for each sentence d E D ') for the satisfiability of the
conjunction of th ,x tO and the material counterparts of the sentences in
S U D' - {d}. However, the size of D ' is decremented by at least one sentence
in each iteration of the WHILE-loop in line 2, therefore the number of times
that we test for satisfiability is

I O l + l D] - l + I D I - 2 + " ' + I

which is bounded by ½1O[2. Thus, the overall time complexity is O[~O ° x

(½1OI 2+lSI)I. []

146 M. Goldszmidt, J, Pearl

Theorem 6.10. I f the set X is acyclic and of Horn form, wp2-implication can be
decided in polynomial time.

Proof. The proof of this theorem requires a short review of some results from
[6], since the procedure for deciding wpz-implication is based on one of the
algorithms presented in that paper. Given a set ~ of Horn clauses, Dowling
and Gallier define an auxiliary graph G~ to represent the set ~ , and reduce the
problem of finding a truth assignment satisfying the sentences in ~ to that of
finding a pebbling on the graph using a breadth-first strategy. We first describe
these concepts more precisely and then apply them to the problem at hand:

Definition A.2 (Dowling and Gallier [6]). Given a set ~ of Horn clauses, G:~ is
labeled directed graph with N ÷ 2 nodes (a node for each propositional letter
occurring in ~ , a node for true and a node for false) and a set of labels [I[. It is
constructed with i taking values in [1[as follows depending on the form of the
ith Horn formula in ~ :

(1) If it is a positive literal q, there is an edge from true to q labeled i.
(2) If it is of the form -npt v .- • v -lpn, there are n edges from p~ Pn

to false labeled i.
(3) If it is of the form --npl v . . . v - n p , , v q, there are n edges from

Pl p,, to q labeled i.

A node q in G~ can be pebbled if and only if for some label i, all sources of
incoming edges labeled i are pebbled. The node true is considered to be
pebbled. A pebbled path is a path on the graph such that all its nodes are
pebbled. Given the correspondence between a Horn rule h i and the set of
/-labeled edges in the graph we are going to use both terms (edge and rule)
indistinctively. Thus, eliminating a rule h i should be understood as removing
the set of / - labeled edges from the graph. Similarly a pebbled rule will indicate
that the associated nodes in the graph are pebbled etc. A graph Gju is
considered to be completely pebbled, if and only if all nodes that remain
unpebbled have at least one incoming edge with a source that cannot be
pebbled; i.e., there cannot be a pebbled path from true to that node.

Lemma A.3 (Dowling and Gallier [6]). Let ~ be a set of Horn clauses and let
G~ be its associated graph, ~ is unsatisfiable iff there is a pebbling in G~ from
true t o false.

This lemma and the existence of an O(N 2) algorithm for deciding satis-
fiability are proven in [6] (N represents the number of occurrences of literals in
the set of clauses). We now prove a couple of lemmas regarding a polynomial
procedure for deciding whether a conditional sentence x is weakly inconsistent
with respect to a set X. Recall that by the definition of wp2-implication

Consistency of defeasible databases 147

(Definition 6.8) once we have identified a sentence as weakly inconsistent, its
negation is wpz-implied. The lemma below shows a simple test for deciding
whether a particular Horn sentence h is essential for the unsatisfiability of some
set 9(:

Lemma A.4. Let G~e be an acyclic graph representing the set Y(of Horn clauses.
Assume that Y(is unsatisfiable and that G~ is completely pebbled. Let h ~ Y(be
a Horn clause such that both the antecedent and consequent of h are pebbled in
G~e, and assume that there is a pebbled path from the consequent of h to false.
Then there exists a nonempty subgraph G~e of G~ containing h such that G~ is
unsatisfiable but G~e - {h} is satisfiable.

We show the correctness of this lemma by constructing the graph G~. The
idea is to eliminate from G~ all the alternative pebbled paths to false, and
leave G~ with only the path that goes through the rule h, together with those
necessary to render this path pebbled. First, we select one pebbled path from
true to false that goes through h (by the assumptions of Lemma A.4, we know
that there is at least one). Next, we eliminate any rule that reaches false
directly (i.e., of form (2) in Definition A.2) that is not in the selected path. We
now traverse the selected path "backwards" from false to the node represent-
ing the consequent of h, and remove any incoming edges that are not necessary
to render this path pebbled. Note that we can guarantee to have eliminated
alternative paths to false. The only possibility for this construction to fail is if
we would have removed some paths that pebble the antecedents of h (in which
case G~ would be satisfiable), but this can only happen if there is a cycle in the
graph involving h, and this possibility is ruled out by the assumptions of
acyclicity. Since to complete the pebbling of a graph is no worse than testing
for satisfiability, and searching for a pebbled path from one node to another
can also be done by a breadth-first search algorithm it follows that the test
outlined in Lemma A.4 can be performed in time polynomial in N. This test
constitutes the basis of a procedure for deciding weakly inconsistency:

Lemma A.5. Given a set X which is of Horn form and acyclic, to decide
whether a sentence is weakly inconsistent with respect to X requires polynomial
time.

Given a set X and a sentence x, we first apply the consistency test of Section
4 to X U {x} in order to find an unconfirmable subset X u. If none can be found
or the sentence x does not belong to X., we can assert that x is not weakly
inconsistent with respect to X. In the first case X is consistent, and in the
second case x does not belong to any inconsistent subset of X U {x}. Once X u
is found (and x E Xu), we systematically complete the pebbling of the associ-
ated graph Gxu starting from each one of the antecedents of the sentences in

148 M. Goldszmidt, J. Pearl

X u. If in one of these pebblings, the sentence x complies with the requirements
of the test outlined in Lemma A.4, then x is weakly inconsistent. Note that all
the steps involved require polynomial time with respect to N (i.e., the number
of occurrences of literals in the set of clauses), and since once we have a
procedure for deciding whether a sentence is weakly inconsistent we have a
procedure for wP2-implication (see Definition 6.8), we have essentially proven
Theorem 6.10. []

We remark that these results are relevant not only to nonmonotonic reason-
ing but to any application involving propositional entailment.

