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The connection between the simplicity of scientific theories and the credence attributed to their predictions seems to
permeate the practice of scientific discovery. When a scientist succeeds in explaining a set of n observations using a
model M of complexity ¢ then it is generally believed that the likelihood of finding another explanatory model with
similar complexity but leading to opposite predictions decreases with increasing n and decreasing c¢. This paper
derives formal relationships between n, ¢ and the probability of ambiguous predictions by examining three modeling
languages under binary classification tasks: perceptrons, Boolean formulae, and Boolean networks. Bounds are also
derived for the probability of error associated with the policy of accepting only models of complexity not exceeding c.
Human tendency to regard the simpler as the more trustworthy is given a qualified justification.
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1 INTRODUCTION

The subject matter under discussion can hardly
be introduced in a more concise fashion than
quoting Quine:!

“It is not to be wondered that theory makers seek simplicity.
When two theories are equally defensible on other counts,
certainly the simpler of the two is to be preferred on the score
of both beauty and convenience. But what is remarkable is
that the simpler of two theories is generally regarded not only
as the more desirable but also as the more probable. If two
theories conform equally to past observations, the simpler of
the two is seen as standing the better chance of confirmation
in future observations. Such is the maxim of the simplicity of
nature. It seems to be implicitly assumed in every extrapo-
lation and interpolation, every drawing of a smooth curve
through plotted points. Ard the maxim of the uniformity of
nature is of a piece with it, uniformity being a species of
simplicity.”

Aside of the philosophical interest raised by
the phenomena above, it has assumed an increas-
ing practical importance. Much of today’s data is
being processed by electronic computers and an
increasing part of the modelling activity is being
delegated to mechanical procedures. In order for
an automatic device to satisfactorily manage the
generation and selection of competing hy-
potheses, the programmer-user can no longer
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hide his inductive procedures and preference
criteria in the realm of intuition, but ought to
explicate those in a formal, mechanizable way.
The criteria for hypothesis selection carry even a
greater significance in the area of Robotics. The
operation of an industrial robot involves a con-
tinuous generation and selection of “explana-
tions”, or microtheories, for all sorts of non-
anticipated inputs. The criteria for selecting
among such competing explanations, their credi-
bility and complexity, would significantly affect
the robot performance in its industrial
environment.

The philosopher who attempts to explain our
natural compulsion to regard the simpler as the
more truthful (e.g., as evidenced by the decisive
role simplicity had in shaping the historical de-
velopment of science?) inevitably finds himself
lacing a blind alley. Coinplexity is a concept
variable with language while truth refers to some-
thing absolute outside the confines of languages.
A theory which seems complex in one language
would appear simple in another if only one
redefines the atomic variables of one language in
terms of the derivatives of another. “This being
so, how can simplicity carry any peculiar pre-
sumption of objective truth?*

The famous paradoxes of induction®*# are pro-
ducts of-that same disparity. People tend to form
theories in line with the particular language they
happen to possess, while inductive logic attempts
to capture the process of theory formation by
language-independent rules. The two will forever
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remain incompatible and, similarly, one must
resign to the idea that no logical argument can
possibly connect simplicity with credibility.

But even assuming that the association be-
tween the simple and the truthful is purely psy-
chological, one should still be justified in explor-
ing the origin of such perceptuat illusion.
Apparently, by a long process of evolution our
race has learned to associate the simple with the
trustworthy. The two must, therefore, possess
some common qualities which make them seem
to occur conjunctively.

Certainly, part of the answer lies in what
Quine' calls “subjective selectivity that makes us
tend to see the simple and miss the complex.”
Another factor lies with the flexibility of our
language; when a theory becomes workable we

“force™ it to become simple. When the need -

arises, we invent new concepts (e.g., ellipses,
electrons, wave-functions) which get “entrenched”
in our language as elementary entities, in terms
ol which our theories appear simpler. This
phenomena, though, may account for only part
‘of the answer since (as is demonstrated in Section
3) therc is a definite limit to the process of
simplification by intermediate variables. A point
must eventually be reached where the added
complexity associated with defining any new vari-
able would overshadow the simplicity it may
introduce.

