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ABSTRACT

This chapter explores the role of directed acyclic graphs (DAGs) as a
representation of conditional independence relationships. We show that DAGs
offer polynomially sound and complete inference mechanisms for inferring
conditional independence relationships from a given causal set of such
relationships. As a consequence, d-separation, a graphical criterion for identifying
independencies in a DAG, is shown to be both correct and optimal. This criterion
can be used, in lieu of arithmetic manipulations, to test the legitimacy of
graphical transformations on influence diagrams, to identify relevant sources
of information in the diagram and, thus, to guide the control of inferencing and
information-gathering strategies.

4.1 INTRODUCTION AND SUMMARY OF RESULTS

Networks employing directed acyclic graphs (DAGs) have a long and rich
tradition, starting with the geneticist Sewal Wright (1921). He developed a
method called path analysis (Wright, 1934) which later became an established
representation of causal models in economics (Wold, 1964), sociology (Blalock,
1971; Kenny, 1979) and psychology (Duncan, 1975). Good (1961) used DAGs
to represent causal hierarchies of binary variables with disjunctive causes.
Influence diagrams represent another application of DAG representation
{Howard and Matheson, 1981; Olmsted, 1983; Shachter, 1986) developed for
decision analysis, they contain both event nodes and decision nodes. Recursive
models is the name given to such networks by statisticians seeking meaningful
and effective decompositions of contingency tables (Lauritzen, 1982; Wermuth
and Lauritzen, 1983; Kiiveri et al., 1984). Bayesian belief networks (or causal
networks) is the name adopted for describing networks that perform evidential
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68 THE LOGIC OF INFLUENCE DIAGRAMS

reasoning (Pearl, 1985, 1986, 1988). This chapter establishes a clear semantics
for such networks that might explain their wide usage as models for forecasting,
decision analysis and evidential reasoning.

An influence diagram* can be viewed as an economical scheme for
representing conditional independence relationships and for deducing new
independencies from those used in the construction of the diagram. The nodes
in the diagram represent variables in some domain and its topology is specified
by a list of qualitative judgements elicited from an expert in this domain. The
specification list designates to each variable v a set of parents judged to have
direct influence on v, and this amounts to asserting that, given its parents-set,

“each variable is independent of its other predecessors in some total order of
the variables. This stratified list of independencies, henceforth called input list
or causal list, implies many additional independence relationships that can be
read off the diagram. For example, it is well known that, given its parents, each
variable is also independent of all its non-descendants (Howard and Matheson,
1981). Additionally, if § is a set of nodes containing v’s parents, v’s children and
the parents of those children, then v is independent of all ‘other variables in the
system, given those in S (Pearl, 1986). These assertions ‘are examples of valid
consequences of the input list, i.e. independencies that hold forevery probability.
distribution that satisfies the conditional independencies specified by the input.
If one ventures to perform topological transformations on the diagram (¢.g. arc
reversal or node removal, Shachter, 1986), caution must be exercised to ensure
that each transformation does not introduce extraneous, invalid independencies,
and/or that the number of valid independencies which become obscured by the
transformation is kept at a minimum. Thus, in order to decide which
transformations are admissible, one should have simple criteria for deciding
which conditional independence statement is valid and which is not. The
development of such criteria is the central theme of this chapter. :

This chapter deals with the following questions:

1. What are the valid consequences of the input list?

2. What are the valid consequences of the input list that can be read off the
diagram?

3. Are the two sets identical?

The answers obtained are as follows:

1. A statement is a valid consequence of the input set if and only if it can be
derived from it using the following four axioms. Letting X, Y, and Z stand
for three disjoint subsets of variables, and denoting by I(X,Z,Y) the
statement: ‘the variables in X are conditionally independent of those in Y,
given those in Z°, the axioms state:

*Our analysis will focus on the so-called knowledge part of influence diagrams, thus excluding
decision nodes.
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Symmetry ,
IX,Z,Y)=1(Y,Z,X) “(4.1a)
Decomposition
IX,Z,YUW)=I(X,Z,Y) and I(X,Z,W) (4.1b)
Weak union
(X, 2, YUW)=1(X,ZUW,Y) 4.1¢)
Contraction .
IX,ZuoY,W) and I(X,Z,Y)=I(X,Z,YUW) 4.1d)

These axioms form a system called semi-graphoid (Pear] and Paz, 1985; Pearl
and Verma, 1987) and were first proposed as heuristic properties of
conditional independence by Dawid (1979).
2. Every statement that can be read off the DAG using the d-separation criterion
represents a valid consequence of the input list (Verma, 1986).
The d-s¢paration criterion is defined as follows (Pearl, 1985): for any three
disjoint subsets X, Y, Z of nodes in a DAG D, Z is said to d-separate X from
Y, denote I{X, Z, Y),, if there is no path from a nodein X toanodein Y
along which the following two conditions hold: (a) every node with converging
arrows is in Z or has a descendant in Z, and (b) every other node is outside
Z. (The definition is elaborated in Section 4.2.)
3. The two sets are identical, namely, a statement is valid if and only if it is
graphically validated under d-scparatlon in the diagram (Geiger and Pearl,
1988a).

