
Artificial Intelligence 49 (1991) 61-95 61
Elsevier

Temporal constraint networks*

Rina Dechter**
Computer Science Department, Technion Israel Institute of Technology, Haifa 32000,
Israel

Itay Meiri and Judea Pearl
Cognitive Systems Laooratory, Computer Science Department, University of California,
Los Angeles, CA 90024, USA

Received November 1989
Revised July 1990

Abstract

Dechter, R., I. Meiri and J. Pearl, Temporal constraint networks, Artificial Intelligence 49
(1991) 61-95.

This paper extends network-based methods of constraint satisfaction to include continuous
variables, thus providing a framework for processing temporal constraints. In this frame-
work, called temporal constraint satisfaction problem (TCSP), variables represent time
points and temporal information is represented by a set of unary and binary constraints,
each specifying a set of permitted intervals. The unique feature of this framework lies in
permitting the processing of metric information, namely, assessments of time differences
between events. We present algorithms for performing the following reasoning tasks: finding
all feasible times that a given event can occur, finding all possible relationships between two
given events, and generating one or more scenarios consistent with the information
provided.

We distinguish between simple temporal problems (STPs) and general temporal prob-
lems, the former admitting at most one interval constraint on any pair of time points. We
show that the STP, which subsumes the major part of Vilain and Kautz's point algebra, can
be solved in polynomial time. For general TCSPs, we present a decomposition scheme that
performs the three reasoning tasks considered, and introduce a variety of techniques for
improving its efficiency. We also study the applicability of path consistency algorithms as
preprocessing of temporal problems, demonstrate their termination and bound their com-
plexities.

*This work was supported in part by the National Science Foundation, Grant #IRI 8815522,
and by the Air Force Office of Scientific Research, AFOSR 90 0136.

**Present address: Information and Computer Science Department, University of California,
Irvine, CA, USA.

0004-3702/91/$03.50 © 1991 - - Elsevier Science Publishers B.V.

Received the 2020 AIJ Classic Paper Award. TECHNICAL REPORT
R-113-L

62 R. Dechter et al.

I. Introduction

Problems involving temporal constraints arise in various areas of computer
science such as scheduling, program verification, and parallel computation.
Research in common-sense reasoning [22, 41], natural language understanding
[3,24], and planning [34], has identified new types of temporal reasoning
problems, specific to AI applications. Several formalisms for expressing and
reasoning about temporal knowledge have been proposed, most notably,
Allen's interval algebra [2], Vilain and Kautz's point algebra [49], linear
inequalities (Malik and Binford [33], Vald6s-P6rez [46]), and Dean and
McDermott's time map [13]. Each of these representation schemes is sup-
ported by a specialized constraint-directed reasoning algorithm. At the same
time, extensive research has been carried out over the past years on problems
involving general constraints (Montanari [36], Mackworth [31], Gaschnig [21],
Freuder [19,20], Haralick and Elliott [23], Nudel [37], Dechter and Pearl
[16]), yet much of this work has not been extended to problems involving
temporal constraints.

This paper presents a unified approach to temporal reasoning based on
constraint-network formalism. Using this formalism, we were able to develop:

(1) a formal basis for relating various algorithmic schemes, permitting the
analysis of their complexity and range of applicability;

(2) an economical representation, called a minimal network, which encodes
all temporal relations between a pair of event points, including absolute
bounds on their time difference;

(3) an efficient scheme of generating specific temporal scenarios, consistent
with the given constraints.

We envision a temporal reasoning system to consist of a temporal knowledge
base, a routine to check its consistency, a query answering mechanism and an
inference mechanism capable of discovering new information. The primitive
entities in the knowledge base are propositions with which we normally
associate temporal intervals, e.g., "I was driving a car" or "the book was lying
on the table"; each interval representing the time period during which the
corresponding proposition holds, The temporal information might be relative
(e.g., "P1 occurred before P2"), or metric (e.g., "P1 had started at least 3
hours before P2 was terminated"). To express less specific information,
disjunctive sentences may also be needed (e.g., "you can come in before or
after lunch hour"); a subclass of such sentences will be addressed in this paper.
We also allow references to absolute time (such as 4:00p.m.), and to the
duration of propositions (e.g., "P lasted at least two hours"). Given temporal
information of this kind, we want to derive answers to queries such as: is it
possible that proposition P holds at time t? what are the possible times at

Temporal constraint networks 63

which proposition P holds? what are the possible temporal relationships
between two propositions P1 and P2?

There have been several suggestions of how to represent temporal informa-
tion. If propositions stand for events, and each proposition Pi is associated with
an interval I i = [ai, bi] , then information about the timing of events can be
expressed by means of constraints on the intervals or their associated beginning
and ending points. Allen [2] defined temporal knowledge to consist of con-
straints on the 13 possible relationships that can exist between any pair of
intervals. Since finding all the feasible relationships between a given pair of
intervals is intractable, Vilain and Kautz [49] suggested that the information be
expressed by means of constraints on the beginning and ending point of each
interval. This approach gives rise to a polynomial time algorithm, but can
handle only a limited class of problems. Recently, Ladkin and Maddux [27]
have proposed an algebraic approach to problems similar to those posed by
Allen and Vilain and Kautz.

One of the requirements of our system is the ability to deal with metric
information. Since both Allen's interval algebra and Vilain and Kautz's point
algebra do not offer a convenient mechanism for dealing with such informa-
tion, we take a different approach. We consider time points as the variables we
wish to constrain--where a time point may be a beginning or an ending point
of some event, as well as a neutral point of time such as 4:00 p.m. Malik and
Binford [33] and Vald6s-P~rez [46] suggested constraining the temporal distance
between time points. Namely, if X i and Xj are two time points, a constraint on
their temporal distance would be of the form Xj - Xi ~< c, which gives rise to a
set of linear inequalities on the X/s. Such constraints, however, are insuffici-
ent; we must allow disjunctive sentences. Consider the following example:

Example 1.1. John goes to work either by car (30-40 minutes), or by bus (at
least 60 minutes). Fred goes to work either by car (20-30 minutes), or in a
carpool (40-50 minutes). Today John left home between 7:10 and 7:20, and
Fred arrived at work between 8:00 and 8:10. We also know that John arrived at
work about 10-20 minutes after Fred left home. We wish to answer queries
such as: "Is the information in the story consistent?", "Is it possible that John
took the bus, and Fred used the carpool?", "What are the possible times at
which Fred left home?", and so on.

Let P~ be the proposition "John was going to work", and P2 the proposition
"Fred was going to work". P1 and P2 are associated with intervals [X1, X2] and
IX 3, X4], respectively, where X~ represents the time John left home while X 4
represents the time Fred arrived at work. Several temporal constraints are
given in the story. From the fact that it takes John either 30-40 minutes or
more than 60 minutes to get to work, the temporal distance between X~ and X 2
is constrained by

64 R. Dechter et al.

30~<X 2 - X ~ < 4 0 or X 2 - X , / > 6 0 . (1.1)

Similar constraints apply to X 4 - X 3 and X 2 - X 3. Choosing X 0 : 7:00 a.m.,
the fact that John left home between 7:10 and 7:20 imposes the constraint

10~<X1 - X0 ~< 20. (1.2)

The constraint on X 4 - X 0 assumes a similar form.
This paper introduces a framework based on constraint-network formalism

for representing and processing such problems. Within this framework several
solution methods are established. Section 2 presents the temporal constraint
satisfaction problem (TCSP). Section 3 deals with a restricted, simpler TCSP
(called STP), solvable in polynomial time. Sections 4-6 offer some techniques
for solving the general TCSP: decomposition into several STPs, approximation
schemes, and network-based approaches. Section 7 relates the TCSP model to
other temporal reasoning models, while Section 8 provides a summary and
concluding remarks.

2. T h e T C S P m o d e l

The definitions needed for describing a temporal constraint satisfaction
problem follow closely those developed for the general CSP [36]. A temporal

constraint satisfaction p rob l e m (T C S P) involves a set of variables, X 1 , An,
having continuous domains; each variable represents a time point. Each
constraint is represented by a set of intervals1:

{I , , IN} = { [a , , bl] [a n, bn] } . (2 . 1)

A unary constraint, T/, restricts the domain of variable X/ to the given set of
intervals; namely, it represents the disjunction

(a I <~ X i <<. b l) v . . . v (a, <~ Xi <~ bn) . (2.2)

A binary constraint, Tij, constrains the permissible values for the distance
X j - X,.; it represents the disjunction

(al <~ Xj - Xi <~ b i) v " . v (a, <- Xj - Xi <~ b ,) . (2.3)

We assume that constraints are always given in a canonical f o r m where all
intervals are pairwise disjoint.

A ne twork o f binary constraints (a binary T C S P) consists of a set of
variables, X 1 An, and a set of unary and binary constraints. Such a

1For simplicity we assume closed intervals; however, the same treatment applies to open and
semi-open intervals.

Temporal constraint networks 65

network can be represented by a directed constraint graph, where nodes
represent variables and an edge i---~j indicates that a constraint Tij is specified;
it is labeled by the interval set. Each input constraint, Tij, implies an equivalent
constraint Tji; however, only one of them will usually be shown in the
constraint graph. A special time point, X0, is introduced to represent the
"beginning of the world". All times are relative to X0, thus we may treat each
unary constraint T i as a binary constraint T0i (having the same interval
representation). For simplicity we assume X 0 = 0. The constraint graph of
Example 1.1 is given in Fig. 1.

