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Abstract 

This paper presents an evaluation of two orthogo­
nal schemes for improving the efficiency of solving 
constraint satisfaction problems (CSPs). The first 
scheme involves a class of pre-processing tech­
niques designed to make the representation of the 
CSP more explicit, including directional-arc-
consistency, directional-path-consistency and 
adaptive-consistency. The second scheme aims at 
improving the order in which variables are chosen 
for evaluation during the search. In the first part of 
the experiment we tested the performance of back­
tracking (and its common enhancement --
backjumping) with and without each of the pre­
processings techniques above. The results show 
that directional arc-consistency, a scheme which 
embodies the simplest form of constraint record­
ing, outperforms all other preprocessing tech­
niques. The results of the second part of the experi­
ment suggest that the best variable ordering is 
achieved by the fixed max-cardinality search 
order. 

1. Introduction

In this paper we report the results of two sets of experiments 
designed to evaluate several constraint-satisfaction algo­
rithms. The first set is concerned with a class of pre-
processing algorithms which transform a given constraint 
network into a more explicit representation before it is sub­
jected to a backtracking algorithm for solution. The three 
pre-processing algorithms tested were Directional-Arc-
Consistency (DAC), Directional-Path-Consistency (DPC), 
and Adaptive-Consistency (ADAPT), presented in [Dechter 
1987]. These are variations of the well-known constraint-
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propagation (also called "relaxation" or "consistency-
enforcing") techniques Arc-Consistency and Path-
Consistency, originally advocated by [Montanari 1974], 
[Waltz 1975], and [Mackworth 1977], and their extension, 
/-Consistency [Freuder 1982]. The preprocessing per­
formed by each of these consistency-enforcing algorithms 
amounts to constraint recording, i.e., the explicit recording 
of implicit constraints, with the aim of reducing the amount 
of post-processing required by the backtracking algorithm. 
They differ in the type and amount of implicit constraints 
they choose to record. The advantage of algorithms DAC, 
DPC, and ADAPT is that they take into account the direc­
tion in which backtracking will eventually search the prob­
lem and, as a result, they avoid processing many constraints 
which are unnecessary for the search and which would have 
been processed and recorded by the earlier consistency-
enforcing algorithms. 

Worst-case analysis fails to reveal the merits and draw­
backs of preprocessing techniques like those described 
above. With the exception of ADAPT, all the consistency-
enforcing algorithms mentioned are of polynomial complex­
ity and, therefore, negligible when compared to the 
exponential worst-case behavior of backtracking search. 
ADAPT records a set of constraints sufficient to guarantee 
a backtrack-free search ( i.e., linear post-processing com­
plexity). Its complexity is exponential in W* (a network 
parameter to be defined later, where W* <n), which is still 
bounded, in the worst case, by that of unprocessed back­
tracking. 

Thus, worst-case analysis suggests that there is "noth­
ing to lose" and ''everything to gain" by applying pre-
processing before backtracking. Unfortunately, worse-case 
analysis does not necessarily correlate with average case 
performance and, in practice, straightforward backtracking 
often performs best without the assistance of any 
consistency-enforcing algorithm. 

In order to shed some light on the practical utility of 
using algorithms DAC, DPC, and ADAPT, we conducted 
experiments comparing their performance to that of back­
tracking and its advanced version, backjumping [Dechter 
1989], on a set of randomly generated CSPs. The results, 
in general, show that the average complexity of solving 
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these problems by backtracking is far from exponential and, 
thus, the pre-processing performed by ADAPT and some­
times even by DPC, are too expensive, unless the graph is 
very sparse. Algorithm DAC, on the other hand, comes out 
as a clear winner. Apparently, it performs the right amount 
of pre-processing for helping backtracking and, in most 
cases, it even outperforms backjumping, previously shown 
to be a very effective dialect of backtracking [Dechter 
appear]. 

