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Abstract 
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This paper extends network-based methods of constraint satisfaction to include continuous 
variables, thus providing a framework for processing temporal constraints. In this frame- 
work, called temporal constraint satisfaction problem (TCSP), variables represent time 
points and temporal information is represented by a set of unary and binary constraints, 
each specifying a set of permitted intervals. The unique feature of this framework lies in 
permitting the processing of metric information, namely, assessments of time differences 
between events. We present algorithms for performing the following reasoning tasks: finding 
all feasible times that a given event can occur, finding all possible relationships between two 
given events, and generating one or more scenarios consistent with the information 
provided. 

We distinguish between simple temporal problems (STPs) and general temporal prob- 
lems, the former admitting at most one interval constraint on any pair of time points. We 
show that the STP, which subsumes the major part of Vilain and Kautz's point algebra, can 
be solved in polynomial time. For general TCSPs, we present a decomposition scheme that 
performs the three reasoning tasks considered, and introduce a variety of techniques for 
improving its efficiency. We also study the applicability of path consistency algorithms as 
preprocessing of temporal problems, demonstrate their termination and bound their com- 
plexities. 
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I. Introduction 

Problems involving temporal constraints arise in various areas of computer 
science such as scheduling, program verification, and parallel computation. 
Research in common-sense reasoning [22, 41], natural language understanding 
[3,24], and planning [34], has identified new types of temporal reasoning 
problems, specific to AI applications. Several formalisms for expressing and 
reasoning about temporal knowledge have been proposed, most notably, 
Allen's interval algebra [2], Vilain and Kautz's point algebra [49], linear 
inequalities (Malik and Binford [33], Vald6s-P6rez [46]), and Dean and 
McDermott's time map [13]. Each of these representation schemes is sup- 
ported by a specialized constraint-directed reasoning algorithm. At the same 
time, extensive research has been carried out over the past years on problems 
involving general constraints (Montanari [36], Mackworth [31], Gaschnig [21], 
Freuder [19,20], Haralick and Elliott [23], Nudel [37], Dechter and Pearl 
[16]), yet much of this work has not been extended to problems involving 
temporal constraints. 

This paper presents a unified approach to temporal reasoning based on 
constraint-network formalism. Using this formalism, we were able to develop: 

(1) a formal basis for relating various algorithmic schemes, permitting the 
analysis of their complexity and range of applicability; 

(2) an economical representation, called a minimal network, which encodes 
all temporal relations between a pair of event points, including absolute 
bounds on their time difference; 

(3) an efficient scheme of generating specific temporal scenarios, consistent 
with the given constraints. 

We envision a temporal reasoning system to consist of a temporal knowledge 
base, a routine to check its consistency, a query answering mechanism and an 
inference mechanism capable of discovering new information. The primitive 
entities in the knowledge base are propositions with which we normally 
associate temporal intervals, e.g., "I was driving a car" or "the book was lying 
on the table"; each interval representing the time period during which the 
corresponding proposition holds, The temporal information might be relative 
(e.g., "P1 occurred before P2"), or metric (e.g., "P1 had started at least 3 
hours before P2 was terminated"). To express less specific information, 
disjunctive sentences may also be needed (e.g., "you can come in before or 
after lunch hour"); a subclass of such sentences will be addressed in this paper. 
We also allow references to absolute time (such as 4:00p.m.), and to the 
duration of propositions (e.g., "P  lasted at least two hours"). Given temporal 
information of this kind, we want to derive answers to queries such as: is it 
possible that proposition P holds at time t? what are the possible times at 



Temporal constraint networks 63 

which proposition P holds? what are the possible temporal relationships 
between two propositions P1 and P2? 

There have been several suggestions of how to represent temporal informa- 
tion. If propositions stand for events, and each proposition Pi is associated with 
an interval I i = [ai, bi] , then information about the timing of events can be 
expressed by means of constraints on the intervals or their associated beginning 
and ending points. Allen [2] defined temporal knowledge to consist of con- 
straints on the 13 possible relationships that can exist between any pair of 
intervals. Since finding all the feasible relationships between a given pair of 
intervals is intractable, Vilain and Kautz [49] suggested that the information be 
expressed by means of constraints on the beginning and ending point of each 
interval. This approach gives rise to a polynomial time algorithm, but can 
handle only a limited class of problems. Recently, Ladkin and Maddux [27] 
have proposed an algebraic approach to problems similar to those posed by 
Allen and Vilain and Kautz. 

One of the requirements of our system is the ability to deal with metric 
information. Since both Allen's interval algebra and Vilain and Kautz's point 
algebra do not offer a convenient mechanism for dealing with such informa- 
tion, we take a different approach. We consider time points as the variables we 
wish to constrain--where a time point may be a beginning or an ending point 
of some event, as well as a neutral point of time such as 4:00 p.m. Malik and 
Binford [33] and Vald6s-P~rez [46] suggested constraining the temporal distance 
between time points. Namely, if X i and Xj are two time points, a constraint on 
their temporal distance would be of the form Xj - Xi ~< c, which gives rise to a 
set of linear inequalities on the X/s.  Such constraints, however, are insuffici- 
ent; we must allow disjunctive sentences. Consider the following example: 

Example 1.1. John goes to work either by car (30-40 minutes), or by bus (at 
least 60 minutes). Fred goes to work either by car (20-30 minutes), or in a 
carpool (40-50 minutes). Today John left home between 7:10 and 7:20, and 
Fred arrived at work between 8:00 and 8:10. We also know that John arrived at 
work about 10-20 minutes after Fred left home. We wish to answer queries 
such as: "Is the information in the story consistent?", "Is it possible that John 
took the bus, and Fred used the carpool?", "What are the possible times at 
which Fred left home?", and so on. 

Let P~ be the proposition "John was going to work", and P2 the proposition 
"Fred was going to work". P1 and P2 are associated with intervals [X1, X2] and 
IX 3, X4], respectively, where X~ represents the time John left home while X 4 
represents the time Fred arrived at work. Several temporal constraints are 
given in the story. From the fact that it takes John either 30-40 minutes or 
more than 60 minutes to get to work, the temporal distance between X~ and X 2 
is constrained by 
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30~<X 2 - X ~ < 4 0  or X 2 - X , / > 6 0 .  (1.1) 

Similar constraints apply to X 4 - X  3 and X 2 - X  3. Choosing X 0 : 7:00 a.m., 
the fact that John left home between 7:10 and 7:20 imposes the constraint 

10~<X1 - X0 ~< 20. (1.2) 

The constraint on X 4 - X 0 assumes a similar form. 
This paper introduces a framework based on constraint-network formalism 

for representing and processing such problems. Within this framework several 
solution methods are established. Section 2 presents the temporal constraint 
satisfaction problem (TCSP). Section 3 deals with a restricted, simpler TCSP 
(called STP), solvable in polynomial time. Sections 4-6 offer some techniques 
for solving the general TCSP: decomposition into several STPs, approximation 
schemes, and network-based approaches. Section 7 relates the TCSP model to 
other temporal reasoning models, while Section 8 provides a summary and 
concluding remarks. 

2.  T h e  T C S P  m o d e l  

The definitions needed for describing a temporal constraint satisfaction 
problem follow closely those developed for the general CSP [36]. A temporal  

constraint satisfaction p rob l e m  ( T C S P )  involves a set of variables, X 1 . . . .  , An, 
having continuous domains; each variable represents a time point. Each 
constraint is represented by a set of intervals1: 

{I ,  . . . .  , IN} = { [ a , ,  bl] . . . . .  [a n, bn] } . ( 2 . 1 )  

A unary constraint, T/, restricts the domain of variable X/ to  the given set of 
intervals; namely, it represents the disjunction 

(a I <~ X i <<. b l )  v . . .  v (a,  <~ Xi  <~ bn) . (2.2) 

A binary constraint, Tij, constrains the permissible values for the distance 
X j -  X,.; it represents the disjunction 

(al <~ Xj  - Xi  <~ b i )  v " . v (a,  <- Xj  - Xi  <~ b , )  . (2.3) 

We assume that constraints are always given in a canonical f o r m  where all 
intervals are pairwise disjoint. 

A ne twork  o f  binary constraints (a binary T C S P )  consists of a set of 
variables, X 1 . . . . .  An, and a set of unary and binary constraints. Such a 

1For simplicity we assume closed intervals; however, the same treatment applies to open and 
semi-open intervals. 
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network can be represented by a directed constraint graph, where nodes 
represent  variables and an edge i---~j indicates that a constraint Tij is specified; 
it is labeled by the interval set. Each input constraint, Tij, implies an equivalent 
constraint Tji; however,  only one of them will usually be shown in the 
constraint graph. A special time point, X0, is introduced to represent the 
"beginning of the world".  All times are relative to X0, thus we may treat each 
unary constraint T i as a binary constraint T0i (having the same interval 
representation).  For  simplicity we assume X 0 = 0. The constraint graph of 
Example  1.1 is given in Fig. 1. 