A tuple X = (X l , . . . , x ,) is called a solution if the assignment {X 1 =
x I X, = x,} satisfies all the constraints. A value v is a feasible value for
variable X~, if there exists a solution in which X i = v. The set of all feasible
values of a variable is called the minimal domain. The network is consistent if
at least one solution exists.

We define the following binary operations on constraints: union, intersection
and composition, respecting their usual set-theoretic definitions.

Definition 2.1. Let T = {I 1 , It} and S = {J1, • • •, Jm} be constraints, i.e.,
sets of intervals of a real variable t (t corresponds to Xj - X i in case of binary
constraints).

(1) The union of T and S, denoted by T U S, admits only values that are
allowed by either one of them, namely,

T U S = {11 It, J, J,n}" (2.4)

(2) The intersection of T and S, denoted by T ~) S, admits only values that
are allowed by both of them, namely,

T O S = {KI,..., K,}, (2.5)

where K~ = I i n Jj for some i and j. Note that n ~< l + m.
(3) The composition of T and S, denoted by T ® S, admits only values r for

which there exist t E T and s E S, such that t + s = r, namely,

T ® S = {K, , K , } , (2.6)

[30,401

[60,70]

Fig. I. A constraint graph representing Example 1.I.

66 R. Dechter et al.

where K k = [a + c, b + d] for some I~ = [a, b] and Jj = [c, d]. Note that
n < ~ l x m .

A pictorial illustration of the intersection and composition operations is
given in Fig. 2. Note that for some of these operations the resulting interval
representation is not in canonical form. For instance, the composition oper-
ation results in four intervals; however, due to overlap, only three of them
appear in the canonical form. These three operations parallel the usual
operations of union, intersection and composition in general constraint net-
works [36]. In particular, when T and S represent binary constraints on the
differences Xj - X~ and X k - Xj, respectively, T ® S admits only pairs of values
(xi, xk) for which there exists a value xj, such that (xg, xi) is permitted by T
and (xj, xk) is permitted by S.

These operations are extended to operations on networks in the usual way.
Given networks T and S, on the same set of variables, we define

(T U S)~j = T u U Si/ (2.7)

(T • S)ij = Tij ~) S u , (2.8)

where i and j range over all pairs of variables.
A partial order among constraints can be defined as follows. A binary

constraint T is tighter than S, denoted by T C_ S, if every pair of values allowed
by T is also allowed by S; namely, for every interval I E T there exists an

T ~ S

1 4 6 8

0 I 3 5 6 7
.'_. _~"(. _"z. y ~ ~ y_. _~5_ .rE..~

1 3 4 6 7

(a)

-1 0 2 4
T ~ ---- ----'- ', I t r

0 1 4
S : .':.---..--..x I t x ! I I

T ® S
-1 1 2 5 6 8
. "_ ."2tJOt

(b)

Fig. 2. Operations on constraints: (a) intersection, (b) composition.

Temporal constraint networks 67

interval J ~ S such that I C_ J. The tightest constraint is the empty constraint, 0
(if the network contains an empty constraint, then it is trivially inconsistent).
The most relaxed constraint is the universal constraint, (- ~ , ~). Edges corre-
sponding to universal constraints are usually omitted from the constraint graph.

A partial order among binary constraint networks having the same set of
variables can be defined as follows. A network T is tighter than network S,
denoted T C_ S, if the partial order C_ is satisfied for all the corresponding
constraints; namely, for all pairs i, j, T~j C Si~. Two networks are equivalent if
they represent the same solution set. A network may have many equivalent
representations; in particular, there is one equivalent network which is minimal
with respect to C_, called the minimal network (note that the minimal network
is unique because equivalent networks are closed under intersection). The arc
constraints specified by the minimal network are called the minimal constraints.

A network is decomposable 2 [36], if every locally consistent assignment 3 to
any set of variables, S, can be extended to a solution. The importance of
decomposability lies in facilitating the construction of a solution by a back-
track-free search [20].

Given a constraint network, the first interesting problem is to determine its
consistency. If the network is consistent we may wish to find some specific
solutions, each representing a possible scenario, or to answer queries concern-
ing the set of all solutions. The interesting queries are:

(1) "What are the possible times at which Xi could occur?" (asking for the
minimal domain of X~).

(2) "What are all the possible relationships between X~ and Xj?" (asking for
the minimal constraint between X i and Xj).

Computing the full minimal network would provide answers to all such queries.
The rest of the paper presents several techniques for solving these tasks.

3. The simple temporal problem (STP)

A TCSP in which all constraints specify a single interval is called a simple
temporal problem (STP). In such a network, each edge, i ~ j, is labeled by an
interval, [aij , bij], which represents the constraint

a,j <~ X~ - X i <~ bit. (3.1)

Alternatively, the constraint can be expressed as a pair of inequalities:

2 In [36] decomposability is defined for minimal networks only.
3 An assignment of values to a set of variables, S, is locally consistent, if it satisfies the constraints

applicable to S; namely, those involving only variables in S (including the unary constraints).

68 R. Dechter et al.

Xj - X i ~< bij , (3.2)

X i - Xj <~ - a i j . (3.3)

Thus, solving an STP amounts to solving a set of linear inequalities on the Xi's.
The problem of solving a system of linear inequalities is well known in the

operations research literature. It can be solved by the (exponential) simplex
method [10] or Khachiyan's algorithm [25], which is rather complicated in
practice. Fortunately, the special class of linear inequalities characterizing the
STP admits a simpler solution; the inequalities are given a convenient graph
representation, to which a shortest paths algorithm can be applied [6, 29, 30,
42]. In the AI literature, a similar data structure, called a t ime map, was
introduced by Dean and McDermott [13] to facilitate planning, but was not
formulated mathematically.

Formally, we associate an STP with a directed edge-weighted graph, G d =
(V, Ed), called a distance graph (to be distinguished from the constraint graph).
It has the same node set as G, and each edge, i---~ j, is labeled by a weight a~j,
representing the linear inequality X j - X i ~ aq. In Example 1.1, if we assume
that John used a car and Fred used a carpool, we get an STP having

T12 = {[30,401) and T34 = {[40, 50]) , (3.4)

and a distance graph as depicted in Fig. 3.
Each path from i to j in Gd, i 0 = i, i I , i k = j, induces the following

constraint on the distance X j - X~:

k

Xj - X i <~ ff'~ ai,_l.ij. (3.5)
j = l

If there is more than one path from i to j, then it can be easily verified that the
intersection of all the induced path constraints yields

)(1. - X, ~< dij , (3.6)

4o

Fig. 3. A distance graph representing a portion of Example 1.1.

Temporal constraint networks 69

where dq is the length of the shortest path from i to j. Based on this
observation, the following condition for consistency of an STP can be estab-
lished:

Theorem 3.1 (Shostak [42], Liao and Wong [30], Leiserson and Saxe [29]). A
given STP, T, is consistent i f and only if its distance graph, G d, has no negative
cycles.

Proof. Suppose there is a negative cycle, C, consisting of nodes i I , i k = i 1.
Summing the inequalities along C yields X/1 - Xil < 0, which cannot be satis-
fied. Conversely, if there is no negative cycle in Gd, then the shortest path
between each pair of nodes is well-defined. For any pair of nodes, i and j, the
shortest paths satisfy d0j ~< d0~ + aij; thus

doj - doi <~ aij . (3.7)

Hence, the tuple (do1 don) is a solution of the given STP. []

Corollary 3.2. Let G d be the distance graph of a consistent STP. Two consistent
scenarios are given by:

S, = (d 0 ~ , . . . , don) , (3.8)

S 2 = (- d l 0 - d , o) , (3.9)

which assign to each variable its latest and earliest possible time, respectively.

Proof. The proof of Theorem 3.1 shows that S 1 is a solution. To show that S z is
a solution, note that for all i and j, d,0 ~< a~j + dj0, or

(- d j o) - (-d io) <~ aij, (3.10)

yielding S 2 as a solution. []

From the above discussion it follows that a given STP can be effectively
specified by a complete directed graph, called d-graph, where each edge, i ~ j,
is labeled by the shortest path length, dij, in G~; it corresponds to a more
explicit representation of our STP (see (3.5) and (3.6)).

Theorem 3.3 (Decomposabili ty). Any consistent STP is decomposable relative
to the constraints in its d-graph.

Proof. It suffices to show that any instantiation of a subset S of k variables

70 R. Dech te r et al.

(1 ~< k < n) that satisfies all the shortest path constraints applicable to S, is
extensible to any other variable. This will be shown by induction on IsI = k.

For k = 1, S consists of a single variable, Xi , instantiated to x~. We will show
that for any other variable, Xj, we can find an assignment Xj = v which satisfies

the shortest path constraints between them. The value v must satisfy

- d j i ~ v - x i ~ d i j . (3.11)

Since all cycles in the distance graph are nonnegative, we have dj~ +di i /> 0
and, hence, there exists a value v satisfying (3.11).

