
EXPERIMENTAL EVALUATION OF PREPROCESSING TECHNIQUES
IN CONSTRAINT SATISFACTION PROBLEMS*

Rina Dechter

Computer Science Department
Technion - Israel Institute of Technology

Haifa 32000, Israel

Abstract

This paper presents an evaluation of two orthogo­
nal schemes for improving the efficiency of solving
constraint satisfaction problems (CSPs). The first
scheme involves a class of pre-processing tech­
niques designed to make the representation of the
CSP more explicit, including directional-arc-
consistency, directional-path-consistency and
adaptive-consistency. The second scheme aims at
improving the order in which variables are chosen
for evaluation during the search. In the first part of
the experiment we tested the performance of back­
tracking (and its common enhancement --
backjumping) with and without each of the pre­
processings techniques above. The results show
that directional arc-consistency, a scheme which
embodies the simplest form of constraint record­
ing, outperforms all other preprocessing tech­
niques. The results of the second part of the experi­
ment suggest that the best variable ordering is
achieved by the fixed max-cardinality search
order.

1. Introduction

In this paper we report the results of two sets of experiments
designed to evaluate several constraint-satisfaction algo­
rithms. The first set is concerned with a class of pre-
processing algorithms which transform a given constraint
network into a more explicit representation before it is sub­
jected to a backtracking algorithm for solution. The three
pre-processing algorithms tested were Directional-Arc-
Consistency (DAC), Directional-Path-Consistency (DPC),
and Adaptive-Consistency (ADAPT), presented in [Dechter
1987]. These are variations of the well-known constraint-

*Th is work was supported in part by the National Science
Foundation, Grant #IRI-8815522 and by the A i r Force Office of
Scientific Research, Grant #AFOSR-88-0177.

Itay Meiri

Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024

propagation (also called "relaxation" or "consistency-
enforcing") techniques Arc-Consistency and Path-
Consistency, originally advocated by [Montanari 1974],
[Waltz 1975], and [Mackworth 1977], and their extension,
/-Consistency [Freuder 1982]. The preprocessing per­
formed by each of these consistency-enforcing algorithms
amounts to constraint recording, i.e., the explicit recording
of implicit constraints, with the aim of reducing the amount
of post-processing required by the backtracking algorithm.
They differ in the type and amount of implicit constraints
they choose to record. The advantage of algorithms DAC,
DPC, and ADAPT is that they take into account the direc­
tion in which backtracking will eventually search the prob­
lem and, as a result, they avoid processing many constraints
which are unnecessary for the search and which would have
been processed and recorded by the earlier consistency-
enforcing algorithms.

Worst-case analysis fails to reveal the merits and draw­
backs of preprocessing techniques like those described
above. With the exception of ADAPT, all the consistency-
enforcing algorithms mentioned are of polynomial complex­
ity and, therefore, negligible when compared to the
exponential worst-case behavior of backtracking search.
ADAPT records a set of constraints sufficient to guarantee
a backtrack-free search (i.e., linear post-processing com­
plexity). Its complexity is exponential in W* (a network
parameter to be defined later, where W* <n), which is still
bounded, in the worst case, by that of unprocessed back­
tracking.

Thus, worst-case analysis suggests that there is "noth­
ing to lose" and ''everything to gain" by applying pre-
processing before backtracking. Unfortunately, worse-case
analysis does not necessarily correlate with average case
performance and, in practice, straightforward backtracking
often performs best without the assistance of any
consistency-enforcing algorithm.

In order to shed some light on the practical utility of
using algorithms DAC, DPC, and ADAPT, we conducted
experiments comparing their performance to that of back­
tracking and its advanced version, backjumping [Dechter
1989], on a set of randomly generated CSPs. The results,
in general, show that the average complexity of solving

Dechter and Meiri 271

In Proceedings, IJCAI-89, Detroit, MI, 271-277, August 1989. TECHNICAL REPORT
R-121-IJCAI

these problems by backtracking is far from exponential and,
thus, the pre-processing performed by ADAPT and some­
times even by DPC, are too expensive, unless the graph is
very sparse. Algorithm DAC, on the other hand, comes out
as a clear winner. Apparently, it performs the right amount
of pre-processing for helping backtracking and, in most
cases, it even outperforms backjumping, previously shown
to be a very effective dialect of backtracking [Dechter
appear].