A tuple X =  ( X l , . . . , x , )  is called a solution if the assignment {X 1 = 
x I . . . . .  X,  = x,} satisfies all the constraints. A value v is a feasible value for 
variable X~, if there exists a solution in which X i = v. The set of all feasible 
values of a variable is called the minimal domain. The network is consistent if 
at least one solution exists. 

We define the following binary operations on constraints: union, intersection 
and composition, respecting their usual set-theoretic definitions. 

Definition 2.1. Let  T = {I 1 . . . .  , It} and S = {J1, • • •,  Jm} be constraints, i.e.,  
sets of intervals of a real variable t (t corresponds to Xj - X i in case of binary 
constraints). 

(1) The union of T and S, denoted by T U S, admits only values that are 
allowed by either one of them, namely, 

T U S = {11 . . . . .  It, J, . . . . .  J,n}" (2.4) 

(2) The intersection of T and S, denoted by T ~) S, admits only values that 
are allowed by both of them, namely, 

T O S  = {KI,..., K,}, (2.5) 

where K~ = I i n Jj for some i and j. Note  that n ~< l + m. 
(3) The composition of T and S, denoted by T ® S, admits only values r for 

which there exist t E T and s E S, such that t + s = r, namely, 

T ® S  = {K, . . . .  , K , } ,  (2.6) 

[30,401 

[60,70] 

Fig. I. A constraint graph representing Example 1.I. 
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where K k = [a + c, b + d] for some I~ = [a, b] and Jj = [c, d]. Note that 
n < ~ l x m .  

A pictorial illustration of the intersection and composition operations is 
given in Fig. 2. Note that for some of these operations the resulting interval 
representation is not in canonical form. For instance, the composition oper- 
ation results in four intervals; however, due to overlap, only three of them 
appear in the canonical form. These three operations parallel the usual 
operations of union, intersection and composition in general constraint net- 
works [36]. In particular, when T and S represent binary constraints on the 
differences Xj - X~ and X k - Xj, respectively, T ® S admits only pairs of values 
(xi, xk) for which there exists a value xj, such that (xg, xi) is permitted by T 
and (xj, xk) is permitted by S. 

These operations are extended to operations on networks in the usual way. 
Given networks T and S, on the same set of variables, we define 

(T  U S)~j = T u U Si/ (2.7) 

(T • S)ij = Tij ~) S u , (2.8) 

where i and j range over all pairs of variables. 
A partial order among constraints can be defined as follows. A binary 

constraint T is tighter than S, denoted by T C_ S, if every pair of values allowed 
by T is also allowed by S; namely, for every interval I E T there exists an 

T ~ S  

1 4 6 8 

0 I 3 5 6 7 
.'_. _~"(. _"z. y ~ . . . . . . . . . . . . .  ~ y_. _~5_ .rE..~ 

1 3 4 6 7 

(a) 

-1 0 2 4 
T ~ ---- ----'- ', . . . . . . . . . . . . . . . . .  I t r 

0 1 4 
S : .':.---..--..x I t x ! I I 

T ® S  
-1 1 2 5 6 8 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  "_ ."2tJOt 

(b) 

Fig. 2. Operations on constraints: (a) intersection, (b) composition. 
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interval J ~ S such that I C_ J. The tightest constraint is the empty constraint, 0 
(if the network contains an empty constraint, then it is trivially inconsistent). 
The most relaxed constraint is the universal constraint, ( - ~ ,  ~). Edges corre- 
sponding to universal constraints are usually omitted from the constraint graph. 

A partial order among binary constraint networks having the same set of 
variables can be defined as follows. A network T is tighter than network S, 
denoted T C_ S, if the partial order C_ is satisfied for all the corresponding 
constraints; namely, for all pairs i, j, T~j C Si~. Two networks are equivalent if 
they represent the same solution set. A network may have many equivalent 
representations; in particular, there is one equivalent network which is minimal 
with respect to C_, called the minimal network (note that the minimal network 
is unique because equivalent networks are closed under intersection). The arc 
constraints specified by the minimal network are called the minimal constraints. 

A network is decomposable 2 [36], if every locally consistent assignment 3 to 
any set of variables, S, can be extended to a solution. The importance of 
decomposability lies in facilitating the construction of a solution by a back- 
track-free search [20]. 

Given a constraint network, the first interesting problem is to determine its 
consistency. If the network is consistent we may wish to find some specific 
solutions, each representing a possible scenario, or to answer queries concern- 
ing the set of all solutions. The interesting queries are: 

(1) "What are the possible times at which Xi could occur?" (asking for the 
minimal domain of X~). 

(2) "What are all the possible relationships between X~ and Xj?" (asking for 
the minimal constraint between X i and Xj). 

Computing the full minimal network would provide answers to all such queries. 
The rest of the paper presents several techniques for solving these tasks. 

3. The simple temporal problem (STP) 

A TCSP in which all constraints specify a single interval is called a simple 
temporal problem (STP). In such a network, each edge, i ~ j, is labeled by an 
interval, [aij , bij], which represents the constraint 

a,j <~ X~ - X i <~ bit. (3.1) 

Alternatively, the constraint can be expressed as a pair of inequalities: 

2 In [36] decomposability is defined for minimal networks only. 
3 An assignment of values to a set of variables, S, is locally consistent, if it satisfies the constraints 

applicable to S; namely, those involving only variables in S (including the unary constraints). 
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Xj - X i ~< bij , (3.2) 

X i - Xj  <~ - a i j .  (3.3) 

Thus, solving an STP amounts to solving a set of linear inequalities on the Xi's. 
The problem of solving a system of linear inequalities is well known in the 

operations research literature. It can be solved by the (exponential) simplex 
method [10] or Khachiyan's algorithm [25], which is rather complicated in 
practice. Fortunately, the special class of linear inequalities characterizing the 
STP admits a simpler solution; the inequalities are given a convenient graph 
representation, to which a shortest paths algorithm can be applied [6, 29, 30, 
42]. In the AI literature, a similar data structure, called a t ime map,  was 
introduced by Dean and McDermott  [13] to facilitate planning, but was not 
formulated mathematically. 

Formally, we associate an STP with a directed edge-weighted graph, G d = 
(V, Ed), called a distance graph (to be distinguished from the constraint graph). 
It has the same node set as G, and each edge, i---~ j, is labeled by a weight a~j, 
representing the linear inequality X j - X  i ~ aq. In Example 1.1, if we assume 
that John used a car and Fred used a carpool, we get an STP having 

T12 = {[30,401) and T34 = {[40, 50]) ,  (3.4) 

and a distance graph as depicted in Fig. 3. 
Each path from i to j in Gd, i 0 = i, i I . . . .  , i k = j, induces the following 

constraint on the distance X j -  X~: 

k 

Xj  - X i <~ ff'~ ai,_l.ij. (3.5) 
j = l  

If there is more than one path from i to j, then it can be easily verified that the 
intersection of all the induced path constraints yields 

)(1. - X, ~< dij ,  (3.6) 

4o 

Fig. 3. A distance graph representing a portion of Example 1.1. 
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where dq is the length of the shortest path from i to j. Based on this 
observation, the following condition for consistency of an STP can be estab- 
lished: 

Theorem 3.1 (Shostak [42], Liao and Wong [30], Leiserson and Saxe [29]). A 
given STP, T, is consistent i f  and only if  its distance graph, G d, has no negative 
cycles. 

Proof. Suppose there is a negative cycle, C, consisting of nodes i I . . . .  , i k = i 1. 
Summing the inequalities along C yields X/1 - Xil < 0, which cannot be satis- 
fied. Conversely, if there is no negative cycle in Gd, then the shortest path 
between each pair of nodes is well-defined. For any pair of nodes, i and j, the 
shortest paths satisfy d0j ~< d0~ + aij; thus 

doj - doi <~ aij . (3.7) 

Hence,  the tuple (do1 . . . . .  don ) is a solution of the given STP. [] 

Corollary 3.2. Let G d be the distance graph of  a consistent STP. Two consistent 
scenarios are given by: 

S, = ( d 0 ~ , . . . ,  don ) , (3.8) 

S 2 = ( - d l 0  . . . . .  - d , o ) ,  (3.9) 

which assign to each variable its latest and earliest possible time, respectively. 

Proof. The proof of Theorem 3.1 shows that S 1 is a solution. To show that S z is 
a solution, note that for all i and j, d,0 ~< a~j + dj0, or 

( - d j o )  - ( -d io )  <~ aij, (3.10) 

yielding S 2 as a solution. [] 

From the above discussion it follows that a given STP can be effectively 
specified by a complete directed graph, called d-graph, where each edge, i ~ j, 
is labeled by the shortest path length, dij, in G~; it corresponds to a more 
explicit representation of our STP (see (3.5) and (3.6)). 