Assume that the theorem holds for IsI ~- k - 1; we must show that it holds
for IsI = k. Without loss of generality, let S = { X 1 , . . . , X k } , and let {X~ =
x i l l <~ i<~ k } be an assignment that satisfies the shortest path constraints

among the variables in S. Let X k + I J ~ S . We need to find a value Xk+~= V
which satisfies the shortest path constraints between X k + 1 and all variables in S.
In other words, v must satisfy

v - x i ~ d i , k + l , (3.12)

X i - - O ~ d~+l . i , (3 . 1 3)

for i = 1 k, or

v < ~ m i n { x i + d i , k + l I l ~ < i ~ k } , (3.14)

v />max{xi - d~+ l.i I 1 ~ i~< k} . (3.15)

Suppose the minimum is attained at io, and the maximum at Jo. Thus, v must
satisfy

X h , - dk+l,h, ~ 0 ~< X i . + dio,k+l . (3.16)

Since xi0 and xj0 satisfy the constraint between them, we have

Xjo - - Xio ~ d io , j ° . (3.17)

This, together with dio,j ° <<- d i o . k + l + dk+140, yields

xjo - dk+l,io <~ Xio + dio,k+ 1 • (3.18)

Therefore , there exists a value v which satisfies the condition of (3.16). []

The importance of Theorem 3.3 lies in providing an efficient algorithm for
assembling a solution to a given STP; we simply assign to each variable any

Temporal constraint networks 71

value that satisfies the d-graph constraints relative to previous assignments
(starting with X 0 = 0). Decomposability guarantees that such a value can
always be found, regardless of the order of assignment. A second by-product of
decomposability is that the domains characterized by the d-graph are minimal.

Corollary 3.4. Let G d be the distance graph of a consistent STP. The set of
feasible values for variable X i is [-dio, doi].

Proof. According to Theorem 3.3, the assignment X 0 = 0 can be extended by
assigning any value o satisfying v E [-di0, d0i] to X i. This assignment, in turn,
can be extended to a full solution. Thus, v is a feasible value. []

We have noted that the d-graph represents a tighter, yet equivalent network
of the original STP. From Theorem 3.3 we can now conclude that this new
network is the minimal network.

Corollary 3.5. Given a consistent STP, T, the equivalent STP, M, defined by

Vi, j, M,~ = { [- d j i , d i j]) , (3.19)

is the minimal network representation of T.

Proof. See Appendix A. []

Illustration. Consider the distance graph of Fig. 3. Since there are no negative
cycles, the corresponding STP is consistent. The shortest path distances, do,
are shown in Table 1. The minimal domains are 10 ~< X 1 ~< 20, 40 ~< X 2 ~< 50,
20 ~< X 3 <~ 30 and 60 ~< X 4 ~< 70. In particular, one special solution is the tuple
(d 0 1 , . . . , d04), namely, the assignment

(Xl = 20, x2 = 50, x3 = 30, x , = 7 0) , (3.20)

which selects for each variable its latest possible time. According to this

Table 1
Lengths of shortest paths in the distance graph of
Fig. 3.

0 1 2 3 4

0 0 20 50 30 70
1 -10 0 40 20 60
2 -40 -30 0 -10 30
3 -20 -10 20 0 50
4 -60 -50 -20 -40 0

72 R. Dechter et al.

Table 2
The minimal network corresponding to Fig. 3.

0 1 2 3 4

0 [0] [10, 20] [40, 50] [20, 30] [60, 70]
1 [-20, - 101 [0] [30, 40] [10, 20] [50,601
2 [-50, -40] [-40, -30] [0] [-20, - 10] [20, 30]
3 [-30, -20] [-20, -10] [10, 20] [0] [40, 50]
4 [-70, -60] [-60, -50] [-30, -20] 1-50, -40] [ol

solution, John left home at 7:10 and arrived at work at 7:50, while Fred left
home at 7:30 and arrived at work at 8:10. The minimal network is given in
Table 2. Notice that the minimal network is symmetric in the sense that if
Tij = {[a, b]}, then Tji = { [- b , - a] } . An alternative scenario, in which John
used a bus and Fred used a carpool (i.e., TI2 = {[60, oo)} and T34 = {[40, 50]}),
results in a negative cycle and is therefore inconsistent.

The d-graph of an STP can be constructed by applying Floyd-Warshall's
all-pairs-shortest-paths algorithm [38] to the distance graph (see Fig. 4). The
algorithm runs in time O(n3), and detects negative cycles simply be examining
the sign of the diagonal elements d , . It constitutes, therefore, a polynomial
time algorithm for determining the consistency of an STP, and for computing
both the minimal domains and the minimal network. Once the d-graph is
available, assembling a solution requires only O(n 2) time, because each
successive assignment needs to be checked against previous assignments and is
guaranteed to remain unaltered. Thus, finding a solution can be achieved in
O(n 3) time.

All-pairs-shortest-paths algorithm
1. for i : = 1 to n do dii <--0;
2. for i , j : = 1 to n do dije-aij;
3. for k : = l t o n do
4. f o r i , j : = l t o n d o
5. dij <--min{dij, dik + dk/};

Fig. 4. Floyd-Warshall 's algorithm.

4. The general TCSP

Having solved the STP, we now return to the general problem in which edges
may be labeled by several intervals. Davis [12] showed that determining
consistency for a general TCSP is NP-hard.

Temporal constraint networks 73

T h e o r e m 4 .1 (Davis [12]).
(i) Deciding consistency for a TCSP is NP-hard.

(ii) Deciding consistency for a TCSP with no more than two intervals per
edge is NP-hard.

Proof. (i) Reduction from 3-coloring. Let G = (V, E) be a graph to be colored.
We construct a TCSP, T, in the following way. For each node, V,., we introduce
a variable, Xi, and a unary constraint on Xi,

X i ~ { [l] , [2], [3]}, (4.1)

where [1], [2] and [3] stand for the three admissible colors. With each edge
(i, j) E E we associate a binary constraint

X j - X i E { [- 2] , [-1], [1], [2]}. (4.2)

Equation (4.2) restricts X i and Xj to have different colors. Hence, T is
consistent if and only if G is 3-colorable.

(ii) Again, reduction from 3-coloring. We construct a TCSP, T, as follows.
For each node, V~, we introduce two variables, X~ and X';, having domains

X ; E { [1] , [2,31}, (4.3)

x7~{[1,21, [31}, (4.4)

and restrict X~ and X~' to be equal:

. (4 . 5) X i - X i

This forces X I and X'[to assume integer values as in (4.1). To restrict the
colors of nodes V~ and ~ to be different, the following binary constraints are
introduced:

XS. - X'~ C {[-21, [-1 , 21}, (4.6)

X~ - X~ (E {[-2, -1] , [1, 21}, (4.7)

X'j - X'; E {[-2, 1], [2]}. (4.8)

T is consistent if and only if the graph is 3-colorable. []

A straightforward way of solving the general TCSP is to decompose it into
several STPs, solve each one of them, and then combine the results. Given a

74 R. Dech ter et al.

binary TCSP, T, we define a labeling of T as a selection of one interval from
each constraint. Each labeling defines an STP graph whose edges are labeled
by the selected intervals. We can solve any of the TCSP tasks by considering all
its STPs. Specifically, the original network is consistent iff there is a labeling
whose associated STP is consistent. Any solution of T is also a solution of one
of its STPs and vice versa. Also, the minimal network of T can be computed
from the minimal networks associated with its individual STPs, as stated in the
following theorem:

Theorem 4.2. The minimal network, M, of a given TCSP, T, satisfies M =
U t MI, where M t is the minimal network of the STP defined by labeling l, and
the union is over all the possible labelings.

P r o o f . We first note that the solution set of T is identical to the union of the
solution sets of its labelings. Hence, U Mt is equivalent to T. M is by defini-
tion the tightest of all networks equivalent to T, and therefore M C U Mr.
Now suppose that M is strictly tighter than U Mr. Then, there exist a pair
of variables, i and j, a labeling, s, and a value, d, such that d ~ (Ms)ij but
d ~ M i j . Let x and y be values of the variables i and j, respectively, such that
y - x = d. According to the minimality of M s, this partial assignment can be
extended to a solution of s, which is also a solution of T; hence d ~ Mi/,
yielding a contradiction, Therefore, U Mz _C M. []

Illustration. The minimal network of Example 1.1 is shown in Table 3. In this
case, only 3 of the 4 possible labelings contribute to the minimal network.

The complexity of solving a general TCSP by generating all the labelings and
solving them independently is O(n3ke), where k is the maximum number of
intervals labeling an edge, and e is the number of edges.

Table 3
The minimal network of Example 1.1.

0 1 2 3 4

[40,601
0 [0] 110, 20] [70] [20, 501 [60, 70]

[30, 40] [10, 30]
1 [- 2 0 , - 101 [0] [60] [401 [40, 60]

[-701 [-601
2 [-60, -40] [-40, -30] [0] [-20, -10] [0, 30]

[-40] [20, 30]
3 [-50, -20] [-30, - 10] [10, 20] [0] [40, 50]

[-50, -40]
4 [-70, -60] [-60, -40] [-30, 0] [-30, -20] [0]

Temporal constraint networks 75

This brute-force enumeration process can be pruned significantly by running
a backtracking search on a meta-CSP whose variables are the TCSP's edges,
and the domains are the possible intervals. Backtrack assigns an interval to an
edge, as long as the condition of Theorem 3.1 is satisfied and, if no such
assignment is possible, it backtracks.