The first result establishes the decidability of verifying whether an arbit-
rary statement-is a valid consequence of the input set, ie. applying axioms
(4.1a)-(4.1d) on a causal input list is guaranteed to generate all its valid
consequences and none other. The second result renders the d-separation
criterion a polynomially sound inference rule, i.e. it runs in polynomial time
and certifies only valid statements. The third renders the d-separation criterion
a complete inference rule. In summary, the diagram constitutes a sound and
complete inference mechanism that identifies, in polynomial time, each and
every valid consequence in the system. Interestingly, result 2 holds for any
semi-graphoid system, not necessarily probabilistic conditional independencies.
Thus, influence diagrams can serve as effective inference instruments for a variety
of dependence relationships, e.g. partial correlations (Cramer, 1946) and
qualitative database dependencies (Fagin, 1977).

The results above are true only for causal input sets, i.e. those that recursively
specify the dependence of each variable on its predecessors in some total order,
e.g. chronological. The general problem of verifying whether a given conditional
independence statement logically follows from an arbitrary set of such
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statements, may be undecidable. Its decidability would be resolved upon finding
a complete set of axioms for conditional independence, i.e. axioms that are
powerful enough to derive all valid consequences of an arbitrary input set. Until
very recently, all indications were that axioms (4.1a)—(4.1d) are complete, as
conjectured in Pearl and Paz (1985), but a new result of Studeny (1988) has
refuted that hypothesis. Currently, it appears rather unlikely that there exists
a finite set of axioms which is complete for conditional independence, thus, the
general decidability problem remains unsettled. The completeness problem is
treated in Geiger and Pearl (1988b) and completeness results for specialized
subsets of probabilistic dependencies are summarized in Section 4.2.6.

4.2 SOUNDNESS AND COMPLETENESS

4.2.1 The d-separatioil criterion

The definition of d-separation is best motivated by regarding DAGs as a
representation of causal relationships. Designating a node for every variable
and assigning a link between every cause to each of its direct consequences
defines a graphical representation of a causal hierarchy. For example, the
propositions ‘It is raining’ (a), ‘the pavement is wet’ (8) and ‘John slipped on
the pavement’ (y) are well represented by a three-node chain, from a through
B to y. The chain indicates that either rain or wet pavement could cause slipping,
yet wet pavement is designated as the direct cause; rain could cause someone
to slip only by wetting the pavement, not if the pavement is covered. Moreover,
knowing the condition of the pavement renders ‘slipping’ and ‘raining’
independent, and this is represented graphically by a d-separation condition,
I(e, B,7)p, showing node « and y separated from each other by node .

Now assume that ‘broken pipe’ (8) is considered another direct cause for wet
pavement, as in Figure 4.1. An informational dependency may be induced
between the two causes of wet pavement: ‘rain’ and ‘broken pipe’. Although
they appear connected in Figure 4.1, these propositions are marginally
independent and become dependent once we learn that the pavement is wet or
that someone broke his leg. An increase in our belief in either cause would
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Figure 4.1
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Figure 4.2

decrease our belief in the other as it would ‘explain away’ the observation. The
following definition of d-separation permits us to graphically identify such
induced dependencies from the DAG (d connoted ‘directional’).

Definition (d-separation). If X, Y, and Z are three disjoint subsets of nodes in
a DAG D, then Z is said to d-separate X from Y, denoted I(X, Z, Y)p, if and
only if there is no path* from a node in X to a node in Y along which the
following two conditions hold: (1) every node with converging arrows either is
or has a descendant in Z, and (2) every other node is outside Z. A path satisfying
the conditions above is said to be active otherwise it is said to be blocked (by
Z). Whenever a statement /(X, Z, Y)p holds in a DAG D, the predicate (X, Z, Y)
is said to-be graphically verified (or an independency), otherwise it is graphically
unverified by D (or a dependency). O

In Figure 4.2, for example, X = {2} and Y = {3} are d-separated by Z = {1};
_the path 2« 1 -3 is blocked by 1eZ while the path 2 —4 « 3 is blocked because -
4 and all its descendants are outside Z. Thus 1(2,1,3) is graphically verified by
D. However, X and Y are not d-separated by Z'={1,5} because the path
2 -4« 3 is rendered active. Consequently, (2, {1, 5}, 3) is graphically unverified
by D; by virtue of 5, a descendant of 4, being in Z. Learning the value of the
consequence S, renders its causes 2 and 3 dependent, like opening a pathway
along the converging arrows at 4.

4.2.2 Conditional independence and its graphical representations

Definition. 1f X, Y and Z are three disjoint subsets of variables of a distribution
P, then X and Y are said to be conditionally independent given Z, denoted

I(X,Z,Y)p, iff P(x,ylz)=P(x|z)P(y|2)

*By path we mean a sequence of edges in the underlying undirected graph, ie. ignoring the
directionality of the arcs.
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for all possible assignments X =x, Y=y and Z =z for which P(Z=12z)>0.
I{X,Z,Y)p is called a (conditional independence) statement. A conditional
independence statement ¢ logically follows from a set Z of such statements if
o holds in every distribution that obeys Z. In such case we also say that o is
a valid consequence of . O