Theorem 3.3 (Decomposabili ty).  Any consistent STP is decomposable relative 
to the constraints in its d-graph. 

Proof. It suffices to show that any instantiation of a subset S of k variables 
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(1 ~< k < n) that satisfies all the shortest path constraints applicable to S, is 
extensible to any other  variable. This will be shown by induction on IsI = k. 

For k = 1, S consists of a single variable, Xi ,  instantiated to x~. We will show 
that for any other  variable, Xj, we can find an assignment Xj = v which satisfies 

the shortest path constraints between them. The value v must satisfy 

- d j i  ~ v - x i ~ d i j .  (3.11) 

Since all cycles in the distance graph are nonnegative, we have dj~ +di i />  0 
and, hence,  there exists a value v satisfying (3.11). 

Assume that the theorem holds for IsI ~- k - 1; we must show that it holds 
for IsI = k. Without loss of generality, let S = { X 1 , . . . ,  X k } ,  and let {X~ = 
x i l l  <~ i<~ k }  be an assignment that satisfies the shortest path constraints 

among the variables in S. Let  X k + I J ~ S .  We need to find a value Xk+~= V 
which satisfies the shortest path constraints between X k + 1 and all variables in S. 
In other  words, v must satisfy 

v - x i ~ d i , k +  l , (3.12) 

X i - -  O ~ d~+l .  i , ( 3 . 1 3 )  

for i = 1 . . . . .  k, or 

v < ~ m i n { x i + d i , k + l  I l ~ < i ~ k }  , (3.14) 

v />max{xi  - d~+ l.i I 1 ~ i~< k} . (3.15) 

Suppose the minimum is attained at io, and the maximum at Jo. Thus, v must 
satisfy 

X h , -  dk+l,h, ~ 0 ~< X i .  + dio,k+l . (3.16) 

Since xi0 and xj0 satisfy the constraint between them, we have 

Xjo - -  Xio ~ d io , j  ° . (3.17) 

This, together with dio,j ° <<- d i o . k + l  + dk+140, yields 

xjo - dk+l,io <~ Xio + dio,k+ 1 • (3.18) 

Therefore ,  there exists a value v which satisfies the condition of (3.16). [] 

The importance of Theorem 3.3 lies in providing an efficient algorithm for 
assembling a solution to a given STP; we simply assign to each variable any 
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value that satisfies the d-graph constraints relative to previous assignments 
(starting with X 0 = 0). Decomposability guarantees that such a value can 
always be found, regardless of the order of assignment. A second by-product of 
decomposability is that the domains characterized by the d-graph are minimal. 

Corollary 3.4. Let G d be the distance graph of a consistent STP. The set of 
feasible values for variable X i is [-dio, doi ]. 

Proof. According to Theorem 3.3, the assignment X 0 = 0 can be extended by 
assigning any value o satisfying v E [-di0, d0i ] to X i. This assignment, in turn, 
can be extended to a full solution. Thus, v is a feasible value. [] 

We have noted that the d-graph represents a tighter, yet equivalent network 
of the original STP. From Theorem 3.3 we can now conclude that this new 
network is the minimal network. 

Corollary 3.5. Given a consistent STP, T, the equivalent STP, M, defined by 

Vi, j, M,~ = { [ - d j i  , d i j])  , (3.19) 

is the minimal network representation of T. 

Proof. See Appendix A. [] 

Illustration. Consider the distance graph of Fig. 3. Since there are no negative 
cycles, the corresponding STP is consistent. The shortest path distances, do, 
are shown in Table 1. The minimal domains are 10 ~< X 1 ~< 20, 40 ~< X 2 ~< 50, 
20 ~< X 3 <~ 30 and 60 ~< X 4 ~< 70. In particular, one special solution is the tuple 
( d 0 1 , . . . ,  d04 ), namely, the assignment 

(Xl  = 20, x2 = 50, x3  = 30, x ,  = 7 0 ) ,  (3.20) 

which selects for each variable its latest possible time. According to this 

Table 1 
Lengths of shortest paths in the distance graph of 
Fig. 3. 

0 1 2 3 4 

0 0 20 50 30 70 
1 -10  0 40 20 60 
2 -40  -30  0 -10  30 
3 -20  -10  20 0 50 
4 -60 -50 -20  -40 0 
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Table 2 
The minimal network corresponding to Fig. 3. 

0 1 2 3 4 

0 [0] [10, 20] [40, 50] [20, 30] [60, 70] 
1 [-20, - 101 [0] [30, 40] [10, 20] [50,601 
2 [-50, -40] [-40, -30] [0] [-20, - 10] [20, 30] 
3 [-30, -20] [-20, -10] [10, 20] [0] [40, 50] 
4 [-70, -60] [-60, -50] [-30, -20] 1-50, -40] [ol 

solution, John left home at 7:10 and arrived at work at 7:50, while Fred left 
home at 7:30 and arrived at work at 8:10. The minimal network is given in 
Table 2. Notice that the minimal network is symmetric in the sense that if 
Tij  = {[a, b]}, then Tji = { [ - b , - a ] } .  An alternative scenario, in which John 
used a bus and Fred used a carpool (i.e., TI2 = {[60, oo)} and T34 = {[40, 50]}), 
results in a negative cycle and is therefore inconsistent. 

The d-graph of an STP can be constructed by applying Floyd-Warshall's 
all-pairs-shortest-paths algorithm [38] to the distance graph (see Fig. 4). The 
algorithm runs in time O(n3), and detects negative cycles simply be examining 
the sign of the diagonal elements d , .  It constitutes, therefore, a polynomial 
time algorithm for determining the consistency of an STP, and for computing 
both the minimal domains and the minimal network. Once the d-graph is 
available, assembling a solution requires only O(n 2) time, because each 
successive assignment needs to be checked against previous assignments and is 
guaranteed to remain unaltered. Thus, finding a solution can be achieved in 
O(n 3) time. 

All-pairs-shortest-paths algorithm 
1. for i : =  1 to n do dii <--0; 
2. for i , j : =  1 to n do dije-aij; 
3. for k : = l  t o n  do 
4. f o r i , j : = l  t o n d o  
5. dij <--min{dij, dik + dk/}; 

Fig. 4. Floyd-Warshall 's  algorithm. 

4. The general TCSP 

Having solved the STP, we now return to the general problem in which edges 
may be labeled by several intervals. Davis [12] showed that determining 
consistency for a general TCSP is NP-hard. 
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T h e o r e m  4 .1  (Davis [12]). 
(i) Deciding consistency for a TCSP is NP-hard. 

(ii) Deciding consistency for a TCSP with no more than two intervals per 
edge is NP-hard. 

Proof. (i) Reduction from 3-coloring. Let G = (V, E) be a graph to be colored. 
We construct a TCSP, T, in the following way. For each node, V,., we introduce 
a variable, Xi, and a unary constraint on Xi, 

X i ~ { [ l ] ,  [2], [3]}, (4.1) 

where [1], [2] and [3] stand for the three admissible colors. With each edge 
(i, j)  E E we associate a binary constraint 

X j - X i E { [ - 2 ] ,  [-1],  [1], [2]}. (4.2) 

Equation (4.2) restricts X i and Xj to have different colors. Hence, T is 
consistent if and only if G is 3-colorable. 

(ii) Again, reduction from 3-coloring. We construct a TCSP, T, as follows. 
For each node, V~, we introduce two variables, X~ and X';, having domains 

X ; E { [ 1 ] ,  [2,31}, (4.3) 

x7~{[1,21, [31}, (4.4) 

and restrict X~ and X~' to be equal: 

. . . .  . ( 4 . 5 )  X i - X  i 

This forces X I and X'[ to assume integer values as in (4.1). To restrict the 
colors of nodes V~ and ~ to be different, the following binary constraints are 
introduced: 

XS. - X'~ C {[-21, [ -1 ,  21}, (4.6) 

X~ - X~ (E {[-2,  -1] ,  [1, 21}, (4.7) 

X'j - X'; E {[-2,  1], [2]}. (4.8) 

T is consistent if and only if the graph is 3-colorable. [] 

A straightforward way of solving the general TCSP is to decompose it into 
several STPs, solve each one of them, and then combine the results. Given a 
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binary TCSP, T, we define a labeling of T as a selection of one interval from 
each constraint. Each labeling defines an STP graph whose edges are labeled 
by the selected intervals. We can solve any of the TCSP tasks by considering all 
its STPs. Specifically, the original network is consistent iff there is a labeling 
whose associated STP is consistent. Any solution of T is also a solution of one 
of its STPs and vice versa. Also, the minimal network of T can be computed 
from the minimal networks associated with its individual STPs, as stated in the 
following theorem: 

Theorem 4.2. The minimal network, M, of  a given TCSP, T, satisfies M = 
U t MI, where M t is the minimal network of  the STP defined by labeling l, and 
the union is over all the possible labelings. 