The second set of experiments compares the perfor­
mance of backtracking and backjumping under different
ordcrings of variables. We tested three fixed heuristics for
ordering: min-width, max-degree, and max-cardinality
search, and one dynamic ordering named dynamic search
rearangement [Purdom 1983]. The results suggest that the
fixed max-cardinality ordering results in the smallest aver­
age time, while dynamic ordering is most effective in prun­
ing the search space.

Section 2 presents the constraint network model and
reviews algorithms DAC, DPC and ADAPT. Section 3
discusses different ordering heuristics. Section 4 describes
the methodology of the experiments and presents and
analyzes results pertaining to the merits of pre-processing
techniques and ordering heuristics. Section 5 provides a
summary and conclusions.

2. Directional Pre-processing Algorithms

A constraint network (CN) involves a set of n variables,
X1,... ,Xn, their respective domains, R 1 , . . . ,Rn„, and a set
of constraints. A constraint Ci(Xil, • • • iXl) is a subset of
the Cartesian product R i j-xR i j that specifies which
values of the variables are compatible with each other. A
binary constraint network is one in which all the constraints
are binary, i.e., involving at most two variables. A CN may
be associated with a constraint-graph in which nodes
represent variables and arcs connect those pairs of variables
which appear in the same constraints. For instance, the CN
presented in Figure la, describes the problem of coloring
the nodes in a graph s.t. adjacent nodes have different
colors. This is a binary CN whose variables are the nodes
and whose values are the possible colors. A link represents
the set of value-pairs permitted by the constraint between
the variables it connects

A solution of a constraint network is an assignment of
values to all the variables such that all the constraints are
satisfied. The classical constraint satisfaction tasks are to
find one or all solutions.

The following paragraphs present the tested algorithms.
We start with adaptive-consistency, then generalize its
operation to describe a class of pre-processing algorithms
which include DAC and DPC as special cases. Few more
definitions are needed for this discussion. Given an order­
ing of the variables in a CN, for each variable, X,
PARENTS(X) is the set of all variables connected to it and
preceding it in the graph. The width of a node is the

number of predecessors linked to that node. The width of
an ordering is the maximum width of nodes in that order­
ing, and the width of a graph is the minimal width of all its
orderings. For instance, given the ordering (E,D,C,A,B) of
the graph in Figure la, the width of node B is 1 while the
width of this ordering is 2 and so is the width of this graph
(see Figure lb). Adaptive-consistency (i.e., ADAPT) pro­
cess the nodes in reverse order, i.e., each node is processed
before any of its parents.

The procedure record-constraint(V,SET) generates
and records those tuples of variables in SET that can be
consistent with at least one value of V. For instance if, in
our example, A has only the color green in its domain and C
and D each have two possible colors, (red,green), then the
call for record-constraint(A, {C,D}) will result in record­
ing a constraint on the variables C,D, allowing only the pair
(red,rcd) in their relation. ADAPT may tighten existing
constraints as well as impose constraints over clusters of
variables. It was shown [Dechter 1987], that when the pro-
cedure terminates backtrack can solve the problem, in the
order prescribed, without encountering any dead-end. The
topology of the new induced graph can be found prior to
executing the procedure, by recursively connecting any two
parents sharing a common successor.