The central property upon which this paper
focuses is that of uniqueness vs. ambiguity. Simply
stated, uniqueness may be exemplified by the fact
that through any two points it is possible to pass
‘many second degree polynomials but only one
straight line. More generally, there usually are
many complex theories which can explain a given
set of observations but only a few simple theories
(if any). Consequently, if one succeeds in finding
a simple explanation to empirical data he is not
likely to find another rival explanation, equally
stmple, which also explains that data. The sim-
pler the theory at hand the lower the likelihood
of refuting it with another theory of equivalent

complexity. Likewise, we expect the likelihood of -

committing a prediction error on account of
selecting the wrong theory to be lower the sim-
pler the class from which theories are chosen.

In this paper we give these intuitive notions a
quantitative formulation, and derive relations be-
tween the number of observations, the complexity
of models and their credibility. The relations are
derived for a binary discrimination task and.for

three different languages, as defined in Section 2.

Section 3 addresses the question ol how many
observations one ought to have before becoming
fairly certain that any rival theory agreeing with
the data must either give the same prediction on
the next observation or be more complex than
the one at hand. Section 4 analyzes the reliability
of probabilistic assertions made by theories as a
function of their complexity. We aiso bound from
above the probability of error (on future obser-
vations) that any model of a given complexity
might possibly make if it agrees with the data at
hand.

2 FORMAL NOTATION FOR
INDUCTION, MODELS AND
LANGUAGES

In this section we give a simple formal de-
scription to the elements of inductive reasoning
and the role of languages in the search for
explanatory models. We imagine a scientist
searching for a physical law ro explain a growing
body of physical data. Each datum is represented
by a pair (x,y), where x stands for the experi-
mental condition and y denotes the experimental
result. After collecting n observations the scientist
possesses a total evidence e,,é{(x,, ¥i), (xa,
¥2)...(x,, ¥,)}, which he attempts to capture with
a model f Let xeX, yeY and let F* stand for
the set of all functions X — Y. We assume that the
data e, is generated by an underlying model
JSo(e, < foe F*) which the scientist wishes to dis-
cover. By a scientific method we mean an algor-
ithm A which accepts the evidence e, and com-
putes a function f=A(e,)eF* which meets some
criteria of fitness and complexity.

Fitness criteria measure the extent to which the
model agrees with the evidence at hand. It is
usually expressed in the form of a distance func-
tion,> d[e,, A(e,)], which is zero whenever
e, S A(e,). In Section 3 we shall demand a perfect
agreement between evidence and model, that is:

e, S Ale,)

and will relax 1t in Section 4.

The search for a model f, as well as the
computation of predictions based on f, are usu-
ally performed within some linguistic structure
which provides a symbolic representation of the
space of potential models F*. It is with respect to
such a language that model complexity is usually
defined. Let a language L be a pair (7. 1) where
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T is the set of sentences in the language, and [ is
its interpreter [:T—F* Every sentence te T of
the language represents a model via its interpre-
tation: I(t)=feF* On cach teT we deline a
compiexity measure: C: T-R* which may repre-
sent either the syntactic aspect of the sentence t,
or the work required for the computation of I(z).
Given C(t), we define model complexity by:

C(f)= min C(t).
cIn=7
Thus, the complexity of a model f with respect
to a language L is defined as the complexity of
the simplest sentence which represents that
model. .

We now exemplify these notions using three
different languages which have f{requently been
used in Pattern Recognition.

L' —Perceptrons®—the data is given as a con-
junction of N-dimensional real vector x=(x!,
x%;..,x") and a class label ye{0,1}. The models
describable in this language are linear half spaces
defined by a list of N+ 1 real coefficients. Thus,
each sentence t€ T is an ordered list of N 41 real
numbers t = (W, ©,,...,WOx4 ), and

1) 1 il ox!'+w,x*+...onxN>0y,,
10 eisewhere

Generalization of [ is often more useful, whe-
reby a set of d features from some feature-set
¢(x), ¢y(x),... 1s first computed and then a
linear discrimination is performed in ¢-space’:

)=

{1 il w1¢|(x)+w2¢2(x)+‘“wd¢a(x)>>wa+1
0 elsewhere. ’

We shall denote this language by L}. The com-
plexity of a sentence in L} is usually equated with
the number of features it invokes, that is C{t)=d.