P r o o f .  We first note that the solution set of T is identical to the union of the 
solution sets of its labelings. Hence, U Mt is equivalent to T. M is by defini- 
tion the tightest of all networks equivalent to T, and therefore M C U Mr. 
Now suppose that M is strictly tighter than U Mr. Then, there exist a pair 
of variables, i and j, a labeling, s, and a value, d, such that d ~ (Ms)ij but 
d ~ M i j .  Let x and y be values of the variables i and j, respectively, such that 
y - x = d. According to the minimality of M s, this partial assignment can be 
extended to a solution of s, which is also a solution of T; hence d ~ Mi/, 
yielding a contradiction, Therefore, U Mz _C M. [] 

Illustration. The minimal network of Example 1.1 is shown in Table 3. In this 
case, only 3 of the 4 possible labelings contribute to the minimal network. 

The complexity of solving a general TCSP by generating all the labelings and 
solving them independently is O(n3ke), where k is the maximum number of 
intervals labeling an edge, and e is the number of edges. 

Table 3 
The minimal network of Example 1.1. 

0 1 2 3 4 

[40,601 
0 [0] 110, 20] [70] [20, 501 [60, 70] 

[30, 40] [10, 30] 
1 [ - 2 0 ,  - 101 [0] [60] [401 [40, 60] 

[-701 [-601 
2 [-60, -40] [-40, -30] [0] [-20, -10] [0, 30] 

[-40] [20, 30] 
3 [-50, -20] [-30, - 10] [10, 20] [0] [40, 50] 

[-50, -40] 
4 [-70, -60] [-60, -40] [-30, 0] [-30, -20] [0] 
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This brute-force enumeration process can be pruned significantly by running 
a backtracking search on a meta-CSP whose variables are the TCSP's edges, 
and the domains are the possible intervals. Backtrack assigns an interval to an 
edge, as long as the condition of Theorem 3.1 is satisfied and, if no such 
assignment is possible, it backtracks. 

Formally, let T be a given TCSP, and let G = (V, E) be its associated 
constraint graph. Let CSP(T) be a discrete CSP with variables X 1 . . . .  , X m, 
where rn = IEI, and variable Xi corresponds to edge e~ E E. The domain of Xi 
consists of the intervals I 1 , . . . ,  I k that label ez in G. The constraints are not 
given explicitly (as a list of allowed or disallowed combinations), instead, any 
assignment, {Xil = I~1 , . . . ,  )(is = I~,}, is consistent, if and only if the corre- 
sponding STP is consistent. Clearly, each solution of CSP(T) corresponds to a 
consistent labeling of G and, thus, any algorithm that finds all the solutions of 
CSP(T) can be used to solve T. A backtrack algorithm that computes the 
minimal network of a TCSP is shown in Fig. 5. It is defined by two recursive 
procedures: Forward and Go-back. The first extends a current partial assign- 
ment if possible, and the second handles dead-end situations. The procedures 
maintain a list of candidate intervals, Ci, for each variable X~. 

Forward(I  1 . . . .  , li) 
1. i f i = m t h e n  
2. M ~-- M t3 Solve-STP(l x . . . . .  I m), and 
3. Go-Back ( I1 , . . .  , Ira) ; 
4. Ci+ 1 <----~); 
5. for every Ij in Di+ 1 do 
6. if Cons i s ten t -STP(Ix , . . . ,  Ii, I/) then 

7. Ci+l~----Ci+l [..J {Ij}  ; 
8. If Ci+ 1 ~I~ then 
9. li+ 1 ",--first element in Ci+l, and 

10. remove I~+ x from Ci+l, and 
11. Fo rward ( I1 , . . .  , Ii, li+l) 
12. else 
13. Go-Back(l~ . . . . .  I~); 

Go-back(I  1 . . . . .  //) 
1. if i =  0 then exit 
2. if C i ¢: 0 then 
3. I~ ~--first element in Ci, and 
4. remove I i from Ci, and 
5. F o r w a r d ( / 1 , . . .  , Ii) 
6. else 

7. Go-back(Ix, • • • , L-x); 

Fig. 5. A backtrack algorithm. 
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Backtrack is initiated by calling "Forward" with i = 0, namely, the in- 
stantiated list is empty. The procedure "Solve-STP(I~ . . . . .  1,,)" returns the 
minimal network of the STP defined by {Ii . . . . .  Im}. The procedure "Consis- 
tent-STP(I l . . . .  , Ii, lj)" determines if the partial STP defined by 
{1~ . . . . .  li, lj} is consistent; it can be done either by using an all-pairs- 
shortest-paths algorithm, or by an improved algorithm to be described in 
Section 5. At the beginning of the algorithm, M = 0 and, upon termination, M 
contains the minimal network (if M =- 0, then the network is inconsistent). If 
our task is to find a single solution, then once we find a consistent labeling we 
may construct a solution using the technique described in the previous section. 

Although the worst-case complexity of this approach is also O(n3ke), it 
enables us to utilize enhancement techniques which, in practice, prove to 
substantially reduce the complexity of backtrack below its worst-case value. 
Such techniques include backjumping [21], variable ordering [15, 20, 40], value 
ordering [16, 23] and learning schemes [14]. Moreover, with some investment 
of storage space, the work done on any partial instantiation can be utilized 
toward its extension (without redoing the problem afresh), and this reduces the 
time complexity to O(nZk"). 

In the following sections we will present alternative approaches for solving 
the general TCSP. In particular, Section 5 discusses path consistency algorithms 
that can be used either as an approximation, or as a preprocessing step before 
applying backtracking. Section 6 shows how the topology of the constraint 
graph can be exploited to yield more efficient algorithms. 

5. Path consistency algorithms 

Imposing local consistency among subsets of variables may serve as a 
preprocessing step to improve backtrack. Local consistency algorithms, espe- 
cially path consistency, might also serve as a good approximation scheme which 
often yields the minimal network. In this section we study the applicability of 
path consistency and its weaker version, directional path consistency, in the 
TCSP framework. 

Floyd-Warshall's algorithm, used for solving the STP, can be considered a 
relaxation algorithm--in every step of the process the label of an edge is 
updated by an amount that depends only on the current labels of adjacent 
edges. In fact, there is a rich family of similar algorithms [1, 7, 28, 39, 43, 44], 
all based on the same principle. Montanari [36] was the first to use such an 
algorithm, called path consistency, in the context of constraint satisfaction 
problems. This was further explored and analyzed by Mackworth [31], and 
Mackworth and Freuder [32]. 

Pursuing its traditional role [31, 36], path consistency in the context of a 
TCSP is defined as follows: 
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Definition 5.1. A path through nodes i o, i l , . . . ,  i m is path consistent iff for 
any pair of values, v 0 and Vm, such that Vm -- VO E T~oi, there exists a sequence 
of values, v~ . . . . .  Vm_ 1, such that v l - v  oE Tio q, v 2 - v  1E Tq~2 , . . . ,  and 
v m - v,~_ 1 E T~m_l~m. A network is path consistent iff every path is consistent. 

Using the operations q) and ® (denoting intersection and composition), 
Montanari's path consistency algorithm (equivalent to Mackworth's [31] PC-l) 
is shown in Fig. 6. The algorithm imposes local consistency among triplets of 
variables until a fixed point is reached, or until some constraint becomes empty 
indicating an inconsistent network. Clearly, the algorithm computes a network 
which is equivalent to the original one. For discrete-domain CSPs, Montanari 
showed that the algorithm terminates and that the resulting network is indeed 
path consistent. In our case, due to the continuous domains of TCSPs, one 
cannot guarantee that the algorithm terminates. It is clear, however, that 
running the algorithm indefinitely will result in a limit network. Each step of 
the algorithm yields a tighter network, and since the network is bounded below 
by the minimal network, a limit point is assured. Moreover, analysis shows that 
for all practical purposes PC-1 terminates in a finite number of steps. This will 
be shown in two parts; first for STPs, then for general TCSPs. 

Comparing Figs. 4 and 6, PC-1 is seen to be a generalization of the 
all-pairs-shortest-paths algorithm. When applied to an STP, the relaxation step 
that updates Tii amounts to two local operations of updating the shortest path 
length, d~j, in Floyd-Warshall's algorithm. Therefore: 

Theorem 5.2. Applying PC-1 to an STP network is identical to applying 
Floyd-Warshall's algorithm to its distance graph. 

An immediate corollary of this theorem is that PC-1 terminates and produces 
a path consistent network. See also [11, 31,36] for additional relationships 
between shortest paths algorithms and path consistency. 