Formally, let T be a given TCSP, and let G = (V, E) be its associated
constraint graph. Let CSP(T) be a discrete CSP with variables X 1 , X m,
where rn = IEI, and variable Xi corresponds to edge e~ E E. The domain of Xi
consists of the intervals I 1 , . . . , I k that label ez in G. The constraints are not
given explicitly (as a list of allowed or disallowed combinations), instead, any
assignment, {Xil = I~1 , . . . ,)(is = I~,}, is consistent, if and only if the corre-
sponding STP is consistent. Clearly, each solution of CSP(T) corresponds to a
consistent labeling of G and, thus, any algorithm that finds all the solutions of
CSP(T) can be used to solve T. A backtrack algorithm that computes the
minimal network of a TCSP is shown in Fig. 5. It is defined by two recursive
procedures: Forward and Go-back. The first extends a current partial assign-
ment if possible, and the second handles dead-end situations. The procedures
maintain a list of candidate intervals, Ci, for each variable X~.

Forward(I 1 , li)
1. i f i = m t h e n
2. M ~-- M t3 Solve-STP(l x I m), and
3. Go-Back (I1 , . . . , Ira) ;
4. Ci+ 1 <----~);
5. for every Ij in Di+ 1 do
6. if Cons i s ten t -STP(Ix , . . . , Ii, I/) then

7. Ci+l~----Ci+l [..J {Ij} ;
8. If Ci+ 1 ~I~ then
9. li+ 1 ",--first element in Ci+l, and

10. remove I~+ x from Ci+l, and
11. Fo rward (I1 , . . . , Ii, li+l)
12. else
13. Go-Back(l~ I~);

Go-back(I 1 //)
1. if i = 0 then exit
2. if C i ¢: 0 then
3. I~ ~--first element in Ci, and
4. remove I i from Ci, and
5. F o r w a r d (/ 1 , . . . , Ii)
6. else

7. Go-back(Ix, • • • , L-x);

Fig. 5. A backtrack algorithm.

76 R. Dechter et al.

Backtrack is initiated by calling "Forward" with i = 0, namely, the in-
stantiated list is empty. The procedure "Solve-STP(I~ 1,,)" returns the
minimal network of the STP defined by {Ii Im}. The procedure "Consis-
tent-STP(I l , Ii, lj)" determines if the partial STP defined by
{1~ li, lj} is consistent; it can be done either by using an all-pairs-
shortest-paths algorithm, or by an improved algorithm to be described in
Section 5. At the beginning of the algorithm, M = 0 and, upon termination, M
contains the minimal network (if M =- 0, then the network is inconsistent). If
our task is to find a single solution, then once we find a consistent labeling we
may construct a solution using the technique described in the previous section.

Although the worst-case complexity of this approach is also O(n3ke), it
enables us to utilize enhancement techniques which, in practice, prove to
substantially reduce the complexity of backtrack below its worst-case value.
Such techniques include backjumping [21], variable ordering [15, 20, 40], value
ordering [16, 23] and learning schemes [14]. Moreover, with some investment
of storage space, the work done on any partial instantiation can be utilized
toward its extension (without redoing the problem afresh), and this reduces the
time complexity to O(nZk").

In the following sections we will present alternative approaches for solving
the general TCSP. In particular, Section 5 discusses path consistency algorithms
that can be used either as an approximation, or as a preprocessing step before
applying backtracking. Section 6 shows how the topology of the constraint
graph can be exploited to yield more efficient algorithms.

5. Path consistency algorithms

Imposing local consistency among subsets of variables may serve as a
preprocessing step to improve backtrack. Local consistency algorithms, espe-
cially path consistency, might also serve as a good approximation scheme which
often yields the minimal network. In this section we study the applicability of
path consistency and its weaker version, directional path consistency, in the
TCSP framework.

Floyd-Warshall's algorithm, used for solving the STP, can be considered a
relaxation algorithm--in every step of the process the label of an edge is
updated by an amount that depends only on the current labels of adjacent
edges. In fact, there is a rich family of similar algorithms [1, 7, 28, 39, 43, 44],
all based on the same principle. Montanari [36] was the first to use such an
algorithm, called path consistency, in the context of constraint satisfaction
problems. This was further explored and analyzed by Mackworth [31], and
Mackworth and Freuder [32].

Pursuing its traditional role [31, 36], path consistency in the context of a
TCSP is defined as follows:

Temporal constraint networks 77

Definition 5.1. A path through nodes i o, i l , . . . , i m is path consistent iff for
any pair of values, v 0 and Vm, such that Vm -- VO E T~oi, there exists a sequence
of values, v~ Vm_ 1, such that v l - v oE Tio q, v 2 - v 1E Tq~2 , . . . , and
v m - v,~_ 1 E T~m_l~m. A network is path consistent iff every path is consistent.

Using the operations q) and ® (denoting intersection and composition),
Montanari's path consistency algorithm (equivalent to Mackworth's [31] PC-l)
is shown in Fig. 6. The algorithm imposes local consistency among triplets of
variables until a fixed point is reached, or until some constraint becomes empty
indicating an inconsistent network. Clearly, the algorithm computes a network
which is equivalent to the original one. For discrete-domain CSPs, Montanari
showed that the algorithm terminates and that the resulting network is indeed
path consistent. In our case, due to the continuous domains of TCSPs, one
cannot guarantee that the algorithm terminates. It is clear, however, that
running the algorithm indefinitely will result in a limit network. Each step of
the algorithm yields a tighter network, and since the network is bounded below
by the minimal network, a limit point is assured. Moreover, analysis shows that
for all practical purposes PC-1 terminates in a finite number of steps. This will
be shown in two parts; first for STPs, then for general TCSPs.

Comparing Figs. 4 and 6, PC-1 is seen to be a generalization of the
all-pairs-shortest-paths algorithm. When applied to an STP, the relaxation step
that updates Tii amounts to two local operations of updating the shortest path
length, d~j, in Floyd-Warshall's algorithm. Therefore:

Theorem 5.2. Applying PC-1 to an STP network is identical to applying
Floyd-Warshall's algorithm to its distance graph.

An immediate corollary of this theorem is that PC-1 terminates and produces
a path consistent network. See also [11, 31,36] for additional relationships
between shortest paths algorithms and path consistency.

Regarding general TCSPs, two questions must be addressed; first, does PC-1
terminate and compute a path consistent network and, second, is the resulting

Algorithm PC-1
1. repeat
2. S<--- T;
3. for k: = 1 to n do
4. for i,j := 1 to n do
5. Tij ~ Tij • Tik ~ Tk~, and
6. if TiE = 0 then exit (the network is inconsistent);
7. until S = T;

Fig. 6. A path consistency algorithm.

78 R. Dechter et al.

network minimal. We will next show that the answer to the first question is
affirmative while the answer to the second is negative.

It is simple to show that PC-1 terminates for integral TCSPs, where the
extreme points of all intervals are integers. This is so because each intersection
operation at Step 5 must tighten a constraint by an integral amount. For
nonintegral TCSPs, the same argument holds if the extreme points are rational
numbers (these will be called rational TCSPs); we simply multiply all quantities
by the greatest common divisor of the extreme points. This was shown more
formally by Ladkin [26]. Thus, since all practical problems are expressible by
rational numbers, PC-1 can be regarded as terminating. Once termination has
been ascertained, the path consistency of the resulting network can be estab-
lished by straightforward application of Montanari's proof [36]; the continuous
nature of temporal domains plays no role. Summarizing, we have:

Theorem 5.3. Algorithm PC-1 computes a path consistent network.

Now that we have established that PC-1 terminates and computes a path
consistent network, the question arises whether the resulting network is
minimal. Montanari showed that when the constraints obey the distributivity
property (i.e., that composition distributes over intersection), any path consis-
tent network is both minimal and decomposable. Moreover, in such a case only
one application of the main loop (Steps 1-7) is sufficient for reaching the fixed
point. When constraints are defined by one interval (the STP case), the
distributivity property holds and indeed, for this case, the path consistent
network is minimal (Corollary 3.5), decomposable (Theorem 3.3), and re-
quires only one iteration (see Floyd-Warshall's algorithm). Unfortunately,
distributivity does not hold for the multi-interval TCSP, as can be seen in the
following example:

Example 5.4. Consider the network shown in Fig. 7 where, for convenience,
both directions of each edge are explicitly given. There are two paths from
node 1 to node 3, representing the constraints T13 = {[25,50]} and S~3 =
{[0, 30], [40, 50]} (the latter is obtained by composing T12 with /'23). Perform-

[O, li
[io,2o] [o.1oi

~ [-IO, O1
[-l.O] ~ , 5 0]

N [0,201
[40!

Fig. 7. A nondistributive network.

Temporal constraint networks 79

ing intersection first, and then composition, we get

To1 ® (T13 ~ 513) "~- {[0, 11, [10, 20]} ® {[25, 30], [40, 50]}

= {[25, 31], [35, 70]}. (5.1)

Performing composition first, and then intersection, results in

(T01 @ T13) ~) (Z01 @ 513) = {[0, 31], [40, 51], [10,501, [50, 70]}
• {[25, 51], [35, 70]}

= {[25, 70]}. (5.2)

Clearly, distributivity does not hold. Indeed, if we apply path consistency to
this network then after one iteration we have T03 ~- {[25, 70]}, whereas in the
minimal network (shown in Table 4), M03 = {[25, 31], [35, 70]}. Interestingly,
another application of the main loop does result in a fixed point which is also
the minimal network (see Section 6).