Consider our example of Figure la in the ordering
(E,D,C,A,B) shown in Figure lb. B is chosen first and
since it has only one parent, D, the algorithm records a
unary constraint on D's domain, eliminating any of its

272 Search

values which doesn't have a consistent match in B. Variable
A is processed next and a binary constraint is enforced on its
two parents D and C, eliminating all pairs which have no
common consistent match in A. This operation may require
that a constraint arc be added between C and D. The algo­
rithm proceeds in the same manner through the rest of the
variables, taking into account both old and the newly gen­
erated constraints. The resulting graph, called induced
graph, contains the dashed arc in Figure lb.

Let W(d) be the width of the ordering d and W* (d) the
width of the induced graph along this ordering. The com­
plexity of record-constraint(V, PARENT(V)) (step 3) is
exponential in the cardinality of V and its parents. Since the
maximal size of the parent-sets is equal to the width of the
induced graph and since this step dominates the whole com­
putation, solving the problem along the ordering d is
0 (n-exp(W* (d)+l)) [Dechter 1987].

The directional algorithms (i.e., DAC, DPC, and
directional-i-consistency), differ from ADAPT only in the
amount and size of constraint recording performed in step 4.
Namely, instead of recording one constraint among all the
parent set, they record a few, smaller constraints on subsets
of the parents. Let level be a parameter indicating the
utmost cardinality of constraints which are recorded. The
class of algorithms adaptive (level) is henceforth described:

Adaptive(level =1) reduces to DAC while for level = 2
it becomes DPC. The graph induced by all these algo­
rithms, excluding the case of level =1 where the graph
doesn't change, has the same structure as the one generated
by adaptive-consistency, clearly, adaptive(level = W* (d))
is the same as adaptive-consistency, and thus, is guaranteed
to generate a backtrack-free solution.

The complexity of adaptive(/eve/) is both time and
space dominated by the procedure new-record(leve/) which

is This bound can be

lightened if the ordering d results in a smaller W* (d). How­
ever, finding the ordering which has the minimum induced
width is an NP-complete problem.

Since backtracking and backjumping are used as post­
processing algorithms they also deserve a word. Backtrack­
ing consistently assigns values to variables until either a
solution is found or there is a deadend (i.e., a variable has
no value consistent with previous values). In that case
backtracking goes back to the most recent instantiation,
changes it and continues. Backjumping improves the "go-
back** phase of backtracking and whenever a dead-end
occurs at variable X, it backs up to the most recent variable
connected to X in the constraint graph. This is a graph-
based variant of Gaschnig*s backjumping [Gaschnig 1979],
and it was shown [Dechter appear] that it outperforms back­
tracking on an instance by instance basis.

3, The Effects of Variable Ordering

It is well known that the ordering of variables, be it fixed
throughout search, or dynamic, may have a tremendous
influence on the size of the search space explored by back­
tracking algorithms. Finding an ordering which would
minimize the search space is a difficult problem and, conse­
quently, researchers have concentrated on devising heuris­
tics for variable ordering. The best known dynamic order­
ing is the dynamic search rearangement, which was
investigated analytically via average case analysis in [Pur-
dom 1983, Haralick 1980, Nudel 1983] and experimentally
in [Stone 1986, Rosiers 1986]. This heuristic selects as the
next variable to be instantiated a variable that has a minimal
number of values which are consistent with the current par­
tial solution. Heuristically, the choice of such variable
minimizes the remaining search. Deeper estimates of the
remaining search space were also considered [Purdom 1981,
Zabih 1988].

We consider three heuristics for fixed ordering of vari­
ables: the minimum width, the maximum degree, and the
maximum cardinality heuristics. The minimum width
heuristic [Freuder 1982], orders the variables from last to
first by selecting, at each stage, a node in the constraint
graph which has a minimal degree in the graph remaining
after deleting from the graph all nodes which have been
selected already. As its name indicates, the heuristic results
in a minimum width ordering. The max-degree heuristic
orders the variables in a decreasing order of their degrees in
the constraint graph. This heuristic also aims at (but does
not guarantee) finding a minimum-width ordering.