The second set of experiments compares the perfor­
mance of backtracking and backjumping under different 
ordcrings of variables. We tested three fixed heuristics for 
ordering: min-width, max-degree, and max-cardinality 
search, and one dynamic ordering named dynamic search 
rearangement [Purdom 1983]. The results suggest that the 
fixed max-cardinality ordering results in the smallest aver­
age time, while dynamic ordering is most effective in prun­
ing the search space. 

Section 2 presents the constraint network model and 
reviews algorithms DAC, DPC and ADAPT. Section 3 
discusses different ordering heuristics. Section 4 describes 
the methodology of the experiments and presents and 
analyzes results pertaining to the merits of pre-processing 
techniques and ordering heuristics. Section 5 provides a 
summary and conclusions. 

2. Directional Pre-processing Algorithms 

A constraint network (CN) involves a set of n variables, 
X1,... ,Xn, their respective domains, R 1 , . . . ,Rn„, and a set 
of constraints. A constraint Ci(Xil, • • • iXl) is a subset of 
the Cartesian product R i j-xR i j that specifies which 
values of the variables are compatible with each other. A 
binary constraint network is one in which all the constraints 
are binary, i.e., involving at most two variables. A CN may 
be associated with a constraint-graph in which nodes 
represent variables and arcs connect those pairs of variables 
which appear in the same constraints. For instance, the CN 
presented in Figure la, describes the problem of coloring 
the nodes in a graph s.t. adjacent nodes have different 
colors. This is a binary CN whose variables are the nodes 
and whose values are the possible colors. A link represents 
the set of value-pairs permitted by the constraint between 
the variables it connects 

A solution of a constraint network is an assignment of 
values to all the variables such that all the constraints are 
satisfied. The classical constraint satisfaction tasks are to 
find one or all solutions. 

The following paragraphs present the tested algorithms. 
We start with adaptive-consistency, then generalize its 
operation to describe a class of pre-processing algorithms 
which include DAC and DPC as special cases. Few more 
definitions are needed for this discussion. Given an order­
ing of the variables in a CN, for each variable, X, 
PARENTS(X) is the set of all variables connected to it and 
preceding it in the graph. The width of a node is the 

number of predecessors linked to that node. The width of 
an ordering is the maximum width of nodes in that order­
ing, and the width of a graph is the minimal width of all its 
orderings. For instance, given the ordering (E,D,C,A,B) of 
the graph in Figure la, the width of node B is 1 while the 
width of this ordering is 2 and so is the width of this graph 
(see Figure lb). Adaptive-consistency (i.e., ADAPT) pro­
cess the nodes in reverse order, i.e., each node is processed 
before any of its parents. 

The procedure record-constraint(V,SET) generates 
and records those tuples of variables in SET that can be 
consistent with at least one value of V. For instance if, in 
our example, A has only the color green in its domain and C 
and D each have two possible colors, (red,green), then the 
call for record-constraint(A, {C,D}) will result in record­
ing a constraint on the variables C,D, allowing only the pair 
(red,rcd) in their relation. ADAPT may tighten existing 
constraints as well as impose constraints over clusters of 
variables. It was shown [Dechter 1987], that when the pro-
cedure terminates backtrack can solve the problem, in the 
order prescribed, without encountering any dead-end. The 
topology of the new induced graph can be found prior to 
executing the procedure, by recursively connecting any two 
parents sharing a common successor. 

Consider our example of Figure la in the ordering 
(E,D,C,A,B) shown in Figure lb. B is chosen first and 
since it has only one parent, D, the algorithm records a 
unary constraint on D's domain, eliminating any of its 

272 Search 



values which doesn't have a consistent match in B. Variable 
A is processed next and a binary constraint is enforced on its 
two parents D and C, eliminating all pairs which have no 
common consistent match in A. This operation may require 
that a constraint arc be added between C and D. The algo­
rithm proceeds in the same manner through the rest of the 
variables, taking into account both old and the newly gen­
erated constraints. The resulting graph, called induced 
graph, contains the dashed arc in Figure lb. 