Acknowledgement

Many of the proofs, techniques and notation are extensions of those
presented in [2]. We thank E. Adams, P. Eggert, H. Geffner, J. Horty, K.
Konolige, D. Lehmann, M. Magidor, D. Makinson, P. Morris, and two
anonymous reviewers for useful discussions and comments. We are indebted to
Kurt Konolige for pointing out a mistake in an earlier draft of Section 6, and to
Charles Elkan for suggesting the term "tolerate".

References

[1] E.W. Adams, Probability and the logic of conditionals, in: J. Hintikka and P. Suppes, eds.,
Aspects of Inductive Logic (North-Holland, Amsterdam, 1966).

[2] E.W. Adams, The Logic of Conditionals (Reidel, Dordrecht, Netherlands, 1975).
[3] A. Anderson and N. Belnap, Entailment: The Logic of Relevance and Necessity, Vol. 1

(Princeton University Press, Princeton, N J, 1975).
[4] C. Boutilier, Default priorities as epistemic entrenchment, Tech. Report KRR-TR-91-2,

University of Toronto, Toronto, Ont. (1991).
[5] J.P. Delgrande, An approach to default reasoning based on a first-order conditional logic:

revised report, Artif. lntell. 36 (1988) 63-90.
[6] W. Dowling and J. Gallier, Linear-time algorithms for testing the satisfiability of propositional

horn formulae, J. Logic Program. 3 (1984) 267-284.
[7] P. G~irdenfors, Knowledge in Flux: Modeling the Dynamics of Epistemic States (MIT Press,

Cambridge, MA, 1988).
[8] H.A. Geffner, On the logic of defaults, in: Proceedings AAA1-88, St. Paul, MN (1988)

449-454.
[9[H.A. Geffner, Default reasoning: causal and conditional theories, Tech. Report TR-137,

Ph.D. Dissertation, Cognitive Systems Lab., University of California Los Angeles, Los
Angeles, CA (1989). Forthcoming, MIT Press (1992).

[10] H.A. Geffner and J. Pearl, A framework for reasoning with defaults, in: H.E. Kyburg, R.P.
Loui and G. Carlson, eds., Knowledge Representation and Defeasible Reasoning (Kluwer
Academic Publishers, London, 1990) 245-265.

[11] M. Goldszmidt, P. Morris and J. Pearl, A maximum entropy approach to nonmonotonic
reasoning, in: Proceedings AAA1-90, Boston, MA (1990) 646-652.

[12] M. Goldszmidt and J. Pearl, On the relation between rational closure and system Z, in:

Consistency of defeasible databases 149

Proceedings Third International Workshop on Nonmonotonic Reasoning, South Lake Tahoe,
CA (1990) 130-140.

[13] M. Goldszmidt and J. Pearl, System Z+: a formalism for reasoning with variable strength
defaults, in: Proceedings AAAI-91, Anaheim, CA (1991) 399-404.

[14] J.F. Horty and R.H. Thomason, Mixing strict and defeasible inheritance, in: Proceedings
AAAI-88, St. Paul, MN (1988) 427-432.

[15] S. Kraus, D. Lehmann and M. Magidor, Nonmonotonic reasoning, preferential models and
cumulative logics, Artif. lntell. 44 (1990) 167-207.

[16] D. Lehmann, What does a conditional knowledge base entail? in: Proceedings First Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, Toronto, Ont.
(1989) 212-222.

[17] D. Lehmann and M. Magidor, What does a conditional knowledge base entail? Tech. Report
TR-90-10, Department of Computer Science, Hebrew University, Jerusalem (1990).

[18] R.P. Loui, Defeat among arguments: a system of defeasible inference, Comput. Intell. 3 (3)
(1987) 100-106.

[19] J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artif.
Intell. 28 (1986) 89-116.

[20] J. Pearl, Deciding consistency in inheritance networks, Tech. Report TR-96, Cognitive
Systems Lab., University of California Los Angeles, Los Angeles, CA (1987).

[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(Morgan Kaufmann, San Mateo, CA, 1988).

[22] J. Pearl, Probabilistic semantics for nonmonotonic reasoning: a survey, in: Proceedings First
International Conference on Principles of Knowledge Representation and Reasoning, Toronto,
Ont. (1989) 505-516.

[23] J. Pearl, System Z: a natural ordering of defaults with tractable applications to default
reasoning, in: M. Vardi, ed., Proceedings of Theoretical Aspects of Reasoning about Knowl-
edge (Morgan Kaufmann, San Mateo, CA, 1990) 121-135.

[24] D. Poole, On the comparison of theories: preferring the most specific explanation, in:
Proceedings IJCAI-85, Los Angeles, CA (1985) 144-147.

[25] R. Reiter, A logic for default reasoning, Artif. lntell. 13 (1980) 81-132.
[26] W. Spohn, Ordinal conditional functions: a dynamic theory of epistemic states, in: W.L.

Harper and B. Skyrms, eds., Causation in Decision, Belief Change, and Statistics (Reidel,
Dordrecht, Netherlands, 1987) 105-134.

[27] D.S. Touretzky, The Mathematics of Inheritance Systems (Morgan Kaufmann, San Mateo,
CA, 1986).