Regarding general TCSPs, two questions must be addressed; first, does PC-1 
terminate and compute a path consistent network and, second, is the resulting 

Algorithm PC-1 
1. repeat 
2. S<--- T; 
3. for k: = 1 to n do 
4. for i,j  := 1 to n do 
5. Tij ~ Tij • Tik ~ Tk~, and 
6. if TiE = 0 then exit (the network is inconsistent); 
7. until S = T; 

Fig. 6. A path consistency algorithm. 
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network minimal. We will next show that the answer to the first question is 
affirmative while the answer to the second is negative. 

It is simple to show that PC-1 terminates for integral TCSPs, where the 
extreme points of all intervals are integers. This is so because each intersection 
operation at Step 5 must tighten a constraint by an integral amount. For 
nonintegral TCSPs, the same argument holds if the extreme points are rational 
numbers (these will be called rational TCSPs); we simply multiply all quantities 
by the greatest common divisor of the extreme points. This was shown more 
formally by Ladkin [26]. Thus, since all practical problems are expressible by 
rational numbers, PC-1 can be regarded as terminating. Once termination has 
been ascertained, the path consistency of the resulting network can be estab- 
lished by straightforward application of Montanari's proof [36]; the continuous 
nature of temporal domains plays no role. Summarizing, we have: 

Theorem 5.3. Algorithm PC-1 computes a path consistent network. 

Now that we have established that PC-1 terminates and computes a path 
consistent network, the question arises whether the resulting network is 
minimal. Montanari showed that when the constraints obey the distributivity 
property (i.e., that composition distributes over intersection), any path consis- 
tent network is both minimal and decomposable. Moreover, in such a case only 
one application of the main loop (Steps 1-7) is sufficient for reaching the fixed 
point. When constraints are defined by one interval (the STP case), the 
distributivity property holds and indeed, for this case, the path consistent 
network is minimal (Corollary 3.5), decomposable (Theorem 3.3), and re- 
quires only one iteration (see Floyd-Warshall's algorithm). Unfortunately, 
distributivity does not hold for the multi-interval TCSP, as can be seen in the 
following example: 

Example 5.4. Consider the network shown in Fig. 7 where, for convenience, 
both directions of each edge are explicitly given. There are two paths from 
node 1 to node 3, representing the constraints T13 = {[25,50]} and S~3 = 
{[0, 30], [40, 50]} (the latter is obtained by composing T12 with /'23 ). Perform- 

[O, li 
[io,2o] [o.1oi 

~ [-IO, O1 
[-l.O] ~ , 5 0 ]  

N [0,201 
[40! 

Fig. 7. A nondistributive network. 
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ing intersection first, and then composition, we get 

To1 ® (T13 ~ 513 ) "~- {[0, 11, [10, 20]} ® {[25, 30], [40, 50]} 

= {[25, 31], [35, 70]}. (5.1) 

Performing composition first, and then intersection, results in 

(T01 @ T13 ) ~) (Z01 @ 513 ) = {[0, 31], [40, 51], [10,501, [50, 70]} 
• {[25, 51], [35, 70]} 

= {[25, 70]}. (5.2) 

Clearly, distributivity does not hold. Indeed, if we apply path consistency to 
this network then after one iteration we have T03 ~- {[25, 70]},  whereas in the 
minimal network (shown in Table 4), M03 = {[25, 31], [35, 70]}. Interestingly, 
another application of the main loop does result in a fixed point which is also 
the minimal network (see Section 6). 

In general CSPs it is well known that path consistency may not converge to 
the minimal network. The next example (tailored after Montanari [36]) will 
demonstrate that this phenomenon persists also in temporal problems; path 
consistency does not even detect inconsistency. 

Example 5.5. Consider the 3-coloring problem on K4, the complete graph of 
four nodes. The problem is obviously inconsistent and at the same time path 
consistent--every set of three nodes can be 3-colored. Translating this problem 
into TCSP notation, as in the proof of Theorem 4.1, yields the desired 
example. The problem consists of four variables, X 1 . . . . .  X 4, each having a 
domain {[1], [2], [3]}, connected by six binary constraints 

X, - X i E {[-2], [-1],  [11, [2]}, (5.3) 

Table 4 
The minimal network of Example 5.4. 

0 1 2 3 

[0, 1] [25,311 
0 [0] [10, 20] [0, 30] [35, 70] 

[-20, - 10] I25, 30] 
1 [ -1,  O] [0] [0, 10] [40, 501 

[15, 20] 
2 [-30, O] [-10, O] [0] [40] 

[-70, -35] [-50, -40] [-401 
3 [-31, -251 [-30, -25] [-20, -15] [Ol 
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for i, j = 1 , . . . ,  4, i 4 j. The resulting network is already path consistent, yet 
PC-1 will fail to detect its inconsistency. 

A more efficient path consistency algorithm is the temporal equivalent of 
Mackworth's PC-2 [31], shown in Fig. 8. The function REVISE((/, k, j)) updates 
Tij by considering the length-2 path from i to j through k, 

T,,,-Lje Lk® hi, (5.4) 

and returns true if Tq has been modified. The function RELATED- 
PATHS((/, k, j)) returns the set of length-2 paths that need to be considered if 
Tq is changed. The details of RELATED-lATHS are given in [31]. 

For discrete CSPs, path consistency can be achieved in time polynomial in n, 
the number of variables, and k, the maximum domain size [32]. We will now 
show that the temporal mirror of PC-2 achieves path consistency in O(n3R3), 
where R is the maximum range of any constraint (expressed in terms of the 
coarsest possible time units). 

Definition 5.6. Let Tq = {[a~, b l ] , . . . ,  [a,, b,]}. The range of Tq is b, - a 1. 
The range of a TCSP is the maximum range over all constraints. 

Theorem 5.7. Temporal path consistency can be achieved in O(n3R) relaxation 
steps and O(n3R 3) arithmetic operations, where R is the range of  the TCSP 
expressed in the coarsest possible time units. 

Proof. The worst-case running time of PC-2 occurs when every constraint 
interval is decreased by only one time unit each time it is tightened by REVISE. 
In this case, if R is the maximum constraint range, each constraint might be 
updated O(R) times. Also, in the worst case, when a constraint is modified 
O(n) paths are added to Q (see [31]). Thus, if we use the number of relaxation 
steps (calls to REVISE) as the complexity measure, then, since there are O(n 2) 
constraints, the total complexity of PC-2 is O(n3R). A more realistic measure 
would be the number of arithmetic operations. Each relaxation operation, 
A • B ®  C, where 1, m and n are the number of intervals in A, B and C, 

Algorithm PC-2 
1. Q~-{ ( i ,  k, j ) ] ( i < j )  and ( k H i ,  j)}; 
2. while Q is not empty do 
3. select and delete a path (i, k, j)  from Q, and 
4. if REVISE((/, k, j)) then Q <-- Q u RELATED-PATHS((/, k, j)); 

Fig. 8. PC-2--a more efficient path consistency algorithm. 
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respectively, involves O(l + m × n) arithmetic operations. Thus, since each 
relaxation step may involve as many as O(R 2) operations, the total time is 
O(n3R3). [] 

For comparison to chronological backtracking, note that R must be at least 
as large as k (the number of intervals per constraint). However, O(k e) may 
reflect a lower complexity than O(R3), in case the edges are labeled by a few 
intervals. 

Although path consistency algorithms are not guaranteed to compute the 
minimal network, they often provide a practical alternative and a com- 
plementary approach to the decomposition scheme. Moreover, they are readily 
amenable to parallel and distributed computation. In preliminary experiments 
on small random problems (each consisting of 5-7 variables), PC-1 always 
found the minimal network. 4 On the basis of these experiments, it appears that 
path consistency will substantially reduce the amount of work done by back- 
tracking. To fully assess the benefits of the path consistency scheme, full-scale 
experimental studies should be undertaken. 

Some problems may benefit from a weaker version of path consistency, 
called directional path consistency [16], that can be enforced more efficiently. 

Definition 5.8 [16]. Let d be an ordering on the variables, and let X i precede X r 
in d i f f  i < j. A constraint graph, G, is directional path consistent with respect to 
d, if for every pair of values, o/and or, such that v r - v i E T/j, and for every 
k > i , j ,  there exists a value v k such that v k - v/E T/k and o r - v k E Tki. 

Given a TCSP, T, its associated constraint graph, G = (V, E),  and an 
ordering, d, directional path consistency can be achieved by algorithm DPC, 
shown in Fig. 9, which is the temporal counterpart of that given in [16]. 

DPC is similar to PC-l, but unlike the latter, it is a single pass algorithm. 
Note also that in Step 4, the set of edges E is increased dynamically by the 
relaxation operation of Step 3. The network defined by the final set of edges is 
called the induced graph. 

Algorithm DPC 
1. f o r k : = n  down to 1 by -1  do 
2. for all i , j  < k such that (i, k), (j ,  k) E E do 
3. Tii ~-- T o • Tik ~ Tkj , and 
4. E ~- E U (i, j),  and 
5. if T/j = 0 then exit (the network is inconsistent); 

Fig. 9. DPC--an algorithm enforcing directional path consistency. 