In general CSPs it is well known that path consistency may not converge to
the minimal network. The next example (tailored after Montanari [36]) will
demonstrate that this phenomenon persists also in temporal problems; path
consistency does not even detect inconsistency.

Example 5.5. Consider the 3-coloring problem on K4, the complete graph of
four nodes. The problem is obviously inconsistent and at the same time path
consistent--every set of three nodes can be 3-colored. Translating this problem
into TCSP notation, as in the proof of Theorem 4.1, yields the desired
example. The problem consists of four variables, X 1 X 4, each having a
domain {[1], [2], [3]}, connected by six binary constraints

X, - X i E {[-2], [-1], [11, [2]}, (5.3)

Table 4
The minimal network of Example 5.4.

0 1 2 3

[0, 1] [25,311
0 [0] [10, 20] [0, 30] [35, 70]

[-20, - 10] I25, 30]
1 [-1, O] [0] [0, 10] [40, 501

[15, 20]
2 [-30, O] [-10, O] [0] [40]

[-70, -35] [-50, -40] [-401
3 [-31, -251 [-30, -25] [-20, -15] [Ol

80 R. Dechter et al.

for i, j = 1 , . . . , 4, i 4 j. The resulting network is already path consistent, yet
PC-1 will fail to detect its inconsistency.

A more efficient path consistency algorithm is the temporal equivalent of
Mackworth's PC-2 [31], shown in Fig. 8. The function REVISE((/, k, j)) updates
Tij by considering the length-2 path from i to j through k,

T,,,-Lje Lk® hi, (5.4)

and returns true if Tq has been modified. The function RELATED-
PATHS((/, k, j)) returns the set of length-2 paths that need to be considered if
Tq is changed. The details of RELATED-lATHS are given in [31].

For discrete CSPs, path consistency can be achieved in time polynomial in n,
the number of variables, and k, the maximum domain size [32]. We will now
show that the temporal mirror of PC-2 achieves path consistency in O(n3R3),
where R is the maximum range of any constraint (expressed in terms of the
coarsest possible time units).

Definition 5.6. Let Tq = {[a~, b l] , . . . , [a,, b,]}. The range of Tq is b, - a 1.
The range of a TCSP is the maximum range over all constraints.

Theorem 5.7. Temporal path consistency can be achieved in O(n3R) relaxation
steps and O(n3R 3) arithmetic operations, where R is the range of the TCSP
expressed in the coarsest possible time units.

Proof. The worst-case running time of PC-2 occurs when every constraint
interval is decreased by only one time unit each time it is tightened by REVISE.
In this case, if R is the maximum constraint range, each constraint might be
updated O(R) times. Also, in the worst case, when a constraint is modified
O(n) paths are added to Q (see [31]). Thus, if we use the number of relaxation
steps (calls to REVISE) as the complexity measure, then, since there are O(n 2)
constraints, the total complexity of PC-2 is O(n3R). A more realistic measure
would be the number of arithmetic operations. Each relaxation operation,
A • B ® C, where 1, m and n are the number of intervals in A, B and C,

Algorithm PC-2
1. Q~-{ (i , k, j)] (i < j) and (k H i , j)};
2. while Q is not empty do
3. select and delete a path (i, k, j) from Q, and
4. if REVISE((/, k, j)) then Q <-- Q u RELATED-PATHS((/, k, j));

Fig. 8. PC-2--a more efficient path consistency algorithm.

Temporal constraint networks 81

respectively, involves O(l + m × n) arithmetic operations. Thus, since each
relaxation step may involve as many as O(R 2) operations, the total time is
O(n3R3). []

For comparison to chronological backtracking, note that R must be at least
as large as k (the number of intervals per constraint). However, O(k e) may
reflect a lower complexity than O(R3), in case the edges are labeled by a few
intervals.

Although path consistency algorithms are not guaranteed to compute the
minimal network, they often provide a practical alternative and a com-
plementary approach to the decomposition scheme. Moreover, they are readily
amenable to parallel and distributed computation. In preliminary experiments
on small random problems (each consisting of 5-7 variables), PC-1 always
found the minimal network. 4 On the basis of these experiments, it appears that
path consistency will substantially reduce the amount of work done by back-
tracking. To fully assess the benefits of the path consistency scheme, full-scale
experimental studies should be undertaken.

Some problems may benefit from a weaker version of path consistency,
called directional path consistency [16], that can be enforced more efficiently.

Definition 5.8 [16]. Let d be an ordering on the variables, and let X i precede X r
in d i f f i < j. A constraint graph, G, is directional path consistent with respect to
d, if for every pair of values, o/and or, such that v r - v i E T/j, and for every
k > i , j , there exists a value v k such that v k - v/E T/k and o r - v k E Tki.

Given a TCSP, T, its associated constraint graph, G = (V, E), and an
ordering, d, directional path consistency can be achieved by algorithm DPC,
shown in Fig. 9, which is the temporal counterpart of that given in [16].

DPC is similar to PC-l, but unlike the latter, it is a single pass algorithm.
Note also that in Step 4, the set of edges E is increased dynamically by the
relaxation operation of Step 3. The network defined by the final set of edges is
called the induced graph.

Algorithm DPC
1. f o r k : = n down to 1 by -1 do
2. for all i , j < k such that (i, k), (j , k) E E do
3. Tii ~-- T o • Tik ~ Tkj , and
4. E ~- E U (i, j), and
5. if T/j = 0 then exit (the network is inconsistent);

Fig. 9. DPC--an algorithm enforcing directional path consistency.

4Yaara Levi and Margalit Pinkas, personal communication.

82 R. Dechter et al.

If one of the constraints becomes empty (at Step 5), then the original
network must have been inconsistent. However, as in the case of nontemporal
CSPs, we are not guaranteed that the algorithm will always detect an inconsis-
tency if one exists. Next we show that such a guarantee can be assured for
STPs.

Definition 5.9. Let T be a TCSP. A cycle i 0 , . . . , i~ = i 0 is called valid if and
only if

O~ Lo,~, ® ' " ® L~_,,~. (5.5)

Lemma 5.10. A given STP, T, is consistent i f and only i f all the cycles in its
constraint graph are valid.

Proof. See Appendix B. []

Theorem 5.11. Given an STP, T, algorithm DPC halts at Step 5 i f and only i f
the network is inconsistent.

Proof. The only i f part is trivial; we will show the if part. Suppose the network
is inconsistent; then, according to Lemma 5.10, there exists an invalid cycle C.
Let the nodes of C be the set { i ~ , . . . , ik}, and order it along d, namely, ij will
be processed after i k whenever j < k. We next prove the following lemma.

Lemma 5.12. For all j, O <~ j <~ k - 3, when node ik_ j is about to be processed
(Step 1), there exists an invalid cycle CE, consisting o f nodes { i l , . . . , i k j}.

Proof. By induction on j. The lemma holds for j = 0 because the cycle C O = C
was assumed to be invalid in the original network, and DPC can only render
constraints tighter. Thus, C O must remain invalid when node i k is processed.

Assume the lemma holds for j - 1, j > 0. By the induction hypothesis, when
node ik_j+ 1 w a s about to be processed, there was an invalid cycle Ck_/+ 1
consisting of nodes {il ik_/+l}. Let s and r be the neighbors of ik_j+ ~ in
Ck_j+~, and let Prs be the path from r to s in Ck_i+ ~. When node ik_i+ 1 is
processed, the constraint Tsr is tightened, and the newly created cycle is

Ck_ / = (s, r) U Prs. (5.6)

The constraint along Ck_ j is tighter than the constraint along C~_/+ 1, and thus
Ck_ j is invalid. Between the time that i~_j+~ is processed until the time ik_ j is
processed, DPC further tightens the constraints along Ck_ j. Thus, the cycle
remains invalid while ik_ j is being processed. []

According to Lemma 5.12, when node i 3 is about to be processed, there

Temporal constraint networks 83

exists an invalid cycle C 3, consisting of nodes i l , i2 and i 3. Let Ti~.6 = {[a, b]},
Ti3,i: = {[c, d]} and Ti2.i I = {[e, f]}. At Step 3 the constraint Tz~,i 2 is updated
such that

L l , i 2 "~- {[max(-f, a + c), min(-e , b + d)]}. (5.7)

Since C 3 is invalid, 0 ~ [a + c + e, b + d + f] . If a + c + e > 0, then a + c > - e ,
and Tq,i2 = 0. Otherwise, b + d + f < 0, or b + d < - f , and thus Til,i2 = 0.
Hence, at Step 5 the algorithm must halt. []

It is well known that for general CSPs, directional path consistency can be
achieved more efficiently than full path consistency [16]; instead of O(n3),
DPC runs in O(nW*(d) 2) time, where W*(d) is the maximum number of
parents that a node possesses in the induced graph. To assess the savings in the
context of temporal problems, recall that each relaxation step involves O(R 2)
arithmetic operations, thus yielding a worst-case bound of O(nW*(d)2R 2)
operations. Another upper bound emerges from the fact that with every node
processed the number of intervals recorded may increase by a factor not
greater than k, thus giving a total of at most O(k n) intervals and arithmetic
operations in any relaxation step. Hence, the upper bound is O(nW*(d)2kn).