It is easy to verify that the set of statements I(X,Z, Y), generated by any
probability distribution P must obey axioms (4.1a)-(4.1d). More generally, any
system of statements I{X,Z,Y) that obey axioms (4.la)-(4.1d) is called a
semi-graphoid (Pearl and Paz, 1985; Pear]l and Verma, 1987). Intuitively, the
essence of these axioms lies in equations {4.1¢) and (4.1d), asserting that when
we learn an irrelevant fact, all relevance relationships among other variables in
the system should remain unaltered; any information that was relevant remains
relevant and that which was irrelevant remains irrelevant. These axioms,
common to almost every formalization of informational dependencies, are very
similar to those assembled by Dawid (1979) for probabilistic conditional
_ independence and those proposed by Smith (1987b) for generalized conditional
independence. The difference is only that Dawid and Smith lumped
equations (4.1b)—(4.1d) into one, and added an axiom to handle some cases of
overlapping sets X, Y, Z. We shall henceforth call axioms (4.1a)-(4.1d) Dawid’s
axioms, or semi-graphoid axioms, interchangeably. Interestingly, both
undirected graphs and DAGs conform to the semi-graphoid axioms (hence the
name) if we associate the statement I(X,Z,Y) with the graphical condition
‘every path from X to Y is blocked by the set of nodes corresponding to Z°.
(In DAGs, blocking is defined by d-separation.) It is this commonality, we
speculate, that renders graphs such a popular scheme for representing
_informational dependencies.

Ideally, to employ a DAG D as a graphical representation for dependencies
of some distribution P we would like to require that for every three disjoint
sets of variables in P (and nodes in D) the following equivalence should hold:

KX, Z,Y)y Wl I(X,Z,Y). 4.2)

This would provide a clear graphical representation of all variables that are
conditionally independent. When equation (4.2) holds, D is said to be a perfect
map of P. Unfortunately, this requirement is often too strong because there are
many distributions that have no perfect map in DAGs. The spectrum of
probabilistic dependencies is in fact so rich that it cannot be cast into any
representation scheme that uses polynomial amount of storage (Verma, 1987).
Geiger (1987) provides a graphical representation based on a collection of graphs
(multi-DAGs) that is powerful enough to perfectly represent an arbitrary
distribution; however, as shown by Verma, it requires, on the average, an
exponential number of DAGs.

Being unable to provide perfect maps at a reasonable cost, we compromise
the requirement that the graphs represent each and every dependency of P, and
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allow some independencies to escape representation. We will require through'
that the set of undisplayed independencies be minimal.

Definition. A DAG D is said to be an [-map of P if for every three dxsjomt
subsets X, Y and Z of variables the following holds:

I(X,Z, Vp=1(X,Z,Y)p. 4.3)
D is said to be a minimal I-map of P if no edge can be deleted from D without
destroying its I-mapness. -

The task of finding a DAG which is a minimal /-map of a given distribution
P can be accomplished by the traditional chain-rule decomposition of
probability distributions. The procedure consists of the following steps: assign
a total ordering d to the variables of P. For each variable i of P, identify a
minimal set of predecessors S; that renders i independent of all its other
predecessors (in the ordering of the first step). Assign a direct link from every
variable in S, to i. The analysis of Verma (1986) and Pearl and Verma (1987)
ensures that the resulting DAG is an I-map of P, and is minimal in the sense
that no edge can be deleted without destroying its /-mapness. The input list L
for this construction consists of n conditional indépendence statements, one for
each variable, all of the form I(i, S;, U;, — S;), where U ;, is the set of predecessors
of i and §, is a subset of U, that renders i conditionally independent of all its
other predecessors. This set of conditional independence statements is called a
causal input list and is said to define the DAG D. The term ‘causal’ input list
stems from the following analogy: suppose we order the variables
chronologically, such that a cause always precedes its effect. Then, from all
potential causes of an effect i, a causal input list selects a minimal subset that
is sufficient to explain i, thus rendering all other preceding events superfluous.
This selected subset of variables are considered direct causes of i and therefore
each is connected to it by a direct link.

4.2.3 The main results

Clearly, the constructed DAG represents more independencies than those listed
in the input, namely, all those that are graphically verified by the d-separation
criterion. The results reported in the previous subsection guarantee that all
graphically verified statements are indeed valid in P, i.e. the DAG is an /-map
of P. It turns out that the constructed DAG has another useful property: it
graphically verifies every conditional independence statement that logically
follows from L (i.e. holds in every distribution that obeys L). Hence, we cannot
hope to improve the d-separation criterion to display more independencies,
because all valid consequences of L (which defines D) are already captured by
d-separation.

The three theorems below formalize these results. Proofs can be found in the
references cited.
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Theorem 4.1 (soundness) (Verma, 1986). Let D be a DAG defined by a causal
input list L, of some dependency model obeying axioms (4.1a)-(4.1d) (e.g.
probabilistic dependence). Then, every graphically verified statement is a valid
consequence of L. 0

Theorem 4.2 (closure) (Verma, 1986). Let D be a DAG defined by a causal
input list L. Then, the set of graphically verified statements is exactly the closure
of L under axioms (4.1a)—(4.1d). |

Theorem 4.3 (completeness) (Geiger and Pearl, 1988a). Let D be a DAG
defined by a causal input list L.. Then, every valid consequence of L is graphically
verified by D (equivalently, every graphically unverified statement in D is not

-a valid consequence of L). - O

Theorem 4.1 guarantees that the DAG displays only valid statements.
Theorem 4.2 guarantees that the DAG displays all statements that are derivable
from L via axioms (4.1). Theorem 4.3 assures that the DAG displays all
statements that logically follow from L, i.. the axioms in (4.1) are complete,
capable of deriving all valid consequences of a causal input list. Moreover, s :ce
a statement in a DAG can be verified in polynomial time, Theorems 4.1-4.3
provide a: complete polynomial inference mechanism for deriving all
independency statements that are implied by a causal input list.