The third heuristic is the max-cardinality search ord­
ering. This ordering selects the first variable arbitrarily,
then, at each stage it appends to the selected variables one
which is connected to the largest group among the variables
already selected. This heuristic can be thought of as the

Dechter and Meiri 273

fixed version of dynamic search rearangement: the next
variable to be selected is the one which constraints with the
largest number of already instantiated variables, namely it is
the most constrained variable.

4. Experimental Results

We compared 26 algorithm combinations on our test prob­
lems. Algorithms Backtracking (BTK) and Backjumping
(BJ) were executed on each problem without any pre-
processing and after pre-processing them by either
directional-arc-consistency, directional-path-consistency
and adaptive-consistency (8 combinations). Each such com­
bination was tested with each one of the fixed ordering
heuristics, max-degree, max-cardinality search and min-
width heuristic, (yielding 24 combinations). Two more runs
of backtracking and backjumping were performed in con­
junction with dynamic ordering.

The test problems were selected from a randomly gen­
erated CSPs. The random problems were created by gen­
erating random graphs and associating with each arc in the
graph a randomly generated binary constraint. We pur­
posely concentrated on parameters (e.g., probability of an
arc) which result in more difficult problems for backtrack­
ing. We chose to restrict the set of test problems to binary
CSPs because problems with constraints of higher order
tend to have denser constraint graphs for which the pre-
processing algorithms have higher overhead. It should be
pointed out, however, that adaptive consistency will add to
the network non-binary constraints so the implementation of
the backtracking and backjumping algorithms had to accom­
modate general, non-binary, CSPs.

We experimented with two sets of random problems:
one including 42 problem instances having 10 variables and
5 values and the other, including 35 problem instances, with
15 variables and 5 values. This set was selected from a
much larger set of instances from which all the easy prob­
lems were deleted, and therefore, the given set represent the
more difficult among such randomly generated problems.
Problems of larger size took too much time and space for
our machine to handle, especially for algorithm adaptive-
consistency.

We recorded the number of consistency-checks and the
number of dead-ends (number of backtrackings) in each
run. The number of consistency-checks is considered a
realistic measure of the overall performance, while the
number of backtrackings is indicative of the size of the
search space exposed.

Each algorithm combination were run twice on each
problem instance, once for finding one solution and the
other for finding all solutions. The results were clustered
into 6 groups corresponding to the two problem sizes (either
10 or 15 variables) and the three cases for which statistics
were recorded, namely, finding one solution (called "first"),
finding all solutions (called "all"), and for the cases that no
solutions exist (called "failure").

4.1 Evaluation of Pre-processing Algorithms

Our first interest is to compare the effect of the three pre-
processing algorithms DAC, DPC and ADAPt with back­
tracking and backjumping. Since their relative behaviour
w.r.t. the three fixed ordering schemes was found to be quite
similar (and in order to save space) we report, in this part,
the results of running them using max-degree pre-ordering
only.

Figure 2 presents graphs of the average number of con­
sistency checks, classified according to the width of the
induced graph W*, for four of the six groups of instances.
The results of the "first" and "failure" cases for problems
size of 10 are omitted, for the sake of saving space, because
they exhibit the same behavior as their counter parts of size
15. Each pair of graphs describes the results of one of the
groups, where the one on the left contrasts the results for
algorithms ADAPT, BTK and BJ and the one on the right
shows (using a different scale) the results of algorithms BJ,
DAC and DPC. The results reported for DAC, DPC, and
ADAPT are for the cases were these algorithms were com­
plemented by backjumping. The results when backtracking
was used were very similar to those with backjumping since
after the pre-processing most of the dead-ends were elim­
inated.

Comparing, first, ADAPT to BTK and BJ (left column
in Figure 2) we see that even on the average, adaptive-
consistency has an exponential behavior as a function of
W*. BTK and BJ, on the other end, exhibit a much more
moderate, maybe even linear, behavior.