For STPs, each relaxation step involves a constant number of arithmetic
operations, and thus consistency for STPs can be determined in O(nW*(d)2),
in contrast with O(rt 3) needed for full path consistency. W*(d) could be
substantially lower than n, and can be found in time o(IvI ÷ lEt) prior to the
actual processing [5, 9, 45].

Note that directional path consistency is generally speaking weaker than full
path consistency and, hence, might lead to a higher number of dead ends for
backtrack. However, the use of directional path consistency yields more
dramatic savings if it is embedded within backtracking as the consistency
checking routine, "Consistent-STP" (Fig. 5). Instead of checking consistency
by the O(n 3) Floyd-Warshall algorithm, we can reduce the search effort of
backtrack by a factor of roughly (n/W*(d)) 2 using DPC. In the next section we
characterize a class of problems that gain fuller benefit from the efficiency of
directional path consistency.

6. Network-based algorithms

So far we have presented techniques for processing networks of a general
structure. The topology of the constraint graph did not play any role in the
choice of the solution technique. However, considering the topological features
of the constraint network may guide us, as they do in nontemporal CSPs, in

84 R. Dechter et al.

selecting efficient solution methods, having lower worst-case complexity than
naive backtracking.

We first consider the task of finding a single solution to TCSPs. The infinite
domains associated with temporal problems prevent us from searching exhaus-
tively through the space of possible scenarios. Instead, we must seek ways of
constructing a solution in a guided manner. If the network is decomposable
(such as in the case of STPs), a solution can be assembled incrementally,
without backtracking, under any ordering we choose. If the network is not
decomposable, the feasibility of achieving a backtrack-free solution relies on
the topology of the constraint graph. Freuder [20] and Dechter and Pearl [16]
have identified sufficient conditions for a network to yield a backtrack-free
solution, invoking the notion of higher-order consistency. To demonstrate, we
will focus on a class of networks that admit a particularly efficient method
when applied to temporal problems. This class is called series-parallel net-
works, and is equivalent to the regular width-2 networks of [16].

Definition 6.1. A network is said to be series-parallel with respect to a pair of
nodes, i and j, if it can be reduced to the edge (i, j) by repeated application of
the following reduction operation: select a node of degree 2 or less, remove it
from the network, and connect its neighbors (unless they are connected
already). If the network is series-parallel with respect to any pair of nodes, it
is called a series-parallel network.

Testing whether a network is series-parallel requires O(]V]) time and, as a
by-product, the testing algorithm produces an ordering d for which W*(d) = 2,
that corresponds to an admissible sequence of reduction operations [4, 50]. It
can be shown [16] that enforcing directional path consistency, in an ordering
opposite to d, renders such networks backtrack-free, and computes the mini-
mal constraint between the first two nodes in d. If the network is inconsistent,
some constraint will become empty, otherwise, a consistent solution can be
constructed in a backtrack-free fashion. Since W*(d) = 2, DPC runs in O(nK)
time, where K is the maximum number of intervals labeling any edge in the
induced graph. The solution construction phase requires an additional O(nK)
arithmetic operations.

Montanari [36] showed that full path consistency computes the minimal
constraint on every pair of nodes, relative to which the network is series-
parallel. In this respect, running full path consistency can be viewed as running
DPC along several orderings in parallel, giving any pair of nodes a chance of
being the first.

Illustration. Consider the network of Example 1.1. The network is obviously
series-parallel, admitting any sequence of reduction operations. Applying
DPC in the ordering d = (0, 1, 2, 3, 4) results in the network shown in Fig. 10.

Temporal constraint networks

[2 0 ~ 7 ~ . . ~ ~

[30.401

[60.701

Fig. 10. A directional path consistent network of Example 1.1.

85

Since no constraint becomes empty, the network is consistent, and a solution
can be constructed backtrack-free along d. Moreover, since the network is
series-parallel with respect to any pair of nodes, full path consistency com-
putes the full minimal network (see Section 5).

A generalization of directional path consistency, called adaptive consistency
[16, 17], can render any network backtrack-free by recording higher-order
constraints on the neighbors of the nodes processed. This method, although it
exhibits a low worst-case complexity in general CSPs, turns out to be ineffec-
tive in temporal problems, primarily due to difficulties in storing and process-
ing higher-order interval constraints.

Another approach which exploits the structure of the constraint graph,
involves decomposition into nonseparable components. We shall show that this
can facilitate finding both a consistent solution and the minimal network.

Definition 6.2 (Even [18]). A connected graph G = (V, E) is said to have a
separation vertex v (sometimes also called an articulation point) if there exist
vertices a and b, a # v and b ~ v, such that all the paths connecting a and b
pass through v. In this case we also say that v separates a from b. A graph
which has a separation vertex is called separable, and one which has none is
called nonseparable. Let V' C_ V. The induced subgraph G' = (V', E ') is called
a nonseparable component if G' is nonseparable and if for every larger V",
V' c V" C_ V, the induced subgraph G" = (V", E") is separable.

Definition 6.3 (Even [18]). Let C ~ , . . . , Cm be the nonseparable components
of the connected graph G = (V, E), and let s 1 , s e be its separating
vertices. The superstructure of G, G = (V, E), is defined as follows:

9 = {s, s,} u (q , . . . , Cm},

/~ = {(Si, Q) lSi is a vertex of Cj in G}.

(6.1)

(6.2)

86 R. Dechter et al.

It is well known that the superstructure is a tree. The nonseparable
components and their superstructure can be found in time O(IEL) (see [18]).

Definition 6.4. Let G = (V, E) be a constraint graph of a TCSP, T, and let

C = (V', E ') be a nonseparable component of G. The minimal network of
component C, M c, is the minimal network of the TCSP defined by C.

Theorem 6.5. Let M be the minimal network of a consistent TCSP, T, and let
M c be the minimal network o fa nonseparable component, C = (V', E ') , in the
constraint graph, G = (V, E) , of T. Then, for all i , j E V', Mij = (Mc)ij.

Proof. Clearly, Mij C_ (Mc)ij. To prove (Mc)ij C M~j, we show that every value
in (Mc)ij also appears in M~j. Let v E (Mc)~j. There exists a labeling, L~, of C,
having minimal network ML~, in which v E (ML1)~ j. Since T is consistent, the
TCSP defined by G - C = (V, E - E ') is also consistent, and thus there exists a
consistent labeling, L 2, of G - C. Consider the labeling L whose restrictions to
C and G - C are L 1 and L 2, respectively. Let T L be the STP corresponding to
L. T L is consistent; otherwise, according to Lemma 5.10 it contains an invalid
cycle. This cycle must be entirely contained in either C or G - C, contradicting

the consistency of either L t or L 2. Let M L be the minimal network of T L. The
distance graph of T L shows that (ML)ij = (MLI)i j, because the shortest paths
lengths within C are not affected by the edges of G - C. Hence, v E (ML)ij,
thus v E M~j. []

Theorem 6.5 suggests an efficient algorithm for determining consistency and
computing the minimal network of a general network. We first find the
nonseparable components, C I , . . . , C m, and then solve each one of them
independently. If all the components are found to be consistent, then the entire
network is consistent, and the minimal networks of the individual components
coincide with the overall minimal network. If we use backtracking to solve
each of the components , then the worst time complexity of this method is
O(nr3k"), where r and c denote the largest number of nodes and the largest
number of edges in any component , respectively; and k, as before, denotes the
maximum number of intervals labeling any edge in the graph. When the
topology of any component admits a special, more efficient algorithm, it can be
applied directly to that component without affecting the solution of the rest of
the problem.

We still must find the minimal constraints on pairs that reside in two
different components. This will be determined by Theorem 6.6, after demon-
strating how a solution can be constructed to a given TCSP T. We start by
finding a solution to the nonseparable component C O that contains node 0. All
the separation vertices that are connected to C O in the superstructure, G, are
instantiated. Then we choose an instantiated separation vertex i, and find a

Temporal constraint networks 87

solution to any nonseparable component C i that is connected to i in G, and
whose vertices have not been instantiated yet. We continue in this fashion until
all the variables are instantiated. Since G is a tree, we are guaranteed that once
a partial solution of some component has been established, it does not need to
be revised.

Theorem 6.6. Let G = (V, E) be the constraint graph o f a given TCSP. Le t i

and j be two nodes that reside in different nonseparable components o f G,
namely , i E C i and j E Cj. Le t P be the unique path

P: C i = Cq, il, Ci2, i 2 , . . . , i k, Cik+, = Cj , (6.3)

that connects C i and C~ in the superstructure o f G. Then,

Mi/ = M i , i l ~ M i l , i 2 • . . ~ M i k _ 1,i k (~ M i k , J • (6.4)

Proof. It suffices to show that

Let

M i , i l ~ M i l , i 2 • • • t ~ M i ~ _ l , i k ~ M i k ,] C Mi] .

V E M i , q ~ M i l , i 2 • • • (~ M i k _ l , i k ~ M i k , j .

(6.5)

(6.6)

By definition of the composition operation, there exist values % , . . . , Ok, such

that v o E Mi, i l , oj E~. Mij,ij+ 1 for j = 1 , . . . , k - 1, v k E Mik.j, and

k

E vj = v . (6.7)
j=O

By the minimality of the individual minimal networks, we can construct a
solution X = (x 1 , x ,) , that satisfies

Xil -- X i -~- V 0 ,

Xij+l -- Xii = Vj ,

f o r j = l k - l , and

(6.8)

(6.9)

Hence,

xj - xik = v k . (6.10)

xj - x i = v , (6.11)

and thus v E Mq. []

88 R. Dechter et al.

The cost of computing a minimal constraint, M~j, using the above method, is
O(kCd); where c is the size of the largest component that resides along the path
connecting C~ and Cj, and d is the length of that path. An alternative upper
bound is given by O(U). Thus, a full recovery of the minimal network costs
O[rt2kmin(. . . .)].