Let W(d) be the width of the ordering d and W* (d) the 
width of the induced graph along this ordering. The com­
plexity of record-constraint(V, PARENT(V)) (step 3) is 
exponential in the cardinality of V and its parents. Since the 
maximal size of the parent-sets is equal to the width of the 
induced graph and since this step dominates the whole com­
putation, solving the problem along the ordering d is 
0 (n-exp(W* (d)+l)) [Dechter 1987]. 

The directional algorithms (i.e., DAC, DPC, and 
directional-i-consistency), differ from ADAPT only in the 
amount and size of constraint recording performed in step 4. 
Namely, instead of recording one constraint among all the 
parent set, they record a few, smaller constraints on subsets 
of the parents. Let level be a parameter indicating the 
utmost cardinality of constraints which are recorded. The 
class of algorithms adaptive (level) is henceforth described: 

Adaptive(level =1) reduces to DAC while for level = 2 
it becomes DPC. The graph induced by all these algo­
rithms, excluding the case of level =1 where the graph 
doesn't change, has the same structure as the one generated 
by adaptive-consistency, clearly, adaptive(level = W* (d)) 
is the same as adaptive-consistency, and thus, is guaranteed 
to generate a backtrack-free solution. 

The complexity of adaptive(/eve/) is both time and 
space dominated by the procedure new-record(leve/) which 

is This bound can be 

lightened if the ordering d results in a smaller W* (d). How­
ever, finding the ordering which has the minimum induced 
width is an NP-complete problem. 

Since backtracking and backjumping are used as post­
processing algorithms they also deserve a word. Backtrack­
ing consistently assigns values to variables until either a 
solution is found or there is a deadend (i.e., a variable has 
no value consistent with previous values). In that case 
backtracking goes back to the most recent instantiation, 
changes it and continues. Backjumping improves the "go-
back** phase of backtracking and whenever a dead-end 
occurs at variable X, it backs up to the most recent variable 
connected to X in the constraint graph. This is a graph-
based variant of Gaschnig*s backjumping [Gaschnig 1979], 
and it was shown [Dechter appear] that it outperforms back­
tracking on an instance by instance basis. 

3, The Effects of Variable Ordering 

It is well known that the ordering of variables, be it fixed 
throughout search, or dynamic, may have a tremendous 
influence on the size of the search space explored by back­
tracking algorithms. Finding an ordering which would 
minimize the search space is a difficult problem and, conse­
quently, researchers have concentrated on devising heuris­
tics for variable ordering. The best known dynamic order­
ing is the dynamic search rearangement, which was 
investigated analytically via average case analysis in [Pur-
dom 1983, Haralick 1980, Nudel 1983] and experimentally 
in [Stone 1986, Rosiers 1986]. This heuristic selects as the 
next variable to be instantiated a variable that has a minimal 
number of values which are consistent with the current par­
tial solution. Heuristically, the choice of such variable 
minimizes the remaining search. Deeper estimates of the 
remaining search space were also considered [Purdom 1981, 
Zabih 1988]. 

We consider three heuristics for fixed ordering of vari­
ables: the minimum width, the maximum degree, and the 
maximum cardinality heuristics. The minimum width 
heuristic [Freuder 1982], orders the variables from last to 
first by selecting, at each stage, a node in the constraint 
graph which has a minimal degree in the graph remaining 
after deleting from the graph all nodes which have been 
selected already. As its name indicates, the heuristic results 
in a minimum width ordering. The max-degree heuristic 
orders the variables in a decreasing order of their degrees in 
the constraint graph. This heuristic also aims at (but does 
not guarantee) finding a minimum-width ordering. 

The third heuristic is the max-cardinality search ord­
ering. This ordering selects the first variable arbitrarily, 
then, at each stage it appends to the selected variables one 
which is connected to the largest group among the variables 
already selected. This heuristic can be thought of as the 
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fixed version of dynamic search rearangement: the next 
variable to be selected is the one which constraints with the 
largest number of already instantiated variables, namely it is 
the most constrained variable. 