I? — Logical formula. Each data point (x, y) is
represented by a Boolean N-vector x=(x',
x2,..,xV), x'e{0,1}, accompanied by its truth
value ye€{0,1}. T is the set of Boolean formula
on N variables containing negation, conjunction,
and disjunction connectives. T can be identified
recursively by:

_ {x'eT i=1,2,..,N
tLteT=t,t,ntt, ut,eT

and [(t) corresponds to the Boolean function
represented by t.

Various complexity measures can be defined
with respect to I2. The most common ones are:
(1) formula complexity—the number of connec-
tives in t, 2) combinational complexity—the mi-
nimum number of gates necessary for a circuit
realizing 1(t), and (3) time complexity—the mij-
nimum time delay in a circuit realizing I(t).
Combinational complexity is treated more di-
rectly using the next language, . Time com-
plexity is known® to be related to combinational
complexity in a rather simple manner. We, there-
fore, take formula complexity to represent the
complexity of I2.

D —Logical  formula  with  intermediate
variables. This language is similar to I with the
exception that each sentence may contain several
Boolean expressions; the main one defines the
model-function while the rest define the variables
appearing in the main formula. Each sentence ¢,
therefore, constitutes an explicit blueprint for a
logical circuit which computes I{t). The com-

‘plexity of I will be taken to be the number of

connectives in ¢t and it also equals the number
of gates in the corresponding circuit. L2 is
sometimes® regarded as a subset of L3 with the
restriction of unity fanout. ¢ can also be regarded
as a program for computing the Boolean function
I(t). The intermediate variables would then repre-
sent results of intermediate computations, and
C(t) would measure the program execution time. .

The three languages, L', I* and 2, will next be
used as test vehicles to examine the connection
between credibility arid complexity. Note that
while [* and I? have a full power of expression,
as I(T)=F*, this is not the case for L'; only
linear half spaces can be captured by I(T).
However, if the feature space is properly chosen
(e.g., ¢,(x) are polynomials of increasing order)
every fe€F* can be approximated at will by an
I(t), by taking a large enough d. Moreover, for
any finite n we can find a te T such that 2, 1(1).

3 CAPACITY AND AMBIGUOUS
GENERALIZATION

In the following two sections we imagine a
scientist who uses simplicity as a criterion for
selecting models in each of the three languages
defined above. We wish to find the general laws
which govern his performance.

The first question we wish to answer addresses
the likelihood of finding a simple model explain-
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ing an evidence e,. Assume that e, 1s drawn at
random (according to some probability distri-
bution function), what can be said about the
probability of finding a model with complexity
not exceeding ¢ which explains e, ? |

DEFINITION | A complexity bounded sub-
language of L is a sublanguage L_=(T,, I.) such
that 7= T I, =l and C(f)<cforall fel,.

The partition of a language into its simple part
L. and its complex part, L— L, induces a similar
partition on the data space. We shall say that a
data ¢, is c-simple (denoted by e,eE.) if there
exists a model f el such that e, < f.

DEFINITION 2 The capacity of a complexity-
bounded language is given by the number of
observations n, satisfying

Ple, €E)=%. (2}

This definition of capacity is a slight generali-
zation over the concept originated by Cover’ for
L;. Loosely speaking, capacity measures the
maximum number of samples that the scientist
should collect if he wishes to guarantee at least
509% chance of finding a c-simple explanation for
the data. Clearly, n, is sensitive to the probability

distribution which governs the data generation,

and reasonable assumptions must be made before
capacity computations can be carried out. For
L;, Cover” has shown that il {x, x,...x,} is in
¢-general position and if the class labels {y,,
Y2,---¥a} are chosen at random with equal pro-
bability for the 2" equiprobable possible labeling
patterns, then

1 n-1C—1 -1
P(e,eEc)=(5) kgo("k). 3)

Since, for Lj, P(e,eE.) is independent of the
exact location of the vectors {x,, x,...x,} (except
for the loose requirement that {x,, x,...x,} be in
¢-general position with probability 1), we can
state that (3) holds for any distribution of e, in
which the y’s are uniformly and independently
distributed.