4Yaara Levi and Margalit Pinkas, personal communication. 
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If one of the constraints becomes empty (at Step 5), then the original 
network must have been inconsistent. However, as in the case of nontemporal 
CSPs, we are not guaranteed that the algorithm will always detect an inconsis- 
tency if one exists. Next we show that such a guarantee can be assured for 
STPs. 

Definition 5.9. Let T be a TCSP. A cycle i 0 , . . . ,  i~ = i 0 is called valid if and 
only if 

O~ Lo,~, ® ' " ®  L~_,,~. (5.5) 

Lemma 5.10. A given STP, T, is consistent i f  and only i f  all the cycles in its 
constraint graph are valid. 

Proof. See Appendix B. [] 

Theorem 5.11. Given an STP, T, algorithm DPC halts at Step 5 i f  and only i f  
the network is inconsistent. 

Proof. The only i f  part is trivial; we will show the if part. Suppose the network 
is inconsistent; then, according to Lemma 5.10, there exists an invalid cycle C. 
Let the nodes of C be the set { i ~ , . . . ,  ik}, and order it along d, namely, ij will 
be processed after i k whenever j < k. We next prove the following lemma. 

Lemma 5.12. For all j, O <~ j <~ k -  3, when node ik_ j is about to be processed 
(Step 1),  there exists an invalid cycle CE, consisting o f  nodes { i l , . . . ,  i k j}. 

Proof. By induction on j. The lemma holds for j = 0 because the cycle C O = C 
was assumed to be invalid in the original network, and DPC can only render 
constraints tighter. Thus, C O must remain invalid when node i k is processed. 

Assume the lemma holds for j - 1, j > 0. By the induction hypothesis, when 
node ik_j+ 1 w a s  about to be processed, there was an invalid cycle Ck_/+ 1 
consisting of nodes {il . . . . .  ik_/+l}. Let s and r be the neighbors of ik_j+ ~ in 
Ck_j+~, and let Prs be the path from r to s in Ck_i+ ~. When node ik_i+ 1 is 
processed, the constraint Tsr is tightened, and the newly created cycle is 

Ck_ / = (s, r) U Prs. (5.6) 

The constraint along Ck_ j is tighter than the constraint along C~_/+ 1, and thus 
Ck_ j is invalid. Between the time that i~_j+~ is processed until the time ik_ j is 
processed, DPC further tightens the constraints along Ck_ j. Thus, the cycle 
remains invalid while ik_ j is being processed. [] 

According to Lemma 5.12, when node i 3 is about to be processed, there 
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exists an invalid cycle C 3, consisting of nodes i l ,  i2 and i 3. Let Ti~.6 = {[a, b]}, 
Ti3,i: = {[c, d]} and Ti2.i I = {[e, f]}. At Step 3 the constraint Tz~,i 2 is updated 
such that 

L l , i  2 "~- {[max(-f,  a + c), min(-e ,  b + d)]}. (5.7) 

Since C 3 is invalid, 0 ~ [a + c + e, b + d + f] .  If a + c + e > 0, then a + c > - e ,  
and Tq,i2 = 0. Otherwise, b + d + f < 0, or b + d < - f ,  and thus Til,i2 = 0. 
Hence, at Step 5 the algorithm must halt. [] 

It is well known that for general CSPs, directional path consistency can be 
achieved more efficiently than full path consistency [16]; instead of O(n3), 
DPC runs in O(nW*(d) 2) time, where W*(d) is the maximum number of 
parents that a node possesses in the induced graph. To assess the savings in the 
context of temporal problems, recall that each relaxation step involves O(R 2) 
arithmetic operations, thus yielding a worst-case bound of O(nW*(d)2R 2) 
operations. Another upper bound emerges from the fact that with every node 
processed the number of intervals recorded may increase by a factor not 
greater than k, thus giving a total of at most O(k n) intervals and arithmetic 
operations in any relaxation step. Hence, the upper bound is O(nW*(d)2kn). 

For STPs, each relaxation step involves a constant number of arithmetic 
operations, and thus consistency for STPs can be determined in O(nW*(d)2), 
in contrast with O(rt 3) needed for full path consistency. W*(d) could be 
substantially lower than n, and can be found in time o(IvI ÷ lEt) prior to the 
actual processing [5, 9, 45]. 

Note that directional path consistency is generally speaking weaker than full 
path consistency and, hence, might lead to a higher number of dead ends for 
backtrack. However, the use of directional path consistency yields more 
dramatic savings if it is embedded within backtracking as the consistency 
checking routine, "Consistent-STP" (Fig. 5). Instead of checking consistency 
by the O(n 3) Floyd-Warshall algorithm, we can reduce the search effort of 
backtrack by a factor of roughly (n/W*(d)) 2 using DPC. In the next section we 
characterize a class of problems that gain fuller benefit from the efficiency of 
directional path consistency. 

6. Network-based algorithms 

So far we have presented techniques for processing networks of a general 
structure. The topology of the constraint graph did not play any role in the 
choice of the solution technique. However, considering the topological features 
of the constraint network may guide us, as they do in nontemporal CSPs, in 
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selecting efficient solution methods, having lower worst-case complexity than 
naive backtracking. 

We first consider the task of finding a single solution to TCSPs. The infinite 
domains associated with temporal problems prevent us from searching exhaus- 
tively through the space of possible scenarios. Instead, we must seek ways of 
constructing a solution in a guided manner. If the network is decomposable 
(such as in the case of STPs), a solution can be assembled incrementally, 
without backtracking, under any ordering we choose. If the network is not 
decomposable, the feasibility of achieving a backtrack-free solution relies on 
the topology of the constraint graph. Freuder [20] and Dechter and Pearl [16] 
have identified sufficient conditions for a network to yield a backtrack-free 
solution, invoking the notion of higher-order consistency. To demonstrate, we 
will focus on a class of networks that admit a particularly efficient method 
when applied to temporal problems. This class is called series-parallel net- 
works, and is equivalent to the regular width-2 networks of [16]. 

Definition 6.1. A network is said to be series-parallel with respect to a pair of 
nodes, i and j, if it can be reduced to the edge (i, j) by repeated application of 
the following reduction operation: select a node of degree 2 or less, remove it 
from the network, and connect its neighbors (unless they are connected 
already). If the network is series-parallel with respect to any pair of nodes, it 
is called a series-parallel network. 

Testing whether a network is series-parallel requires O(]V]) time and, as a 
by-product, the testing algorithm produces an ordering d for which W*(d) = 2, 
that corresponds to an admissible sequence of reduction operations [4, 50]. It 
can be shown [16] that enforcing directional path consistency, in an ordering 
opposite to d, renders such networks backtrack-free, and computes the mini- 
mal constraint between the first two nodes in d. If the network is inconsistent, 
some constraint will become empty, otherwise, a consistent solution can be 
constructed in a backtrack-free fashion. Since W*(d) = 2, DPC runs in O(nK) 
time, where K is the maximum number of intervals labeling any edge in the 
induced graph. The solution construction phase requires an additional O(nK) 
arithmetic operations. 

Montanari [36] showed that full path consistency computes the minimal 
constraint on every pair of nodes, relative to which the network is series- 
parallel. In this respect, running full path consistency can be viewed as running 
DPC along several orderings in parallel, giving any pair of nodes a chance of 
being the first. 

Illustration. Consider the network of Example 1.1. The network is obviously 
series-parallel, admitting any sequence of reduction operations. Applying 
DPC in the ordering d = (0, 1, 2, 3, 4) results in the network shown in Fig. 10. 
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[ 2 0 ~ 7 ~ . . ~ . . . . ~  

[30.401 

[60.701 

Fig. 10. A directional path consistent network of Example 1.1. 
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Since no constraint becomes empty, the network is consistent, and a solution 
can be constructed backtrack-free along d. Moreover, since the network is 
series-parallel with respect to any pair of nodes, full path consistency com- 
putes the full minimal network (see Section 5). 

A generalization of directional path consistency, called adaptive consistency 
[16, 17], can render any network backtrack-free by recording higher-order 
constraints on the neighbors of the nodes processed. This method, although it 
exhibits a low worst-case complexity in general CSPs, turns out to be ineffec- 
tive in temporal problems, primarily due to difficulties in storing and process- 
ing higher-order interval constraints. 

Another approach which exploits the structure of the constraint graph, 
involves decomposition into nonseparable components. We shall show that this 
can facilitate finding both a consistent solution and the minimal network. 

Definition 6.2 (Even [18]). A connected graph G = (V, E) is said to have a 
separation vertex v (sometimes also called an articulation point) if there exist 
vertices a and b, a # v and b ~ v, such that all the paths connecting a and b 
pass through v. In this case we also say that v separates a from b. A graph 
which has a separation vertex is called separable, and one which has none is 
called nonseparable. Let V' C_ V. The induced subgraph G' = (V', E ' )  is called 
a nonseparable component if G' is nonseparable and if for every larger V", 
V' c V" C_ V, the induced subgraph G" = (V", E") is separable. 