4. Experimental Results 

We compared 26 algorithm combinations on our test prob­
lems. Algorithms Backtracking (BTK) and Backjumping 
(BJ) were executed on each problem without any pre-
processing and after pre-processing them by either 
directional-arc-consistency, directional-path-consistency 
and adaptive-consistency (8 combinations). Each such com­
bination was tested with each one of the fixed ordering 
heuristics, max-degree, max-cardinality search and min-
width heuristic, (yielding 24 combinations). Two more runs 
of backtracking and backjumping were performed in con­
junction with dynamic ordering. 

The test problems were selected from a randomly gen­
erated CSPs. The random problems were created by gen­
erating random graphs and associating with each arc in the 
graph a randomly generated binary constraint. We pur­
posely concentrated on parameters (e.g., probability of an 
arc) which result in more difficult problems for backtrack­
ing. We chose to restrict the set of test problems to binary 
CSPs because problems with constraints of higher order 
tend to have denser constraint graphs for which the pre-
processing algorithms have higher overhead. It should be 
pointed out, however, that adaptive consistency will add to 
the network non-binary constraints so the implementation of 
the backtracking and backjumping algorithms had to accom­
modate general, non-binary, CSPs. 

We experimented with two sets of random problems: 
one including 42 problem instances having 10 variables and 
5 values and the other, including 35 problem instances, with 
15 variables and 5 values. This set was selected from a 
much larger set of instances from which all the easy prob­
lems were deleted, and therefore, the given set represent the 
more difficult among such randomly generated problems. 
Problems of larger size took too much time and space for 
our machine to handle, especially for algorithm adaptive-
consistency. 

We recorded the number of consistency-checks and the 
number of dead-ends (number of backtrackings) in each 
run. The number of consistency-checks is considered a 
realistic measure of the overall performance, while the 
number of backtrackings is indicative of the size of the 
search space exposed. 

Each algorithm combination were run twice on each 
problem instance, once for finding one solution and the 
other for finding all solutions. The results were clustered 
into 6 groups corresponding to the two problem sizes (either 
10 or 15 variables) and the three cases for which statistics 
were recorded, namely, finding one solution (called "first"), 
finding all solutions (called "all"), and for the cases that no 
solutions exist (called "failure"). 

4.1 Evaluation of Pre-processing Algorithms 

Our first interest is to compare the effect of the three pre-
processing algorithms DAC, DPC and ADAPt with back­
tracking and backjumping. Since their relative behaviour 
w.r.t. the three fixed ordering schemes was found to be quite 
similar (and in order to save space) we report, in this part, 
the results of running them using max-degree pre-ordering 
only. 

Figure 2 presents graphs of the average number of con­
sistency checks, classified according to the width of the 
induced graph W*, for four of the six groups of instances. 
The results of the "first" and "failure" cases for problems 
size of 10 are omitted, for the sake of saving space, because 
they exhibit the same behavior as their counter parts of size 
15. Each pair of graphs describes the results of one of the 
groups, where the one on the left contrasts the results for 
algorithms ADAPT, BTK and BJ and the one on the right 
shows (using a different scale) the results of algorithms BJ, 
DAC and DPC. The results reported for DAC, DPC, and 
ADAPT are for the cases were these algorithms were com­
plemented by backjumping. The results when backtracking 
was used were very similar to those with backjumping since 
after the pre-processing most of the dead-ends were elim­
inated. 

Comparing, first, ADAPT to BTK and BJ (left column 
in Figure 2) we see that even on the average, adaptive-
consistency has an exponential behavior as a function of 
W*. BTK and BJ, on the other end, exhibit a much more 
moderate, maybe even linear, behavior. 

The average performance of ADAPT is better than 
BTK only for small values of W* and when the task is to 
find all solutions. Evidently, the amount of preparation per­
formed by ADAPT is too heavy to be justified by just one 
solution (Figure 2e), but when it is divided among several 
solutions, it becomes worth-while (Figure 2c). For the case 
of n=10, when looking for one solution, BTK outperformed 
ADAPT even for W* = 1,2 (not shown in Figure 2). 