Illustration. Consider the network of Example 5.4 (Fig. 7). There are two
nonseparable components: C 1 = {0, 1} and C 2 = {1, 2, 3}. Component CI is a
tree and thus already minimal. To compute the minimal network of C2, we can
either apply path consistency (note that C 2 is series-parallel with respect to any
pair of nodes) or solve separately the two possible labelings. If M is the
minimal network then, by Theorem 6.5:

Mol = Z01 , Ml= = Z12 , M13 -- Zi3 , M23 = Z23 , (6.12)

where Zij are constraints taken from the minimal networks of the components.
The rest of the network can be computed using (6.4):

M02 = M01 @ MI2 , (6.13)

Mo3 = M01Q MI3 . (6.14)

Recall that in this example path consistency does compute the minimal
network (see Section 5). This phenomenon can be explained by Theorems 6.5
and 6.6. We already noted that path consistency computes the minimal
networks of both components. We now show that in general, this should suffice
for computing the minimal constraints on edges that go across components.
When path consistency terminates, the computed constraints, Tij, satisfy:

and

T02 C Tot @ T12 (6.15)

T03 C T01 @ TI3 .

Together with (6.12)-(6.14), we get

To2 C_ Mo2 ,

T03 ~ M03 •

Since M is minimal, 7'02 = M02 and To3 = M03;
computes the full minimal network.

(6.16)

(6.17)

(6.18)

namely, path consistency

Temporal constraint networks 89

Finally, we note that another network-based approach for solving general
CSPs, the cycle-cutset method [14], cannot be employed beneficially in tempo-
ral problems. The reason is that the backtracking used in the solution of TCSPs
instantiates arcs, rather than variables, and many such instantiations are
needed to decompose the original network.

7. Relations to other formalisms

In this section we relate the TCSP model to two other models of temporal
reasoning--Allen's interval algebra and Vilain and Kautz's point algebra. We
show how the constraints in these representation schemes can be encoded
within the TCSP model. To facilitate such encoding, we allow the interval
representation of our constraints to include open and semi-open intervals, with
the obvious effect on the definitions of the union and intersection operations.
Similarly, an interval that results from a composition operation may be open
on one side or on both sides, depending on the operands. For example,

{[1, 2], (6, 8)} ® {[0, 3), (12, 15]}

= {[1, 5), (6, 11), (13, 17], (18, 23)}. (7.1)

It is easy to verify that all our theorems still hold with this extended provision.
Any constraint network in Vilain and Kautz's point algebra [49] is a special

case of a TCSP, lacking metric information. It can be viewed as a CSP
involving a set of variables, X 1 , X, , and binary constraints of the form
X i R Xj, where

R E { < , ~ < , > , ~ > , = , ¢ } . (7.2)

The translation into TCSP is straightforward. Constraints of the form Xj < X~
and Xj ~ X i are expressed by the interval representations Tij = {(-0% 0)} and
Tij = { (-~ , 0]}, respectively. The constraint X i = Xj translates into T# = {[0]}.
The only relation that needs to be represented by a disjunction is X~ ~ Xj,
translated into Tq = {(-o% 0), (0, oo)}.

Vilain and Kautz have addressed the tasks of determining consistency and
computing the minimal network for problems expressed in the point algebra.
They suggested the use of path consistency for computing the minimal net-
work, which turned out to be insufficient [47]. Van Beek [47] addressed a
subset of the point algebra, called PA, which excludes ~. He showed that
constraint networks in PA may be solved in time O(n 3) by applying path
consistency. This follows immediately from the TCSP representation, since
every constraint network in PA is equivalent to an STP with edges labeled by

90 R. Dechter et al.

intervals from

(-2,01, [01, (7.3)

Thus, when the constraints are taken from (7.3), path consistency for TCSP
coincides with path consistency for PA. Moreover, algorithms devised for
solving STPs' tasks reduce to equivalent, often simpler algorithms for solving
the same tasks in PA. For example, directional path consistency can determine
consistency in PA in O(nW*(d) 2) operations, which amounts to linear time
when W*(d) is bounded.

The full point algebra, including the inequality constraint ~ , translates into
TCSPs with disjunctions, for which our general methods can be applied, and
the special structure of the constraints exploited. In [47] it is shown that
enforcing 4-consistency suffices for computing the minimal network in the point
algebra. This result takes special advantage of the nonmetric nature of the
relations in (7.2). More recently, it has been found that path consistency is
sufficient for determining consistency in the full point algebra [35]. This
establishes an O(n 3) complexity for general networks in Vilain and Kautz's
point algebra. 5 A more efficient method has been reported recently by Van
Beek [48], requiring O(n 2) time (see also [35]).

In contrast, Allen's interval algebra [2] cannot be translated into binary
TCSPs. It can be viewed as a CSP involving a set of variables, X~ , An,
whose domains are pairs of time points, representing the beginning and ending
times of temporal events. The allowed relationships between pairs of variables
are taken from the set

{before, meets, overlaps, during, starts, finishes} , (7.4)

their inverses, and the equality relation--a total of 13 relations. The translation
into TCSP introduces nonbinary constraints. For example, the constraint

A (before v after) B , (7.5)

where intervals A and B are given by A = [X 1 ,)(2] and B = [X 3, X4], cannot be
encoded by a binary TCSP constraint [49]; it requires the 4-ary constraint

(X 2 < X3) v (X 4 < X I) . (7.6)

Problems involving higher-order constraints can be expressed as disjunctions of
STPs, and solutions can be assembled by taking the union of the individual
STP solutions. Although the number of such subproblems may be large,
advantage can be taken of the simple procedures available for solving each

5We have recently learned that this had also been established by Ladkin and Maddux, The
algebra of constraint satisfaction problems and temporal reasoning, Tech. Rept., Kestrel Institute,
Palo Alto, CA (1988).

Temporal constraint networks 91

STP. It seems likely, however, that unless metric constraints are specified, the
representation suggested in [2] can be handled more conveniently.

8. Summary and conclusions

This paper provides a formal framework for dealing with temporal con-
straints, encouraging the transference of algorithms and theoretical results
developed for general constraint satisfaction problems. We distinguish between
simple temporal problems (STPs) and general temporal problems, the former
admitting at most one interval constraint on any pair of time points. We show
that the STP can be solved in polynomial time, using the well-known Floyd-
Warshall's all-pairs-shortest-paths algorithm. For general TCSPs, we present a
decomposition scheme that provides answers to the reasoning tasks considered,
but its computational efficiency, in the worst case, might be limited. The
decomposition scheme might be improved by traditional constraint satisfaction
techniques, such as backjumping, learning, various ordering schemes and
preprocessing techniques. We studied the applicability of path consistency
algorithms as preprocessing of temporal problems, demonstrated their termina-
tion and bounded their complexity; they seem to offer a practical compromise
in very complex problems. In particular, the more efficient directional path
consistency was shown to retain the essential properties of full path consistency
in determining consistency for STPs and in enhancing backtrack search of
general TCSPs. Among the specialized network-based algorithms, only the one
employing decomposition into nonseparable components was found applicable
to TCSPs. It offers a method for computing the minimal network in time
exponential in the largest nonseparable component.

We see the main application of our framework to be in temporal reasoning
tasks involving metric information, namely, expressions involving absolute time
differences (e.g. "John came home an hour after Mary"). In this respect, the
expressiveness of our language supercedes that of Allen's interval algebra.
However, it can be considered weaker than the interval algebra, being limited
to problems involving constraints on pairs of time points. Our framework
subsumes Vilain and Kautz's point algebra as a special case, and provides an
arsenal of techniques and intuitions for solving problems in this domain. The
natural extension of this work is to explore TCSPs with higher-order expres-
sions (e.g., "John drives to work at least 30 minutes more than Fred does";
X 2 - X 1 + 30 ~< X 4 - X 3) , with the aim of exploiting the unique algebraic
features provided by the linearity and continuity of temporal constraints. An
extension of this work, integrating our quantitative analysis with the qualitative
framework of Allen's algebra can be found in a recent article. 6

6 I. Meiri, Combining qualitative and quantitative constraints in temporal reasoning, in: Proceed-
ings AAAI-91, Anaheim CA (1991).

92 R. Dechter et al.

Appendix A. Proof of Corollary 3.5

Corollary 3.5. G i v e n a consis tent S T P , T, the equ iva len t STP , M , de f ined by

Vi , j , M q = { [- d r , , d q] } , (A.1)

is the m i n i m a l n e t w o r k representat ion o f T.

Proof. We will show that M is the minimal network by showing that it cannot
be tightened any more; in other words, starting with the assignment X 0 = 0, for
any d E [- dti, dq] there exists a solution X = (x 0 , x n) in which xj - x~ = d.

Case 1.

d ~< d 0 j - d0~.

According to Corollary 3.4, X i = dog is a feasible value. Clearly,

doi + d ~ doi - dji ,

and since

(A.2)

(A.3)

dji <- djo + doi , (A.4)

we get

doi + d >1 - d j o .