From (3), it is easy to show that the capacity
of L} is given by

n.=2c—1 (4)

and that the probability P(e,eE.) shows a pro-
nounced threshold effect in the neighborhood of
n=2c..For large ¢, the addition of each feature
function results in capturing an average of two

additional samples. Moreover, almost all data
can be modeled by L, if n<2¢ and hardly any
data can be modeled when n>2c.

For languages [ and [*, P(e,eE.) is no longer
independent on the input {x,, x,...x,}, and one
must assume a uniform distribution of e,, in
order to calculate the capacity. On the other
hand, since both X and L, are finite we can write

P(e,eE,) =————|{e" ':{ee,, ;E”}I X

Denoting the total number of distinct evid-
ences in E_ by S(n,c) and its relative number by
s(n,c) we have

()

S(n,c)
S(n,0)

The quantity s(n,¢) is not easy to compute for
either I or [2, however, asymptotic expressions
may be obtained from the literature on the
complexity of Boolean functions,

Lower bound: Let n, be the highest integer n
such that Ve, e,eE,, then

Ple,€E.)= =s(n,c). (6)

2" n2ng

S(n,C)é{ M

| n<ng
The reason for (7) is that e,eE, implies that
either {e,, (x4, 0)} or {e,, (x,+,, 1)} (or both)
must also be in E, as an extension of some model
S in I. Therefore, s(n,c) cannot decrease by a
factor smaller than 1/2 for each additional
observation.

Upper bound: Each model fel, agrees with

Ll 2N
exactly ( ) data sets (corresponding to the ( )
n n

ways of choosing n out of 2¥ possible input

combinations, with the truth value determined by

J). Therefore, the total number of data sets -

covered by 1., S(n,c), is at most (assuming no
N

2
overlap) |1,| L) and so

S
s(n,c)=—("7’§l§|1c|2-"=2"x-" )
2!!( )
n
where
n, = log,|l,|- 9)

For I7 and I2 n, can be upper bounded by:!°
n, <(c+1)d+log,N) for 2,  (10)



COMPLEXITY AND CREDIBILITY OF MODELS 259

and

n,c[d4—log,c+2log,(N+c¢)] for IP.(11)

Since s(n,¢) 1s bounded between two exponential
functions, the capacity is likewise bounded by

ng+1<n<n +1. (12)

It s clearly the proximity between ny and n, that
determines our ability to compute the capacity.
Fortunately, the analyses of Sholomov'! and
Pippinger'® show that ny/n, approaches |
asymptotically as N—co.

Consider the set e, of all partial Boolean
functions of N variables specified on n points.
Sholomoy!® has shown that every element of {e,}
can be realized by a circuit of complexity not

exceeding
n log N
=—|1+0 13

if n has a larger order of growth than N -log
N -log log N -log log log N. Hence, we have

no-—-Nc[l +o('°§” )} (14)

At the same time (11) implies that, for N<c<2",
ny is bounded by

ny <Nc¢(l +6/N) (15)
and so, using (12), the asymptotic capacity of L
becomes
log N
nr:Nc[1+o(°§J ﬂ (16)

Thus, allowing the complexity of L3 to increase
by one unit (one binary gate) would increase the
length of the observation sequences by N obser-
vations before models of higher complexity are
likely to be needed. Likewise, models of com-
plexity not exceeding n/N should be sufficient to
capture about 509 of all observation sequences
of length n.

In a similar way one can arrive at the capacity
of 7. Here, a recent result by Pippenger'® would
be.necessary, stating that for I2 all members of e,
would be captured by a formula of complexity
not exceeding

n } loglog N
= 1 —_ 17
¢ logN[ +0( log N )] )

and therefore

‘ loglog N
no=clog N[l +0( 3g—°g—)} (18)
log N

This, coupled with (10) and (16), yields the
asymptotic capacity of L?:

1
n.=clog N|:1 +o(—°g[°—gN)]. (19)
log N

Several points should be noted in comparing I?
with I?. The complexity of a logical circuit with
unrestricted fanout would, in most cases, be
about logN/N times lower than an equivalent
circuit with fanout one. Equivalently, programs
for evaluating logical expressions would be about
log N/N times shorter il the use of intermediate
variables is allowed. From these statements one
may get an idea of the degree of simplification
expected as a result of enriching the language
with new “entrenched” predicates.