When compared to BJ, however, ADAPT appears as a 
complete looser. BJ outperformed ADAPT in every 
instance. Clearly, BJ exploits the structure of the problem 
in a more efficient way than ADAPT and should be pre­
ferred, especially considering the fact that it doesn't need 
the additional space which is consumed by ADAPT. 
(Although ADAPT does not seem to be a sensible choice 
for a one time solution of a CSP, it still can be used in order 
to find a better representation of a network of constraints, 
for example, when the network represents some 
knowledge-base on which many queries are to be answered 
over time. In such cases the work for generating the new 
representation can be ignored [Dechter 1988]. ) 

The disappointing results of ADAPT can be explained 
by comparing it with the two other, less ambitious, pre-
processing algorithms, DAC and DPC. When we counted 
the number of dead-ends left after pre-processing (not 
shown here), we found that in almost all problem instances 
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Figure 3: The effect of DAC on the 
search space (Case n=15) 

algorithm DPC alone eliminated all future dead-ends. It is 
clear, therefore, that for problem instances of this type, 
ADAPT is doing unnecessary pre-processing. Moreover, 
the number of dead-ends left by DAC alone (see Figure 3) 
shows that most of the work is accomplished by this algo­
rithm which performs the smallest amount of constraint 
recording. 

In summary, the two algorithms that stand out in the experi­
ments are BJ and DAC. Furthermore, the performance of 
DAC followed by BJ is better than executing just BJ. 
Among the other three, DPC comes next, and the relation­
ship between BTK and ADAPT is dependent on W*. 

4.2 evaluation of the Effects of Variable Ordering 

We now wish to focus on the effects of of the three fixed 
ordering and the dynamic ordering on various algorithm 
combinations, and in particular on backtracking and 
backjumping. Figure 4 presents the results of comparing 
backtracking and backjumping on (because of space limita­
tions) four of the six groups and for each of the four order­
ing schemes: 1. the max-degree (max), 2. min-width order­
ing (min), 3. max-cardinality ordering (card), and 4. 
dynamic ordering (dnmic). In contrast with dynamic search 
rearangement, fixed ordering schemes were never evaluated 
experimentally. To maintain continuity we averaged the 
same set of instances, and therefore W* indicates the 
induced width of max-degree's ordering. 

Figure 4: Effects of variable-ordering rules 
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in our experiments, the card ordering scheme gave the 
best results in most of the cases. It seems to outperform 
other fixed orderings and even the dynamic ordering. It is 
particularly clear for the task of finding all solutions, while 
for first solution min-width comes quite as good. However, 
when we compared the number of dead-ends associated 
with each ordering, it becomes clear that dynamic ordering 
is expanding the smallest search space (i.e., it has the least 
number of deadends on an instance by instance basis, 
almost (these results are not graphed here). Therefore, had 
we better implemented this technique we may have a better 
overall performance. Indeed in the current implementation 
no data-structure was used to alleviate redundant con­
sistency checks as was done in other look-ahead schemes 
like Forward-Checking [Haralick 1980]. 

5. Summary and Conclusions 

We evaluated the performance of several backtracking tech­
niques for solving CSPs. First, we tested the effect of vari­
ous pre-processing algorithms on backtracking and 
backjumping, under fixed ordering, and concluded that 
directional arc-consistency followed by backjumping yields 
the best improvement Second, we tested the effect of four 
variable ordering schemes and concluded, quite convinc­
ingly that the max-cardinality order yields the least amount 
of computation. It is expected, therefore, that directional 
are-consistency with backjumping on the max-cardinality 
ordering will yield the best results. Indeed, when we com­
pared all algorithms (i.e., BTK, BJ, ADAPT, DAC, DPC) 
on all the three fixed orderings (i.e., MAX, MIN, CARD) 
the combination of DAC-CARD gave the best performance 
on three of the six groups tested and in the rest it came as a 
close second best after DAC-MIN. Averaging over the 6 
groups of instances, DAC-CARD was best. This suggest 
that the best approach is to choose max-cardinality ordering 
and to perform directional arc-consistency followed by 
backjumping. 