The first two theorems are more general than the third in the sense that they
hold for every dependence relationship that obeys axioms (4.1a)-(4.1d), not
necessarily those based on probabilistic conditional independence (proofs can
be found in Verma, 1986 and Verma and Pearl, 1988). Among these dependence
relationships are partial correlations (Cramer, 1946; Pearl and Paz, 1985) and
qualitative dependencies (Fagin, 1977; Shafer et al., 1987) which can readily be
shown to obey axioms (4.1). The completeness of d-separation (Theorem 4.3)
relative partial correlations has been established in Geiger and Pearl (1988)
while completeness relative to qualitative dependencies has not yet been
examined.

4.2.4 Deterministic nodes and D-separation

Theorem 1-3 assume that L contains only statements of the form
1(,S;, Uy — S)). Occasionally, however, we are in possession of stronger forms
of independence relationships, in which case additional statements should be
read of the DAG. A common example is the case of a deterministic variable
(Shachter, 1988), ie. a variable that is functionally dependent on its
corresponding parents in the DAG. The existence of each such variable i could
be encoded in L by a statement of global independence I(i,S;, U —S,—1i)
asserting that conditioned on S,,i is independent of all other variables, not
merely of its predecessors. The independencies that are implied by the modified
input list can be read from the DAG using an enhanced version of d-separation,
named D-separation.
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Definition. Il X, Y, and Z are three disjoint subsets of nodes in a DAG D,
then Z is said to D-separate X from Y, if and only if there is no path from a
node in X to a node in Y along which the following three conditions hold:
(1) every node with converging arrows either is or has a descendant in Z;
(2)every other node is outside Z; and (3) no node is functionally determined by Z.

g

The new criterion certifies all independencies that are revealed by d-separation
plus additional ones due to the enhancement of the input list. For example, if
the arc2 —4 in Figure 4.2 were deterministic, then 2 D-separates 5 from 3 and,
indeed, 5 and 3 must be conditionally independent given 2 because 2 determines -
the value of 4. In fact, the link 3—4 is redundant because (4,2, 135) implies
1(4,25,1). It is for this reason that deterministic nodes can be presumed to
receive only deterministic incoming arrows. The soundness and completeness
of D-separation is stated in Theorem 4.4,

Theorem 4.4 (Geiger and Verma, 1988). Let D be a DAG defined by a causal
input list L, possibly containing functional dependencies. Then a statement is
a valid consequence of L if and only if it is graphically verified in D by the
D-separation criterion. O

These graphical criteria provide easy means of recognizing conditional
independence in influence diagrams as well as identifying the set of parameters
needed for any given computation (Section 4.4.3). We now show how these
theorems can be employed as an inference mechanism. Assume an expert has
identified the following conditional independencies between variables denoted
1-5:

L={IQ2,1, )13, 1,2),1(4,723, 1),1(5,4,123)}

(the first statement in L is trivial). We address two questions. First, what is the
set of all valid consequences of L? Second, in particular, is I(3,124,5) a valid
consequence of L? For general input lists the answer for such questions may
be undecidable but, since L is a causal list, it defines a DAG that graphically
verifies each and every valid consequences of L. The DAG D is the one shown
in- Figure 4.2, which constitutes a compact representation of all valid
consequences of L. To answer the second question, we simply observe that
1(3,124,5) is graphically verified in D. A graph-based algorithm for another
subclass of statements, called fixed context statements, is given in Geiger and
Pear] (1988b). In that paper, results analogous to Theorem 4.1-4.3 are proven
for Markov fields; a representation scheme based on undirected graphs (Isham,
1981, Lauritzen, 1982).

| 4.2.5 Strong completeness

Theorem 4.3 can be restated to assert that for every DAG D and any statement
o graphically unverified by D there exists a probability distribution P, that
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embodies D’s causal input set L and the dependency ¢. By Theorem 4.2, P, must
embody all graphically verified statements as well because they are all denvable
from L by Dawid’s axioms. Thus, Theorems 4.2 and 4.3 guarantee the existence
of a distribution P, that satisfies all graphically verified statements and a single,
arbitrarily chosen, graphically unverified statement (i.e. a dependency). The
question answered by Theorem 4.5 is the existence of a distribution P that
embodies all independencies of D and all its dependencies, not merely a single
dependency. Such a set of axioms is said to be strongly complete (Beeri et ol
1977).

Theorem 4.5 (strong completeness) (Geiger and Pearl, 1988a). For every
DAG D there exists a distribution P such that for every three disjoint sets of
variables X, Y and Z the following holds:

X, Z2,Y), iff I(X,Z,Y). O

Theorem 4.5 legitimizes the use of DAGs as a representation scheme for
probabilistic dependencies; a model builder who uses the language of DAGs
to express dependenmes is guarded from inconsistencies.