The capacity of a language is closely related to
another measure ol performance introduced by
Cover—Probability of Ambiguous Generalization.
Imagine a scientist who succeeds in finding fel,
to fit the data e,. What is the probability that
another model exists, f, e, which also agrees
with the past data but which contradicts f on
the next sample to be observed? Intuitively, if
nn, then most data can be fitted by only one
model in I, and therefore the probability of
ambiguity should be low. Likewise, for n<«n,
most data can be fitted by more than one model
in I, and so the probability of ambiguity ought
to be high.

DEFINITION Xx,,, is said to be ambiguous with
respect to evidence e, in I, iff both {e,, (x,;,, 0)}
and {e,, (x,+, 1)} are in E..

DEFINITION Given a probability distribution on
{e,} and {e,,,} we define the probability of
ambiguity P,(n,c) as the probability that x,,, is
ambiguous with respect to a random evidence e,
inl.

The language Lj, possesses a symmetry property
which facilitates a ready calculation of P,(n,c).
Here, each x,,, 1s ambiguous with respect to a
fixed number of ¢-separable dichotomies of {x,
X,...x,} regardless of the location of {x,
X3..-Xn Xa4q1) (as long as it is 'in ¢-general
position). Based on this property, Cover’ showed
that if each ¢-separable dichotomy of {x,
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X3...x,} has equal probability then P,(n,c) is

given by
c-2 n-1
n(')
< k
P,(n,c) =223 PRV (20)
z("
and
P
| ¢ 1)
lim P,(nc)= 1 ",
CMZ:;u. ' 2;_1 C=
¢

Thus, as long as the number of observations is
below the capacity 2¢, the probability of amn-
biguity remains unity. For a higher number of
observations, P, decreases at a rate inversely
proportional to n.

For I? and 2 the number of dichotomies of
fxy, X;...x,] with respect 1o which a given point
X, 4+, Iis ambiguous usually varies with {x,
X;...Xx,} and x,,,. A separate analysis is there-
fore needed, to express P,(n,c) in terms of s(r, ¢}
Consider the set of all distinct ordered pairs (¢,
N, ) for which ¢, F,, and assume all such pairs
to be equally probable. Let a total of ¢, such
data-pairs be ambiguous and ¢, of them non-
ambiguous. Clearly,

Py(n,c)

number of ambiguous pairs (e,, X, + )
total number of pairs (e,, X, ;) : €, € E,

Cy

¢ty

(22)

Each ambiguous pair corresponds to two labelled
pairs (y,+, specified) which are in E_, while cach
non-ambiguous pair corresponds to only one
such labelled pair. Also, each data set e,,,
appears exactly n 41 times in the set of 2¢, +¢,
ordered pairs {e,, (X,+1, ¥»+ 1)) Therelore,

2, +¢y=n+1)S(n+1,c). (23)
At the same time each of the S(n,¢) members of
i2,) gives rise to 2V-u ordered pairs (e, x,4)

and we can write

o +e;=2%=n)S(nc). (24)

Combining (22), (23), (24) and (6), we obtain

_(n+1)S(n+1,c)

Paln,c)= ¥ —n)S(n,c)

s(n+ l,c)_
s(n,¢)

. (25)

For small sample size, n<ny, s(n,c) is equal to
unity and

P,(n,c)=1 for n<ng{c)—1. (26)

For sample sizes exceeding the language capacity
a more detailed behavior of s(n,c) is needed
before the rate of decrease of P,(n,c) can be
determined. An exponentially decaying s(n, c), for
example, would yield P,{n,¢)=0. Had the expon-
ential hounds of (7) and (8) been sulliciently tight
one would expect to find a sharp drop in P,.for n
>n,. However, the asymptotic results of
Sholomov and Pippenger only guarantee

ny—ng

lim =0

o Mo

not the vanishing of the absolute difference n,
—n,. Consequently, the exact behavior of P,(n,c)
for n>n, remains an open question for [* and 3.