These results, however, should be qualified in two 
ways. First, the conclusions are valid only relative to prob­
lem domains with statistics similar to those used in generat­
ing our test samples. Second, the superior pruning power of 
dynamic ordering suggests that further performance 
improvements could be realized by a more sophisticated 
implementation of this technique. 

References 

[Dechter 1987]Dechter, R. and J. Pearl, "Network-based 
Heuristics for Constraint-Catisfaction Problems," Artificial 
Intelligence. Vol. 34, No. 1,1987, pp. 1-38. 

[Dechter 1988]Dechter, R. and J. Pearl, 'Tree-clustering 
Schemes for Constraint-Processing/' in Proceedings 
AAAI-88, St Poul, Minnesota: 1988. 

[Dechter 1989]Dechter, R., ''Enhancement Schemes for 
Constraint Processing: Backjumping, Learning, and Cutset 
Decomposition," Artificial Intelligence, appear. 

[Freuder 1982]Freuder, E.C., "A Sufficient Condition for 
Backtrack-free Search.,' ' Journal of the ACM, Vol. 29, No. 
1,1982, pp. 24-32. 

[Gaschnig 1979]Gaschnig, J., "Performance Measurement 
and Analysis of Certain Search Algorithms.," Carnegie-
Mellon University, Pittsburg, Pennsylvania, Tech. Rep. 
CMU-CS-79-124,1979. 

[Haralick 1980]Haralick, R. M. and G. L. Elliott, "Increas­
ing Tree-search Efficiency for Constraint Satisfaction Prob­
lems/' Artificial Intelligence, Vol. 14,1980, pp. 263-313. 

[Mackworth 1977]Mackworth, A. K., "Consistency in Net­
works of Relations/' Artificial intelligence, Vol. 8, No. 1, 
1977, pp. 99-118. 

[Montanari 1974]Montanari, U., "Networks of Constraints: 
Fundamental Properties and Applications to Picture Pro­
cessing/' Information Science, Vol. 7,1974, pp. 95-132. 

[Nudel 1983]Nudel, B., "Consistent-Labeling Problems and 
their Algorithms: Expected Complexities and Theory-based 
Heuristics/' Artificial Intelligence, Vol. 21, 1983, pp. 135-
178. 

[Purdom 1983]Purdom, P., "Search Rearrangement Back­
tracking and Polynomial Average Time," Artificial Intelli-
gence, Vol. 21,1983, pp. 117-133. 

[Purdom 1981]Purdom, P. W., E. L. Robertson, and C. A. 
Brown, "Backtracking with Multi-level Dynamic Search 
Rearangement," Actalnformatica, Vol. 15, No. 2,1981, pp. 
99-114. 

[Rosiers 1986]Rosiers, W. and M. Bruynooghe, "Empirical 
Study of Some Constraint Satisfaction Algorithms," Katho-
lieke Universiteit Leuven, Leuven , Belguim, Tech. Rep. 
CW 50,1986. 

[Stone 1986]Stone, H. S. and J. M. Stone, "Efficient Search 
Techniques- An Empirical Study of the N-Queens Prob­
lem.," IBM TJ. Watson Research Center, Yorktown 
Heights, NY, Tech. Rep. RC 12057 (#54343), 1986. 

[Waltz 1975]Waltz, D., "Understanding Line Drawings of 
Scenes with Shadows," in The Psychology of Computer 
Vision, P. H. Winston, Ed. New York, NY: McGraw-Hill 
Book Company, 1975. 

[Zabih 1988]Zabih, R. and D. McAllester, "A Rearrange­
ment Search Strategy for Determining Propositional 
Satisfiability," in Proceedings AAAI-88, St Paul, Min­
nesota: 1988. 

Dechter and Meiri 277 