4.2.6 Other completeness results

We conclude this section with a summary of completeness results for specialized
subsets of independence statements. Proofs can be found in Geiger and Pearl
(1988b) and Geiger et al. (1988). The first result establishes an axiomatic
characterization of marginal statements, i.c. statements of the form I(X, Z,, Y)
where the middle argument Z,, is fixed. The second result provides a complete
axiomatic characterization of fixed-context statements, ie. statements of the
form I(X,Z,Y) where X UZ U Y sum to a fixed set of variables U,

Theorem 4.6 (completeness for marginal mdependence) Let  be a set of
marginal statements closed under the following axioms:

Symmetry I(X,Z2,Y)-1(Y,Z,,X)
Decomposition IX,Z,YW)-I1(X,Z,Y)

Mixing IX,Z2,,Y) and XY, Z,W)-I(X,Z,,YW).
There exists a probability model P that obeys all statements in T and none
other. ‘ 0

Theorem 4.7 (completeness for fixed-context). Let T be a set of fixed-context
statements closed under the axioms:

Symmetry I(Y,Z2,Y)-i(Y,Z,X)
Weak union IX,Z,YW)->I(X,ZY,W)
Weak contraction HXY,Z,W) and HX,ZW,Y)-I(X,Z,YW)
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There exists a probability model P that obeys all statements in T and none
other. Moreover, if T is closed also under :

Intersection (X, ZW,Y) and HX,ZY W)-I(X Z YW)

then P can be selected to be strictly positive. O

The membership question, whether a given marginal statement follows from
an arbitrary set of such statements, can be answered in linear time (Geiger et al.,
1988). For fixed-context statements, the membership question can be answered
in quadratic time (Beeri et al., 1987).

4.3 COROLLARIES

Theorem 4.1 leads to four corollaries which are the key to the construction of
influence diagrams from a given distribution P. First we define influence
diagrams in terms of the independencies they portray, then we justify their
method of construction.

Definition. Given a probability distribution P on a set U of variables,
U={X,,X,,....,X,}, a DAG D =(U,E) is called an influence diagram* of P
if and only if D is a minimal I-map of P. ‘ O

Corollary 4.1. Given a probability distribution P(xy,Xx,,...,X,) and any
ordering d of the variables. The DAG created by designating as parents of X
any minimal set S, of predecessors satisfying

I(X,-,Si, U(i)—-S,-), U(i)z{Xl9X2""9Xi‘1} (4.4)

is'an influence diagram of P. Conversely, every influence diagram of P can be
constructed by identifying the parent sets S, defined in (4.4) along some ordering
d. If P is strictly positive, then all the parent sets are unique (Pearl and Paz,
1985) and the influence diagram is unique as well (given d). 0O

Although the structure of the diagram depends strongly on the node ordering
used in the construction, each diagram is nevertheless an /-map of the underlying
distribution P. This means that all conditional independencies portrayed in the
diagram (via d-separation) are valid in P and hence, are order independent. An
immediate corollary of this observation yields an order-independent test for
minimal /-mapness.

Corollary 4.2. Given a DAG D and a probability distribution P, a necessary
and sufficient condition for D to be a minimal /-map (hence an influence diagram)
of P is that each variable X, be conditionally independent of all its
non-descendants, given its parents S;, and no proper subset of S, satisfies this
condition.

The necessary part follows from the fact that every parent-set S; d-separates
X; from all its non-descendants. The sufficient part holds because X’s
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independence of all its non-descendants entails Xs independence of its
predecessors in a particular ordering d (as required by Corollary 4.1). O

Corollary 4.3. 1f an influence diagram D is constructed from P (by the method
of Corollary 4.1) in some ordering d, then any ordering d' consistent with the
direction of arrows in D would give rise to an identical diagram.

The validity of Corollary 4.3 follows from that of Corollary 4.2, which ensures
that the set S; will satisfy equation (4.4) in any new ordering, as long as the new
set of X/'s predecessors does not contain any of X /s old descendants. Thus,
once the network is constructed, the original order can be forgotten; only the
partial order displayed in the diagram matters.

Another interesting corollary of Theorem 4.1 is a generalization of the
celebrated Markov-chain property which is used extensively in the probabilistic
analysis of random walks, time-series data and other stochastic processes (Feller,
1968; Meditch, 1969). The property states that if in a sequence of n trials
X.,X,,..., X, the outcome of any trial X,,k=2,3...n depends only on the
outcome of its directly preceding trial X, _, then, given the entire past and
future trials X, X,,..., X, _.X ..., X, the outcome of X, depends only

1
on its two nearest nexg,hbors, X, and X o+ Formally,

IX,X,_ X ..xl), 2<ken

k-1 "k~2"
=IX,X,_ X, ,X..X_ X  ..X) 2€k<n—1

" (The converse holds only for full graphoids, e.g. strictly positive distributions.)
Theorem 1 generalizes the Markov-chain property to dependencies other than
probabilistic and to structures other than chains. The d-separation criterion
uniquely determines a Markov blanket for any given node X, in an influence
diagram, namely, a set BL(X,) of variables that renders X; independent of all
variables not in BL{X)), i.e. I(X,,BL(X,), U —BL(X,) — X)).

Corollary 4.4. In any influence diagram, the union of the following three types
of neighbors is sufficient for forming a Markov blanket of a node X: the direct
parents of X, the direct successors of X; and all direct parents of the latter.

O

Thus, if the diagram consists of a%ingle path (i.e. a Markov chain), the Markov
blanket of any nonterminal node consists of its two immediate neighbors, as
expected. In trees, the Markov blanket consists of the (unique) parent and the
immediate successors. In Figure 4.2, however, the Markov blanket of node 3 is
{1,4,3}. Note that in general, these Markov blankets are not minimal; alternative
ordering might display X; with a smaller set of neighbors.