Several features of P,(n,c), however, can be
determined directly from the upper bound of (8).
A simple analysis of (25), (7) and (8) reveals that
log[1 + P,(n, ¢)] must be bounded by:

PLES!
Z ‘082[Pa>(",c)+l]§"|_"o- (27)

ll="0

On the other hand (14) and (15) imply that n,
—n, must be of order at most ¢ log N, and hence
(using log,(1 + P) = P) P,(n, c) should satisfy:

28—
Y P,nc) £cO(logN) for D
° (28)
and
PLES
Y P,(nc) ScO(loglogN) for IZ.
n=n,
(29)

The languages I? and I> exhibit faster decay rates

for P,(n,c) than L'. An inverse law relation such
as the one found for I! in (21) would render the
left hand sides of (28) and (29) of order N, thus
violating the inequalities. A stronger rate of fall,
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e.g. an inverse square law, is needed to satisfy
(28) and (29).

It is not to be wondered that finite [anguages
such as I? and I, exhibit a sharper cutoff for
ambiguity than infinite languages employing real
parameters such as [!. Clearly, when one
exhausts exploring all input combinations (e.g. n
=2") the model is lully specified and no more
ambiguity exists. What 1s significant, though, is
that the point of diminishing ambiguity is
reached much earlier, at the neighborhood of
n=n, and the threshold in this neighborhood is
more pronounced for I? and I} than I!. The
latter is a consequence of the tightness of the
combinatorial bound (8) as expressed in {(14) and
(18). The significance of a sharper threshold for
ambiguity is that for a given complexity bound c,
a smaller number of observations is needed in
order to achieve a certain level of credibility in
the mode! at hand.

4 COMPLEXITY AND PROBABILITY
OF ERROR

Whereas P,(n,¢) may, in many cases, constitute
an adequate measure of model credibility, it is a
rather loose measure. To compute P,(n,c) we
assumed that all e,eE, are equiprobable and
excluded e,¢E. We now wish to extend the
credibility measure in three directions. (1) We
wish to include considerations of evidence-data
not capturable by I, e,¢ E_, like those generated
by either more complex models or by non-
deterministic processes. (2) We wish to perform a
“worst case”- analysis assuming that Nature her-
self, in what might be regarded as a “hostile”
manner, may select the observation sequence in
accordance with some fixed distribution law.
Indeed, it is rather unrealistic to assume equi-
probable observation sequences for the mere fact
that some experimental conditions are harder to
satisfy than others. (3) We wish to define credi-
bility not merely in terms of the number of
competing models but rather directly in terms of
the degree of agreement between the true under-
lying model and the one at hand.

Consider a scientist with a complexity bounded
language L. observing data e,, and attempting to
fit it with a theory A(e,)el,. Since ¢, may- be
generated by a model f,#!, (or by a non-
deterministic model) we must give up the require-
ment of perfect fit, and instead assume that the

scientist only attempts to posit a theory which
reasonably approximates the data (e.g. that
which minimizes the number of mistakes: (x;,
y:)¢ f), and report the degree of approximation.
This scheme closely reflects Reichenbach’s'? con-
cept of induction whereby the aim of science is
viewed not as that of discovering true theories
but of positing probabilistic assertions about na-
ture with an ever increasing accuracy.

Suppose the scientist reports that a model
f el approximates an evidence ¢, and that it
disagrees with a fraction v (e,) of the n observed
samples. Denoting by IT, the true probability of
disagreement (according to the underlying distri-
bution which governs the data generation), we
first wish to bound the probability of disparity
P(M,—v/]=¢) as a function of ¢ n, and the

- complexity bound c. It is intuitively believed that

the simpler the model f the closer would v, be
to I1,, i.e., one can often find complex models for
which v,=0, and which stand in no relation to
n,.