Together with (A.2) we have

(A.5)

and since

d >! dot - doi . (A.8)

According to Corollary 3.4, X t = dot is a feasible value. Clearly,

doj - d >~ doj - dq , (A.9)

-dr0 ~< d0i + d ~< doj . (A.6)

Therefore, the assignment Xj = d0i + d satisfies the unary domain constraints
on variable Xt, and

{X o = 0, X i = doi, X j = do~ + d} (A.7)

satisfies the constraints applicable to {X o, X,, Xt}. By Theorem 3.3 this partial
assignment can be extended to a solution.

Case 2.

we get

dij <~ dio + doj ,

Temporal constraint networks 93

(A.10)

doj - d >! - d i o . (A.11)

Together with (A.8) we have

- d i o <~ doj - d <~ doi . (A. 12)

Therefore, the assignment X i = doj - d satisfies the unary domain constraints
on variable X~, and

(X o = O, X i = doj - d, X j = doj } (A.13)

satisfies the constraints applicable to (X 0, X~, Xj}. By Theorem 3.3, this partial
assignment can be extended to a solution. []

Appendix B. Proof of Lemma 5.10

Lemma 5.10. A g iven S T P , T, is cons i s ten t i f a n d on ly i f all the cycles in its

cons t ra in t g raph are valid.

Proof. If the network is consistent, then all the cycles are valid, since if there
was an invalid cycle C, i o , . . . , i k = i o, then the path constraint along C would
yield

X~o- Xio#0 , (B.1)

reflecting inconsistency.
Conversely, assume that all the cycles are valid. We will show that the

network is consistent. According to Theorem 3.1 we only need to show that
there is no negative cycle in the corresponding distance graph. Suppose there
was such a negative cycle, C, consisting of nodes i 0 , . . . , i k = i0, and edge
weights ao,l, a l , 2 , . . . , ak_l, k = a k _ l , 0. Since C is negative, we have

k

aij_,,i j < 0 . (B.2)
j = l

Moreover, from (3.1)-(3.3) we obtain

- a i j , i j _ l ~ ai j_l , i j

for j = 1 k. Thus, combining (B.2) and (B.3) yields

(B.3)

94 R. Dechter et al.

0 ~- --aii,5 I' aij j,i~ •

At the same time, applying the composition along C gives

Til,.il @ ' ' " @ Tik_.l.i k = --aij,ij_t, aii_l,i j ,
. =

thus rendering C invalid--a contradiction. []

(B.4)

(B.5)

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, MA, 1974).

[2] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983)
832 -843.

[3] J.F. Allen, Towards a general theory of action and time, Artif. lntell. 23 (2) (1984) 123-154.
[4] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decom-

posability--a survey, BIT 25 (1985) 2-23.
[5] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a

k-tree, SlAM J. Algebraic Discrete Methods 8 (2) (1987) 177-184.
[6] B. Aspvall and Y. Shiloach, A polynomial time algorithm for solving systems of linear

inequalities with two variables per inequality, SlAM J. Comput. 9 (4) (1980) 827-845.
[7] R.C. Backhouse and B.A. Carr6, Regular algebra applied to path-finding problems, J. Inst.

Math. Appl. 15 (1975) 161-186.
[8] C.E. Bell and A. Tate, Use of a longest path algorithm to manage temporal information and

restrict search in an automated planner, Working Paper Series No. 85-34, Artificial In-
telligence Applications Institute, University of Edinburgh, Scotland (1985).

[9] U. Bertel6 and F. Brioschi, Nonserial Dynamic Programming (Academic Press, New York,
1972).

[10] G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton,
N J, 1962).

[11] E. Davis, Constraint propagation with interval labels, Artif. lntell. 32 (3) (1987) 281-331.
[12] E. Davis, Private communication (1989).
[13] T.U Dean and D.V. McDermott, Temporal data base management, Artif. lntell. 32 (1987)

1-55.
[14] R. Dechter, Enhancement schemes for constraint processing: backjumping, learning, and

cutset decomposition, Artif. lntell. 41 (3) (1990) 273-312.
[15] R. Dechter and I. Meiri, Experimental evaluation of preprocessing techniques in constraint

satisfaction problems, in: Proceedings 1JCAI-89, Detroit, MI (1989) 271-277.
[16] R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems, Artif.

Intell. 34 (1) (1987) 1-38.
[17] R. Dechter and J. Pearl, Tree clustering for constraint networks, Artif. Intell. 38 (3) (1989)

353 -366.
[18] S. Even, Graph Algorithms (Computer Science Press, Rockville, MD, 1979).
[19] E.C. Freuder, Synthesizing constraint expressions, Commun. ACM 21 (11) (1978) 958-965.
[20] E.C. Freuder, A sufficient condition of backtrack-free search, J. ACM 29 (1) (1982) 24-32.
[21] J. Gaschnig, Performance measurement and analysis of certain search algorithms, Tech. Rept.

CMU-CS-79-124, Carnegie-Mellon University, Pittsburgh, PA (1979).
[22] S. Hanks and DN. McDermott, Default reasoning, nonmonotonic logics, and the frame

problem, in: Proceedings AAA1-86, Philadelphia, PA (1986) 328-333.

Temporal constraint networks 95

[23] R.M. Haralick and G.L. Elliott, Increasing tree search efficiency for constraint satisfaction
problems, Artif. lntell. 14 (1980) 263-313.

[24] K. Kahn and G.A. Gorry, Mechanizing temporal knowledge, Artif. Intell. 9 (1977) 87-108.
[25] L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet Math. Dokl. 20

(1979) 191-194.
[26] P.B. Ladkin, Metric constraint satisfaction with intervals, Tech. Rept. TR-89-038, Interna-

tional Computer Science Institute, Berkeley, CA (1989).
[27] P.B. Ladkin and R.D. Maddux, On binary constraint networks, Tech. Rept., Kestrel

Institute, Palo Alto, CA (1989).
[28] D.J. Lehmann, Algebraic structures for transitive closure, Theor. Comput. Sci. 4 (1977)

59 -76.
[29] C.E. Leiserson and J.B. Saxe, A mixed-integer linear programming problem which is

efficiently solvable, in: Proceedings 21st Annual Allerton Conference on Communications,
Control, and Computing (1983) 204-213.

[30] Y.Z. Liao and C.K. Wong, An algorithm to compact a VLSI symbolic layout with mixed
constraints, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 2 (2)
(1983) 62-69.

[31] A.K. Mackworth, Consistency in networks of relations, Artif. Intell. 8 (1) (1977) 99-118.
[32] A.K. Mackworth and E.C. Freuder, The complexity of some polynomial network consistency

algorithms for constraint satisfaction problems, Artif. lntell. 25 (1) (1985) 65-74.
[33] J. Malik and T.O. Binford, Reasoning in time and space, in: Proceedings IJCA1-83,

Karlsruhe, FRG (1983) 343-345.
[34] D.V. McDermott, A temporal logic for reasoning about processes and plans, Cogn. Sci. 6

(1982) 101-155.
[35] I. Meiri, Faster constraint satisfaction algorithms for temporal reasoning, Tech. Rept. R-151,

UCLA Cognitive Systems Laboratory, Los Angeles, CA (1990).
[36] U. Montanari, Networks of constraints: fundamental properties and applications to picture

processing, Inf. Sci. 7 (1974) 95-132.
[37] B. Nudel, Consistent-labeling problems and their algorithms: expected-complexities and

theory-based heuristics, Artif. lntell. 21 (1983) 135-178.
[38] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity

(Prentice-Hall, Englewood Cliffs, NJ, 1982).
[39] D.S. Parker, Partial order programming, Tech. Rept. CSD-870067, UCLA, Los Angeles, CA

(1987).
[40] P.W. Purdom, Search rearrangement backtracking and polynomial average time, Artif. lntell.

21 (1983) 117-133.
[41] Y. Shoham, Reasoning about Change: Time and Causation from the Standpoint of Artificial

Intelligence (MIT Press, Cambridge, MA, 1988).
[42] R. Shostak, Deciding linear inequalities by computing loop residues, J. ACM 28 (4) (1981)

769 -779.
[43] R.E. Tarjan, A unified approach to path problems, J. ACM 28 (3) (1981) 577-593.
[44] R.E. Tarjan, Fast algorithms for solving path problems, J. ACM 28 (3) (1981) 594-614.
[45] R.E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,

test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs, SlAM J. Comput. 13
(3) (1984) 566-579.

[46] R.E. Vald6s-P6rez, Spatio-temporal reasoning and linear inequalities, Artificial Intelligence
Laboratory, AIM-875, MIT, Cambridge, MA (1986).

[47] P. Van Beek, Approximation algorithms for temporal reasoning, in: Proceedings IJCAI-89,
Detroit, MI (1989) 1291-1296.

[48] P. Van Beek, Reasoning about qualitative temporal information, in: Proceedings AAAI-90,
Boston, MA (1990) 728-734.

[49] M. Vilain and H. Kautz, Constraint propagation algorithms for temporal reasoning, in:
Proceedings AAAI-86, Philadelphia, PA (1986) 377-382.

[50] J.A. Wald and C.J. Colbourn, Steiner trees, partial 2-trees, and minimum IFI networks,
Networks 13 (1983) 159-167.