The average performance of ADAPT is better than
BTK only for small values of W* and when the task is to
find all solutions. Evidently, the amount of preparation per­
formed by ADAPT is too heavy to be justified by just one
solution (Figure 2e), but when it is divided among several
solutions, it becomes worth-while (Figure 2c). For the case
of n=10, when looking for one solution, BTK outperformed
ADAPT even for W* = 1,2 (not shown in Figure 2).

When compared to BJ, however, ADAPT appears as a
complete looser. BJ outperformed ADAPT in every
instance. Clearly, BJ exploits the structure of the problem
in a more efficient way than ADAPT and should be pre­
ferred, especially considering the fact that it doesn't need
the additional space which is consumed by ADAPT.
(Although ADAPT does not seem to be a sensible choice
for a one time solution of a CSP, it still can be used in order
to find a better representation of a network of constraints,
for example, when the network represents some
knowledge-base on which many queries are to be answered
over time. In such cases the work for generating the new
representation can be ignored [Dechter 1988].)

The disappointing results of ADAPT can be explained
by comparing it with the two other, less ambitious, pre-
processing algorithms, DAC and DPC. When we counted
the number of dead-ends left after pre-processing (not
shown here), we found that in almost all problem instances

274 Search

Figure 3: The effect of DAC on the
search space (Case n=15)

algorithm DPC alone eliminated all future dead-ends. It is
clear, therefore, that for problem instances of this type,
ADAPT is doing unnecessary pre-processing. Moreover,
the number of dead-ends left by DAC alone (see Figure 3)
shows that most of the work is accomplished by this algo­
rithm which performs the smallest amount of constraint
recording.

In summary, the two algorithms that stand out in the experi­
ments are BJ and DAC. Furthermore, the performance of
DAC followed by BJ is better than executing just BJ.
Among the other three, DPC comes next, and the relation­
ship between BTK and ADAPT is dependent on W*.

4.2 evaluation of the Effects of Variable Ordering

We now wish to focus on the effects of of the three fixed
ordering and the dynamic ordering on various algorithm
combinations, and in particular on backtracking and
backjumping. Figure 4 presents the results of comparing
backtracking and backjumping on (because of space limita­
tions) four of the six groups and for each of the four order­
ing schemes: 1. the max-degree (max), 2. min-width order­
ing (min), 3. max-cardinality ordering (card), and 4.
dynamic ordering (dnmic). In contrast with dynamic search
rearangement, fixed ordering schemes were never evaluated
experimentally. To maintain continuity we averaged the
same set of instances, and therefore W* indicates the
induced width of max-degree's ordering.

Figure 4: Effects of variable-ordering rules

276 Search

in our experiments, the card ordering scheme gave the
best results in most of the cases. It seems to outperform
other fixed orderings and even the dynamic ordering. It is
particularly clear for the task of finding all solutions, while
for first solution min-width comes quite as good. However,
when we compared the number of dead-ends associated
with each ordering, it becomes clear that dynamic ordering
is expanding the smallest search space (i.e., it has the least
number of deadends on an instance by instance basis,
almost (these results are not graphed here). Therefore, had
we better implemented this technique we may have a better
overall performance. Indeed in the current implementation
no data-structure was used to alleviate redundant con­
sistency checks as was done in other look-ahead schemes
like Forward-Checking [Haralick 1980].

5. Summary and Conclusions

We evaluated the performance of several backtracking tech­
niques for solving CSPs. First, we tested the effect of vari­
ous pre-processing algorithms on backtracking and
backjumping, under fixed ordering, and concluded that
directional arc-consistency followed by backjumping yields
the best improvement Second, we tested the effect of four
variable ordering schemes and concluded, quite convinc­
ingly that the max-cardinality order yields the least amount
of computation. It is expected, therefore, that directional
are-consistency with backjumping on the max-cardinality
ordering will yield the best results. Indeed, when we com­
pared all algorithms (i.e., BTK, BJ, ADAPT, DAC, DPC)
on all the three fixed orderings (i.e., MAX, MIN, CARD)
the combination of DAC-CARD gave the best performance
on three of the six groups tested and in the rest it came as a
close second best after DAC-MIN. Averaging over the 6
groups of instances, DAC-CARD was best. This suggest
that the best approach is to choose max-cardinality ordering
and to perform directional arc-consistency followed by
backjumping.