The necessary part of Corollary 4.2 was stated without proof in Howard and
Matheson (1981) and was later used in the derivations of Olmsted (1983) and
Shachter (1986). Corollaries 4.2 and 4.3 are proven in Smith (1987) using the
axioms of equation (4.1). Since Theorem 4.1 establishes d-separation a sound
procedure relative to Dawid’s axioms, the validity of such corollaries can now
be verified by purely graphical means.
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4.4 APPLICATIONS

4.4.1 Entailment and equivalence

One problem concerning influence diagrams that has received much attention
is that of entailment, i.e. establishing a criterion for testing whether one influence
diagram entails all the conditional independencies portrayed by another (Smith,
1987). We shall now establish such a criterion using the notions of d-separation.

Definition. Given two diagrams D, and D,, we say that D, entails D,
(equivalently, D, is implied by D, ) if every independency verified in D, is implied
by D,, ie. if for all disjoint subsets of nodes X, Y and Z, we have

(X, Z,Y)p,=1(X,Z,Y)p,. 4.5)

Remark. Although the two diagrams may contain different sets of nodes, we
require only that equation (4.5) holds for all triplets (X, Y, Z) that appear in
both diagrams.

Based on Theorem 4.1 and its corollaries, condition (4.5) is equivalent to
stating that every independency displayed in D, must hold in any probability
distribution P, that underlies D, ie. D, is an I-map of any distribution P of
which D, is an [-map. Moreover, Theorem 4.1 also yields a simple procedure
for verifying (4.5) without testing all triplets (X, Y,Z) in D,. According to
Corollary 4.2, it is sufficient to verify equation (4.5) for just one causal list of D,.

Corollary 4.5. A necessary and sufficient condition for a diagram D, to entail
D, is that, for every node X; having parents S? in D, we have:
I(X,,S}, U} — X, — S})p,, where U} = {X,,X,,...,X,_,} is a set of predeces-
sors of X; in some ordering that is consistent with the arrows of D,. O

As an example, consider the four DAGs shown in Figure 4.3. Here D, does
not entail D, because I(5,1,24) is not verified in D,. Similarly D, does not
entail D; I(5, 14,2) is not verified in D;. However, D, entails D, because the
following three statements: '

12,1, 2),  15,14,2),  1(4,125, &)

are verified in D,. These statements correspond to the causal list of D, in the
ordering (1,2,5,4). In general, the question of entailment can be decided in
O(n?) time, because each d-separation statement can be verified in linear time
(Geiger and Verma, 1988).

Definition. Two DAGs, D, and D,, are said to be equivalent, written D, = D,,
if each entails the other, namely, if they portray the same set of conditional
independence relationships over the set of nodes common to both.

The equivalence of two DAGs can be established either by entailment both
ways or, more transparently, by invoking the notions of adjacency and
conditional adjacency. O

Definition. Two nodes a and b in an influence diagram are adjacent, written
a— b, if there is a direct are connecting them. They are conditionally adjacent
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« 1 1
2 3 2
_ 5 5
4 4
D, D,
1 i
2 2 ‘
5 5
4 4
D, D,
Figure 4.3

given c, written a — b|c, if @ and b are adjacent or, alternatively, if a and b are
“the common parents of ¢ or some ancestor of c. |
Adjacency is equivalent to non-d-separability, namely, a — b if and only if
there is no set S (not containing a or b) which d-separates a from b. Using these
notions, the criterion for entailment can be stated concisely:
Corollary 4.6 (equivalence). For any two influence diagrams, D and E, over
the set of nodes N, D = E if and only if both of the following hold:

. ¥V a—bea-b
E

abeN

2. ¥V a-blcea—blc
a,b,ceN E

Thus, D = E if and only if D and E share the same set of undirected edges and
the same set of converging arrows emanating form non-adjacent sources;
non-converging arrows may have arbitrary orientations (as long as they do not
form directed cycles). Typical examples of equivalent networks are those created
by different orientations of a tree or, more generally, different orientations of
a chordal graph. Chordal graphs can be oriented in such a way that all
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converging arrows emanate from adjacent sources (Pearl, 1988), thus satisfyirig
the conditions of Corollary 4.6.

4.4.2 Arc reversal and node removal

A transformation on an influence diagram is said to be sound if it does not
introduce extrancous independencies, namely, if the resulting diagram is entailed
by the original one. The importance of guarding against the introduction of
new independencies lies in the requirement that the numerical parameters which
label the arcs of the transformed diagram be sufficient to reconstruct the
distribution that underlies the original diagram. It can be shown that as long
as the transformed diagram does not display new independencies, the original
distribution can be reconstructed by taking the product of the conditional
probabilities of all child-parents families in the transformed diagram (e.g. see
Pearl, 1988). Thus, no information is lost in the transformation.