If the samples (x;, y;) were drawn indepen-
dently of each other, and if f were kept constant
throughout the observation sequence one could
then invoke Bernoulli’s theorem'? and write

P(M, —v/|2e) <2072 (30)

This theorem is indeed the basis of Reichenbach’s
“vindication” of induction, demonstrating that as
long as an underlying probability I, exists the
probability that the reported frequency v, de-
viates from II, by any finite amount decreases
exponentially with the number of observations.
Unfortunately, the assumption of fixed f misses
the most significant aspect of scientific activity.
Scientists continuously modify their theories as
experiments progress. In fact, the act of inventing
a new theory to fit an existing data has, tradi-
tionally, been given much greater esteem than the
painstaking effort of measuring v, for a fixed
hypothesis. Fortunately, a recent work of
Vapnik and Chervonenkis'* permits the bound-
ing of P(J[T,—v,|2¢) even under conditions of
data fitting. Vapnik and Chervonenkis theorem,
which can be termed “the Bernoulli theorem for
the hindsighted scientist”, will be briefly stated
using their terminolology:

THEOREM Let S be a collection of subsets of a
space X on which a probability measure P is
defined. Each sample x,,...,x, and event A€ S
determine a relative frequency for A equal to the
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quotient of the number n, of those elements of the
sample which belong to A and the total size | of
the sample: v@(x,,...,x))=n,/l. If the samples are
drawn independently then the probability that at
least one event in S differs from its probability P,
by more than ¢, for 1> 262, satisfies

P[sup [Pa— Vﬂ|gs]§4m‘(21)e_”z”8 (31)
AeS

where m*(l) is the maximum over (x(, X,,...,%) of
the number of distinct sets in  {{x,,
Xg, -uXi} VA A€S}. In other words, m*(l) is the
maximum number of ways that any sample of size
! can be dichotomized by the elements of S.

In order to use (31) for bounding P{IT,—v]|
>¢) we simply replace X with the space of
sample pairs X x Y and identify § with I.. m*(n)
would then measure the maximum over e, of the
number of distinct dichotomies (agree vs. dis-
agree) of e, induced by f as it spans I. For a
I. we have

m'<(n) |1 (32)

because every distinct dichotomy of e, must be

induced by a different fel. Moreover, for n
Sng, all dichotomies can be matched by some
f el hence

' n n<ng
M(n) § {2"1 n gno (33)
and
P, —v,ze)
1 <8n2 2)/¢*
S poms-ams o @OFWE 34
4eroin2=etal8  y > @ n2[n, (c)+2]/e

Equation (34} exhibits a sharp threshold effect;
the bound on P remains unity up to about
8in2/e* times the language capacity, from which
point on it decays exponentiially with n. In an
analogy paralleling the classical Cantellis theo-
rem,'> one may ask what sample size n would
guarantee that P(|TT—v|2¢] would remain below

some given level n for all succeeding obser-

vations. The answer is given by
8
n?2 +?{log 8/e*n+(n,(c)+2] ln2}. (35)
Thus, for I} and large c, the addition of one gate

to the model would necessitate roughly
8In2/e?log,c additional observations in order to

maintain the same level of 5, (see Eq. 11). For I?
an addition of one connective to the model
formula would require a uniform increase of
8In2/e? (4+10og, N) observations.

For L,

min)=2 Y (n) <2 (36)
k=0 k
and so (31) becomes
P, —v,|26) < 8(2°n° Je™ ™8, (37)

Equation (37) is similar to the one used by
Devroye and Wagner!® to obtain performance
bounds in error estimation for linear discrimi-
nation procedures. Note that the exponential
drop is somewhat slowed down by the poly-
nomial (2n), and so, one should expect that
more observations would be needed to maintain
P at a certain level n. The exact expression
determining n is:

1
ngi—f(clog;iﬁ—log 17/8). (38)

The use of each additional feature would
necessitate roughly
16 16¢

?]Og?—'

additional samples (for large ¢).

It is important to note that (34) and (37) hold
for any f in I, regardless of the method used by
the scientists to discover f. The convergence of
(34) and (37) for large n is a product of the
limited expressional power of the languages con-
sidered. The lower m°(2n) the less flexible is the
scientist to tailor his model around the data and
the higher the reliability of the reported v,.