Definition 6.3 (Even [18]). Let C ~ , . . . ,  Cm be the nonseparable components 
of the connected graph G = (V, E), and let s 1 . . . .  , s e be its separating 
vertices. The superstructure of G, G = (V, E), is defined as follows: 

9 =  {s, . . . . .  s,} u ( q , . . . ,  Cm}, 

/~ = {(Si, Q)  lSi is a vertex of Cj in G}.  

(6.1) 

(6.2) 
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It is well known that the superstructure is a tree. The nonseparable 
components  and their superstructure can be found in time O(IEL) (see [18]). 

Definition 6.4. Let  G = (V, E)  be a constraint graph of a TCSP, T, and let 

C = (V', E ' )  be a nonseparable component  of G. The minimal network of  
component C, M c, is the minimal network of the TCSP defined by C. 

Theorem 6.5. Let M be the minimal network of  a consistent TCSP, T, and let 
M c be the minimal network o fa  nonseparable component, C = (V', E ' ) ,  in the 
constraint graph, G = (V, E) ,  of T. Then, for all i , j  E V', Mij = (Mc)ij. 

Proof. Clearly, Mij C_ (Mc)ij. To prove (Mc)ij C M~j, we show that every value 
in (Mc)ij also appears in M~j. Let  v E (Mc)~j. There  exists a labeling, L~, of C, 
having minimal network ML~, in which v E (ML1)~ j. Since T is consistent, the 
TCSP defined by G - C = (V, E - E ' )  is also consistent, and thus there exists a 
consistent labeling, L 2, of G - C. Consider the labeling L whose restrictions to 
C and G - C are L 1 and L 2, respectively. Let  T L be the STP corresponding to 
L. T L is consistent; otherwise, according to Lemma 5.10 it contains an invalid 
cycle. This cycle must be entirely contained in either C or G - C, contradicting 

the consistency of either L t or L 2. Let  M L be the minimal network of T L. The 
distance graph of T L shows that (ML)ij = (MLI)i j, because the shortest paths 
lengths within C are not affected by the edges of G -  C. Hence,  v E (ML)ij, 
thus v E M~j. [] 

Theorem 6.5 suggests an efficient algorithm for determining consistency and 
computing the minimal network of a general network. We first find the 
nonseparable components,  C I , . . . ,  C m, and then solve each one of them 
independently.  If all the components  are found to be consistent, then the entire 
network is consistent, and the minimal networks of the individual components  
coincide with the overall minimal network. If we use backtracking to solve 
each of the components ,  then the worst time complexity of this method is 
O(nr3k"), where r and c denote  the largest number of nodes and the largest 
number  of edges in any component ,  respectively; and k, as before,  denotes the 
maximum number  of intervals labeling any edge in the graph. When the 
topology of any component  admits a special, more efficient algorithm, it can be 
applied directly to that component  without affecting the solution of the rest of 
the problem. 

We still must find the minimal constraints on pairs that reside in two 
different components.  This will be determined by Theorem 6.6, after demon- 
strating how a solution can be constructed to a given TCSP T. We start by 
finding a solution to the nonseparable component  C O that contains node 0. All 
the separation vertices that are connected to C O in the superstructure, G, are 
instantiated. Then we choose an instantiated separation vertex i, and find a 
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solution to any nonseparable component  C i that is connected to i in G, and 
whose vertices have not been instantiated yet. We continue in this fashion until 
all the variables are instantiated. Since G is a tree,  we are guaranteed that once 
a partial solution of some component  has been established, it does not need to 
be revised. 

Theorem 6.6. Let  G = (V, E )  be the constraint graph o f  a given TCSP. Le t  i 

and  j be two nodes that reside in different nonseparable components  o f  G, 
namely ,  i E C i and  j E Cj. Le t  P be the unique path 

P: C i = Cq, il,  Ci2, i 2 , . . .  , i k, Cik+, = Cj , (6.3) 

that connects C i and C~ in the superstructure o f  G. Then, 

Mi/ = M i , i l  ~ M i l , i  2 • . . ~ M i k _  1,i k (~  M i k , J  • (6.4) 

Proof. It suffices to show that 

Let  

M i , i l  ~ M i l , i  2 • • • t ~  M i ~ _ l , i  k ~ M i k , ]  C Mi]  . 

V E M i ,  q ~ M i l , i  2 • • • (~  M i k _ l , i  k ~ M i k , j  . 

(6.5) 

(6.6) 

By definition of the composition operation,  there exist values % , . . . ,  Ok, such 

that v o E Mi, i l  , oj E~. Mij,ij+ 1 for j = 1 , . . .  , k - 1, v k E Mik.j, and 

k 

E vj = v .  (6.7) 
j=O 

By the minimality of the individual minimal networks, we can construct a 
solution X = (x 1 . . . .  , x , ) ,  that satisfies 

Xil --  X i -~- V 0 , 

Xij+l --  Xii = Vj , 

f o r j = l  . . . . .  k - l ,  and 

(6.8) 

(6.9) 

Hence,  

xj - xik = v k . (6.10) 

xj - x i = v ,  (6.11) 

and thus v E Mq.  [] 



88 R. Dechter  et al. 

The cost of computing a minimal constraint, M~j, using the above method, is 
O(kCd); where c is the size of the largest component that resides along the path 
connecting C~ and Cj, and d is the length of that path. An alternative upper 
bound is given by O(U).  Thus, a full recovery of the minimal network costs 
O[rt2kmin( . . . .  )]. 

Illustration. Consider the network of Example 5.4 (Fig. 7). There are two 
nonseparable components: C 1 = {0, 1} and C 2 = {1, 2, 3}. Component CI is a 
tree and thus already minimal. To compute the minimal network of C2, we can 
either apply path consistency (note that C 2 is series-parallel with respect to any 
pair of nodes) or solve separately the two possible labelings. If M is the 
minimal network then, by Theorem 6.5: 

Mol = Z01 , Ml= = Z12 , M13 -- Zi3 , M23 = Z23 , (6.12) 

where Zij are constraints taken from the minimal networks of the components. 
The rest of the network can be computed using (6.4): 

M02 = M01 @ MI2 , (6.13) 

Mo3 = M01Q MI3 . (6.14) 

Recall that in this example path consistency does compute the minimal 
network (see Section 5). This phenomenon can be explained by Theorems 6.5 
and 6.6. We already noted that path consistency computes the minimal 
networks of both components. We now show that in general, this should suffice 
for computing the minimal constraints on edges that go across components. 
When path consistency terminates, the computed constraints, Tij, satisfy: 

and 

T02 C Tot @ T12 (6.15) 

T03 C T01 @ TI3 . 

Together with (6.12)-(6.14), we get 

To2 C_ Mo2 , 

T03 ~ M03 • 

Since M is minimal, 7'02 = M02 and To3 = M03; 
computes the full minimal network. 

(6.16) 

(6.17) 

(6.18) 

namely, path consistency 



Temporal constraint networks 89 

Finally, we note that another network-based approach for solving general 
CSPs, the cycle-cutset method [14], cannot be employed beneficially in tempo- 
ral problems. The reason is that the backtracking used in the solution of TCSPs 
instantiates arcs, rather than variables, and many such instantiations are 
needed to decompose the original network. 

7. Relations to other formalisms 

In this section we relate the TCSP model to two other models of temporal 
reasoning--Allen's interval algebra and Vilain and Kautz's point algebra. We 
show how the constraints in these representation schemes can be encoded 
within the TCSP model. To facilitate such encoding, we allow the interval 
representation of our constraints to include open and semi-open intervals, with 
the obvious effect on the definitions of the union and intersection operations. 
Similarly, an interval that results from a composition operation may be open 
on one side or on both sides, depending on the operands. For example, 

{[1, 2], (6, 8)} ® {[0, 3), (12, 15]} 

= {[1, 5), (6, 11), (13, 17], (18, 23)}. (7.1) 

It is easy to verify that all our theorems still hold with this extended provision. 
Any constraint network in Vilain and Kautz's point algebra [49] is a special 

case of a TCSP, lacking metric information. It can be viewed as a CSP 
involving a set of variables, X 1 . . . .  , X, ,  and binary constraints of the form 
X i R Xj, where 

R E { < , ~ < , > , ~ > , = , ¢ } .  (7.2) 

The translation into TCSP is straightforward. Constraints of the form Xj < X~ 
and Xj ~ X i are expressed by the interval representations Tij = {(-0% 0)} and 
Tij = { ( -~ ,  0]}, respectively. The constraint X i = Xj translates into T# = {[0]}. 
The only relation that needs to be represented by a disjunction is X~ ~ Xj, 
translated into Tq = {(-o% 0), (0, oo)}. 