Corollary 4.5 defines the conditions for sound transformations of influence
diagrams. For example, the conditions forbid the removal of any arc from the
diagram; only reorientation and addition of arcs are permitted. Additionally, if
a reorientation destroys a pair of non-adjacent common parents, then the pair
must be joined by a link; otherwise a conditional independence between such
parents (given the child and the grandparents) would be created by the
transformation. Finally, if a reorientation creats a new pair of common parents,
then the pair must be joined by a link. o

From this corollary, most results concerning manipulations of influence
diagrams are immediate. Consider, for example, the rule for arc reversal
(Olmsted, 1983): if an arc from node X to node Y is reversed, X and Y should
inherit each other’s parents. The reason for this rule is shown in Figure 4.4,
where Sy,Sy and Sy, represent sets of parent nodes of X,Y and X and ¥
respectively. The transformed diagram without parent inheritance (Figure 4.4b)
displays two independencies which are not verified by the original diagram
(Figure 4.4a), namely, I(X, YSyySy,Sy) and I(Y,SyySy,Sx). To destroy these
two independencies it is necessary (and sufficient) to add the two arcs Sy—X

Sx Sxy Sy Sy Sxy Sy

@ ®)
Figure 4.4 )
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and Sy— Y, as shown in Figure 4.4(c). Figure 4.4(c) satisfies the condition of
Corollary 4.5, because the final parent set YSySyySy of X is shown in
Figure 4.4(a) to d-separate X from all its non-descendants (as defined by
Figure 4.4(c)). A similar d-separation condition is verified for the final parent set
of Y. Note, that the added arc Sy— Y can be reversed and still satisfy the
condition for X but, then, additional arcs might be required between Y and
the ancestors of Sy.

The parent-inheritance rule for arc reversal was alluded to in Howard and
Matheson (1981) and later was proven for probability models by Olmsted (1983),
assuming (without proof) that Corollary 4.2 holds. This arc-reversal rule was
also used by Shachter (1986) as the basic mechanism for evaluating influence
diagrams, and was proven by Smith (1987) using axioms {(4.1a)-(4.1d). The
soundness of the d-separation criterion (Theorem 4.2} offers a graphical proof
for the soundness of the arc-reversal rule, once we verify that every parents—
child statement verified in the transformed diagram is graphically verified in
the original diagram. Moreover, the completeness of the d-separation criterion
implies that the parent-inheritance rule for arc reversal is also minimal, i.e. every
arc added in this process in necessary, when only one arc is to be reversed; it
may not be minimal when several arcs are reversed.

The rule for node removal also follows from Corollary 4.5. Traditionally, node
removal was executed using a two-step process: to remove an arbitrary node,
simply reorient any links directed out of it (using arc reversal), then remove the
node and all its links. If several arcs are to be reversed, then sequentially applying
the arc-reversal method to the individual arcs may result in the addition of
unnecessary links, as is shown in Figure 4.3; eliminating node 3 by first reversing
arc 3-»4 then reversing 3 — 5 requires the addition of an arc between 2 and 5.
Yet, diagram D, shows that the ar¢c 2+ 5 is superfluous.

The rule for direct node removal is stated in the following corollary.

Corollary 4.7 (node removal). A node X can be eliminated from the diagram
if every child of X -inherits X’s parents, every pair of X’s children is connected
by an arc and every child that receives an arrow from another child inherits
all parents of latter. These added arcs are both necessary and sufficient.
Accordingly, a leaf node can be removed without adding any arcs. O

4.4.3 Information required

When an influence diagram is constructed from an expert or from other
representations of knowledge, it is important to determine the information
needed to answer a given query of the form ‘find P(x,|x,), where J and K are
two arbitrary sets of nodes in the diagram (Shachter, 1985, 1988). Assuming
that each node X stores the conditional distribution P(x;|S;), where S, are the
parents of X, the task is to identify the set of nodes that must be consulted in
the process of computing P(x,|xy) or, alternatively, the set of nodes that can
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be assigned arbitrary conditional distributions without affecting the quantity
Plxslxg). -

The required set can be identified by the d-separation criterion if we represen
the parameters of the distribution P(x;|S;) as a dummy parent of node X;. From
Theorem 4.1, all dummy nodes that are d-separated from J by K represent
variables that are conditional independent of J given K and so, the information
stored in these nodes can be ignored. Thus, the information required to compute
P(x;]|xg) resides in the set of dummy nodes which are not d-separated from J -
given K.

Shachter (1985, 1988) has devised an algorithm for finding a set of nodes M
guaranteed to contain sufficient information for computing P(x,|xx). The
outcome of Shachter’s algorithm can now be stated declaratively: M contains
every ancestor of Ju K that is not d-separated from J given K and none other.
The completeness of d-separation further implies that M is minimal; no node
in M can be excluded on purely topological grounds (i.e. without considering
the numerical values of the probabilities involved). If the diagram contains
deterministic nodes, then the D-separation criterion should be used instead of
d-separation.

Identifying the set of nodes that are d-separated from J by K is also important
for limiting the scope of the subnetwork that should undergo restructuring (e.g.
clustering or conditioning, Pearl, 1988) as well as for controlling
evidence-gathering strategies. Knowing the precise values of variables
represented by such nodes will have no effect on the outcome P(x;|xx) and,
therefore, these variables need not be tested or examined. A linear time algorithm
for identifying the set of relevant nodes is reported in Geiger and Verma (1988).
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4.5 DISCUSSION

4.5.1 Discussion by Herman Rubin

The chapter seems to be a well-written mathematical paper, providing methods
for deducing whether independence relations and conditional independence
relations hold from the graph structure alone of influence diagrams. I have not
had the time to look over the details, but this looks like a contribution to the
mathematical treatment of the objects involved.
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On the other hand, is it anything more? The author seems obsessed in reducing
everything to those independence relations. He even wishes to define causality
in those terms. I find this difficult to understand. In thinking over his remarks
to my discussion at the meeting, I was pushed to derive a definition of causality.
It is not definable from the joint distributions,

A is a cause for B if an extranatural agent interfering only with 4
can affect B.