These results, however, should be qualified in two
ways. First, the conclusions are valid only relative to prob­
lem domains with statistics similar to those used in generat­
ing our test samples. Second, the superior pruning power of
dynamic ordering suggests that further performance
improvements could be realized by a more sophisticated
implementation of this technique.

References

[Dechter 1987]Dechter, R. and J. Pearl, "Network-based
Heuristics for Constraint-Catisfaction Problems," Artificial
Intelligence. Vol. 34, No. 1,1987, pp. 1-38.

[Dechter 1988]Dechter, R. and J. Pearl, 'Tree-clustering
Schemes for Constraint-Processing/' in Proceedings
AAAI-88, St Poul, Minnesota: 1988.

[Dechter 1989]Dechter, R., ''Enhancement Schemes for
Constraint Processing: Backjumping, Learning, and Cutset
Decomposition," Artificial Intelligence, appear.

[Freuder 1982]Freuder, E.C., "A Sufficient Condition for
Backtrack-free Search.,' ' Journal of the ACM, Vol. 29, No.
1,1982, pp. 24-32.

[Gaschnig 1979]Gaschnig, J., "Performance Measurement
and Analysis of Certain Search Algorithms.," Carnegie-
Mellon University, Pittsburg, Pennsylvania, Tech. Rep.
CMU-CS-79-124,1979.

[Haralick 1980]Haralick, R. M. and G. L. Elliott, "Increas­
ing Tree-search Efficiency for Constraint Satisfaction Prob­
lems/' Artificial Intelligence, Vol. 14,1980, pp. 263-313.

[Mackworth 1977]Mackworth, A. K., "Consistency in Net­
works of Relations/' Artificial intelligence, Vol. 8, No. 1,
1977, pp. 99-118.

[Montanari 1974]Montanari, U., "Networks of Constraints:
Fundamental Properties and Applications to Picture Pro­
cessing/' Information Science, Vol. 7,1974, pp. 95-132.

[Nudel 1983]Nudel, B., "Consistent-Labeling Problems and
their Algorithms: Expected Complexities and Theory-based
Heuristics/' Artificial Intelligence, Vol. 21, 1983, pp. 135-
178.

[Purdom 1983]Purdom, P., "Search Rearrangement Back­
tracking and Polynomial Average Time," Artificial Intelli-
gence, Vol. 21,1983, pp. 117-133.

[Purdom 1981]Purdom, P. W., E. L. Robertson, and C. A.
Brown, "Backtracking with Multi-level Dynamic Search
Rearangement," Actalnformatica, Vol. 15, No. 2,1981, pp.
99-114.

[Rosiers 1986]Rosiers, W. and M. Bruynooghe, "Empirical
Study of Some Constraint Satisfaction Algorithms," Katho-
lieke Universiteit Leuven, Leuven , Belguim, Tech. Rep.
CW 50,1986.

[Stone 1986]Stone, H. S. and J. M. Stone, "Efficient Search
Techniques- An Empirical Study of the N-Queens Prob­
lem.," IBM TJ. Watson Research Center, Yorktown
Heights, NY, Tech. Rep. RC 12057 (#54343), 1986.

[Waltz 1975]Waltz, D., "Understanding Line Drawings of
Scenes with Shadows," in The Psychology of Computer
Vision, P. H. Winston, Ed. New York, NY: McGraw-Hill
Book Company, 1975.

[Zabih 1988]Zabih, R. and D. McAllester, "A Rearrange­
ment Search Strategy for Determining Propositional
Satisfiability," in Proceedings AAAI-88, St Paul, Min­
nesota: 1988.

Dechter and Meiri 277