Vilain and Kautz have addressed the tasks of determining consistency and 
computing the minimal network for problems expressed in the point algebra. 
They suggested the use of path consistency for computing the minimal net- 
work, which turned out to be insufficient [47]. Van Beek [47] addressed a 
subset of the point algebra, called PA, which excludes ~.  He showed that 
constraint networks in PA may be solved in time O(n 3) by applying path 
consistency. This follows immediately from the TCSP representation, since 
every constraint network in PA is equivalent to an STP with edges labeled by 
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intervals from 

(-2,01, [01, (7.3) 

Thus, when the constraints are taken from (7.3), path consistency for TCSP 
coincides with path consistency for PA. Moreover, algorithms devised for 
solving STPs' tasks reduce to equivalent, often simpler algorithms for solving 
the same tasks in PA. For example, directional path consistency can determine 
consistency in PA in O(nW*(d)  2) operations, which amounts to linear time 
when W*(d)  is bounded. 

The full point algebra, including the inequality constraint ~ ,  translates into 
TCSPs with disjunctions, for which our general methods can be applied, and 
the special structure of the constraints exploited. In [47] it is shown that 
enforcing 4-consistency suffices for computing the minimal network in the point 
algebra. This result takes special advantage of the nonmetric nature of the 
relations in (7.2). More recently, it has been found that path consistency is 
sufficient for determining consistency in the full point algebra [35]. This 
establishes an O(n 3) complexity for general networks in Vilain and Kautz's 
point algebra. 5 A more efficient method has been reported recently by Van 
Beek [48], requiring O(n 2) time (see also [35]). 

In contrast, Allen's interval algebra [2] cannot be translated into binary 
TCSPs. It can be viewed as a CSP involving a set of variables, X~ . . . .  , An, 
whose domains are pairs of time points, representing the beginning and ending 
times of temporal events. The allowed relationships between pairs of variables 
are taken from the set 

{before, meets, overlaps, during, starts, finishes} , (7.4) 

their inverses, and the equality relation--a total of 13 relations. The translation 
into TCSP introduces nonbinary constraints. For example, the constraint 

A (before v after) B , (7.5) 

where intervals A and B are given by A = [X 1 , )(2] and B = [X 3, X4], cannot be 
encoded by a binary TCSP constraint [49]; it requires the 4-ary constraint 

(X 2 < X3) v (X 4 < X I ) .  (7.6) 

Problems involving higher-order constraints can be expressed as disjunctions of 
STPs, and solutions can be assembled by taking the union of the individual 
STP solutions. Although the number of such subproblems may be large, 
advantage can be taken of the simple procedures available for solving each 

5We have recently learned that this had also been established by Ladkin and Maddux, The 
algebra of constraint satisfaction problems and temporal reasoning, Tech. Rept., Kestrel Institute, 
Palo Alto, CA (1988). 
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STP. It seems likely, however, that unless metric constraints are specified, the 
representation suggested in [2] can be handled more conveniently. 

8. Summary and conclusions 

This paper provides a formal framework for dealing with temporal con- 
straints, encouraging the transference of algorithms and theoretical results 
developed for general constraint satisfaction problems. We distinguish between 
simple temporal problems (STPs) and general temporal problems, the former 
admitting at most one interval constraint on any pair of time points. We show 
that the STP can be solved in polynomial time, using the well-known Floyd- 
Warshall's all-pairs-shortest-paths algorithm. For general TCSPs, we present a 
decomposition scheme that provides answers to the reasoning tasks considered, 
but its computational efficiency, in the worst case, might be limited. The 
decomposition scheme might be improved by traditional constraint satisfaction 
techniques, such as backjumping, learning, various ordering schemes and 
preprocessing techniques. We studied the applicability of path consistency 
algorithms as preprocessing of temporal problems, demonstrated their termina- 
tion and bounded their complexity; they seem to offer a practical compromise 
in very complex problems. In particular, the more efficient directional path 
consistency was shown to retain the essential properties of full path consistency 
in determining consistency for STPs and in enhancing backtrack search of 
general TCSPs. Among the specialized network-based algorithms, only the one 
employing decomposition into nonseparable components was found applicable 
to TCSPs. It offers a method for computing the minimal network in time 
exponential in the largest nonseparable component. 

We see the main application of our framework to be in temporal reasoning 
tasks involving metric information, namely, expressions involving absolute time 
differences (e.g. "John came home an hour after Mary"). In this respect, the 
expressiveness of our language supercedes that of Allen's interval algebra. 
However, it can be considered weaker than the interval algebra, being limited 
to problems involving constraints on pairs of time points. Our framework 
subsumes Vilain and Kautz's point algebra as a special case, and provides an 
arsenal of techniques and intuitions for solving problems in this domain. The 
natural extension of this work is to explore TCSPs with higher-order expres- 
sions (e.g., "John drives to work at least 30 minutes more than Fred does"; 
X 2 - X  1 + 30 ~< X 4 - X 3 ) ,  with the aim of exploiting the unique algebraic 
features provided by the linearity and continuity of temporal constraints. An 
extension of this work, integrating our quantitative analysis with the qualitative 
framework of Allen's algebra can be found in a recent article. 6 

6 I. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, in: Proceed- 
ings AAAI-91, Anaheim CA (1991). 
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Appendix A. Proof of Corollary 3.5 

Corollary 3.5. G i v e n  a consis tent  S T P ,  T, the equ iva len t  STP ,  M ,  de f ined  by  

Vi ,  j ,  M q = { [ - d r , , d q ] } ,  (A.1) 

is the m i n i m a l  n e t w o r k  representat ion o f  T. 

Proof. We will show that M is the minimal network by showing that it cannot 
be tightened any more; in other words, starting with the assignment X 0 = 0, for 
any d E [ -  dti, dq] there exists a solution X = (x 0 . . . .  , x n) in which xj - x~ = d. 

Case 1. 

d ~< d 0 j -  d0~. 

According to Corollary 3.4, X i = dog is a feasible value. Clearly, 

doi + d ~ doi - dji , 

and since 

(A.2) 

(A.3) 

dji <- djo + doi , (A.4) 

we get 

doi + d >1 - d j o .  

Together with (A.2) we have 

(A.5) 

and since 

d >! dot - doi . (A.8) 

According to Corollary 3.4, X t = dot is a feasible value. Clearly, 

doj - d >~ doj - dq , (A.9) 

-dr0 ~< d0i + d ~< doj . (A.6) 

Therefore,  the assignment Xj = d0i + d satisfies the unary domain constraints 
on variable Xt, and 

{X o = 0, X i = doi, X j  = do~ + d}  (A.7) 

satisfies the constraints applicable to {X o, X,, Xt}. By Theorem 3.3 this partial 
assignment can be extended to a solution. 

Case 2. 
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dij <~ dio + doj , 
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(A.10) 

doj - d >! - d i o .  (A.11) 

Together with (A.8) we have 

- d i o  <~ doj - d <~ doi . (A. 12) 

Therefore, the assignment X i = doj - d satisfies the unary domain constraints 
on variable X~, and 

( X o = O, X i = doj - d,  X j  = doj } (A.13) 

satisfies the constraints applicable to (X 0, X~, Xj}. By Theorem 3.3, this partial 
assignment can be extended to a solution. [] 

Appendix B. Proof of Lemma 5.10 

Lemma 5.10. A g iven  S T P ,  T,  is cons i s ten t  i f  a n d  on ly  i f  all the cycles  in its 

cons t ra in t  g raph  are valid.  

Proof. If the network is consistent, then all the cycles are valid, since if there 
was an invalid cycle C, i o , . . . ,  i k = i o, then the path constraint along C would 
yield 

X~o- Xio#0 ,  (B.1) 

reflecting inconsistency. 
Conversely, assume that all the cycles are valid. We will show that the 

network is consistent. According to Theorem 3.1 we only need to show that 
there is no negative cycle in the corresponding distance graph. Suppose there 
was such a negative cycle, C, consisting of nodes i 0 , . . . ,  i k = i0, and edge 
weights ao,l,  a l , 2 , . . . ,  ak_l, k = a k _ l ,  0. Since C is negative, we have 

k 

aij_,,i j < 0 .  (B.2) 
j = l  

Moreover, from (3.1)-(3.3) we obtain 

- a i j , i j _  l ~ ai j_l , i  j 

for j = 1 . . . . .  k. Thus, combining (B.2) and (B.3) yields 

(B.3) 
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0 ~- --aii,5 I' aij j,i~ • 

At the same time, applying the composition along C gives 

Til,.il @ ' ' "  @ Tik_.l.i k = --aij,ij_t, aii_l,i j , 
. =  

thus rendering C invalid--a contradiction. [] 

(B.4) 

(B.5) 
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