This is not symmetric in 4 and B; we have what the philosophers and physicists
call time's arrow to contend with. I maintain that the sun shining is a cause of
the grass growing but not vice versa. | will continue to maintain this asymmetry
until the barely conceivable possibility of infants returning to the womb to
render their mothers pregnant occurs with reasonable frequency.

Furthermore, independence relationships are not all that important. Sewall
Wright essentially expressed his ideas in a manner very similar to influence
diagrams. However, he was interested not so much in. which variables affected
which, but in how. He had no hesitation in introducing unobservable variables,
and while his statistical knowledge was necessarily limited, he made good use
of it. Of course he used British statistics; what else was thgre?

The mathematical economists, who were attempting to devise a method for
extraeconomic agents, in particular governments, to take actions which would
have ‘beneficial’ effects on the economy, were essentially using influence diagrams
and decision trees, although these formal concepts had not even been invented.
I do not think the terminology would have been particularly helpful to them.
In any case, the problem was not that of which variables could be ignored, but
of the quantitative nature of the relations involved.

4.5.2 Reply

The thrust of Dr Rubin's comment is that, while every causal relationship
implies a certain pattern of independencies, the converse is not necessarily true;
one cannot infer causal relationships from dependence information or even from
a complete joint distribution function.

There is no dispute over this observation. However, this does not mean that
we should stop exploring the relations between probability and causality. On
the contrary, the observation gives rise to two interesting questions:

1. What, precisely, is the pattern of independencies that accompanies causal
assertions?

2. If the bulk of human knowledge is derived from empirical observations, and
if empirical observations are summarized by statistical averages, how is it
that people manage to cast this knowledge in standard causal schemata
whose structures are uniformly accepted and rarely disputed?

In our chapter we have attempted to address question |. We have treated
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causal assertions as a shorthand notation for certain patterns of conditional
- independencies, and we have provided graphical and logical machinery for
extracting the sum total of other independencies that follow from such assertions.

One can argue (as Jim Matheson did in one cocktail party) that our results
bear no relation whatsoever to causation, since the theorems and corollaries
retain their validity for any stratified list of independencies, not necessarily those
ordered chronologically*. Our answer is as follows. Of course, if in some peculiar
domain we find experts conversing with weirdly stratified dependencies that are
ordered contrary to the flow of causation—so be it. Our contention is only
that whenever people do choose to communicate in causal sentences, the
independencies portrayed in our so-called ‘causal lists’ or ‘input lists’ offer a
reasonable probabilistic interpretation of such sentences, and that the graphs
that ensue offer an efficient mechanism for representing the ramifications of
these sentences.

The mathematical properties of the graphical representation are verifiable
analytically, while the reasonableness of our interpretation is an empirical claim
about the psychology of causation, and should be verified by behavioral
experiments. The claim is that, if we apply our proposed probabilistic
interpretation to sentences about causation, and draw their probabilistic
consequences, then these consequences will never clash with the intuition or
intent of the sentence provider. o

Let us now address question 2, regarding the empirical basis of causal
knowledge. Temporal information undoubtedly provides important clues for
causal directionality and causal organization, but, are these clues essential or
merely an expedient convention? In the social sciences, for example, we often
seek causal models for events that cannot be temporally ordered. We say, for
example, that the attitude of a person is a cause for a certain behavior, though
it is impossible to determine which comes first. It is important, therefore, ti give
a nontemporal probabilistic interpretation of causation, based on the notion
of dependence, viewing the temporal component of causation merely as a
convenient indexing standard chosen to facilitate communication and prediction.
The first author has attempted to develop such an interpretation in Pear] (1988)
and it seems appropriate to quote some related passages:

The asymmetry conveyed by causal directionality is viewed as a notational device
for encoding still more intricate patterns of relevance relationships, such as
nontransitive and induced dependencies... . Two events do not become relevant
to each other merely by virtue of predicting a common consequence, but they
do become relevant when the consequence is actually observed. The opposite is
true for two consequences of a common cause (pages 18-19).

Note that the topology of a Bayesian network can be extremely sensitive to
the node ordering d. What is a tree in one ordering might become a complete

*Similar objections can be raised against the use of the term ‘influence’, and no doubt were raised
centuries ago when the word ‘dependence’ was first introduced into probability theory.
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graph if the ordering is reversed.... This sensitivity to order may seem
paradoxical at first; d can be chosen arbitrarily, whereas people have fairly
uniform conceptual structures, e.g. they agree on whether two propositions are
directly or indirectly related. This consensus about the structure of dependencies
shows the dominant role causality plays in the formation of these structures. In
other words, the standard ordering imposed by the direction of causation
indirectly induces identical topologiss on the networks that people adopt to
encode experiential knowledge. Were it not for the social convention of adopting
a standard ordering of events that conforms to the flow of time and causation,
human communication as we know it might be impossible. Why, then, do we
use temporal ordering to organize our memory? It may be because information
about temporal precedence is more readily available than other indexing
information, or it may be that networks constructed with temporal ordering are
inherently more parsimonious {i.e. they display more independencies). Experience
with expert systems applications does not entirely rule out the second possibility
(Shachter and Heckerman, 1987} (pages 125-126).
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