At this point one may consider the case of ¢
varying with n. That reflects the natural pheno-
mena that scientific terminology tends to become
more and more complex as more data is col-
lected. We may ask how fast can c(n) be allowed
to increase with n before the convergence of v, to
[1, is endangered. The answer can be obtained
directly from (31) and (37), showing that the
conditions:

lim M =0 for
n- oo n

(n)=c| — for !
cin)=¢g logn or

Zand ?
39
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would retain the convergence:
P(M;=v/]|>e) - 0. e>0 (40)

The last concept we wish to explore is the
effect of complexity on the probability of error.
Assume that we know a priori that the underly-
ing model f; is in I_. In this case the scientist can
perfectly match every e, by at least one model in
I.. Assuming the scientist discovers such a perfect
fit model f and subscribes to it, what is the
probability of errors in future predictions? Since
e, <f,|M;—v]|=I1, would represent the error
frequency in future predictions. I, is a random
variable since, in general, f is chosen by some
algorithm on the basis of the evidence e,, which
is random. The overall probability of error P,
can be obtained by taking the expectation of I'l,,

P.=E(fl,)= Il

Since for v=0 P(I1,2¢) is bounded by (31) we
obtain (for large n and large ¢):

[ 1
i J%
n
P.2% /8In2 Ja+log,N Jflog,e/n for I?

0

\/8_0 \/l ’fﬂ
-

P(Il;2¢)de.
=0

for I?

for U

(a1)

Note the relatively large number of samples
required to achieve low error probabilities for all
languages, especially ['. It is not surprising
though that (41) exhibits slower drops of P, than
those obtained for P,(n, ¢) as (41), unlike (25),
represents a worst case analysis for both f and
P

5 DISCUSSION

Sections 3 and 4 demonstrate that under rather
simple and general descriptions of scientific in-
ference several accepted norms of credibility are
correlated with model’s simplicity. The exact na-
ture of this relationship though, depends on the
language used by the modeller to construct theo-
ries' with. From a practical viewpoint the analysis

reported helps extend the classical notion of,

statistical confidence level to three commonly
used languages with model complexity taking the

role traditionally played by the “degrees of free-
dom” measure. The relations developed in
Sections 3 and 4 should enable the modeller to
determine the number of observations required
for achieving a desired level of credibility for a
model of given complexity, in much the same
way that statisticians determine confidence in-
tervals for linear regression models.

From a philosophical viewpoint it is essential
to note that in all cases examined the role of
simplicity was only mcidental to the analysis. We
would have gotten identical results if instead of

L. being a complexity bounded sublanguage we

were to substitute an arbitrary sublanguage with
equal number of functions. It is not the nature of
the functions in I, but their number |I| (more
precisely, the number of sample dichotomies in-
duced by the members of I.) which affects the
various plausibility measures considered. As long
as the scientist commits himself to a language of
limited expressional power his data-fitting
maneuverability would be curtailed, and con-
sequently, any theory he may generate that can
stand empirical test carries a high degree of
credibility even when the language employs some
very complex function.

Why, then, do people exhibit a higher trust in
simpler theories? When a theory is reported we
automatically assume that a certain procedure
was followed by the scientist prior to its dis-
covery. We assume that prior to discovery the
scientist confines his attention to the class of
theories with complexity not exceeding the one
reported. If such a procedure is indeed adhered
to, then the simplicity of the reported theory
would reflect the limitation on the scientists
maneuverability while trying to fit the data. In
this case (and this case only) would a greater
simplicity also mean a more falsifiable, more
testable and so, more plausible theory?

The illusion that Nature seems to “talk our
language” and behave as though She adopts the
same complexity scale used by people seems to
arise each time we face a phenomenon which
depends on the number of configurations within a
given set. The second law of Thermodynamics,
for example, has been interpreted in many text-
books as though Nature exhibits an incurable
tendency to disrupt order. Nature, of course,
could not prefer one state of affairs to any other
simply because we found an elegant description
to the former, not more than the sequence
HHHHHH is preferred to any other sequence in
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a coin-flipping experiment. The second law im-
plies only that a thermodynamic system tends to
“escape” from any narrow region of phase space
toward regions of larger volume. The illusion of
an irreversible trend toward disorder originates
with the fact that the volume occupied by states
to which people can find concise descriptions (in
any language) is extremely small compared with
the entire space of possibilities. The escape from
the simpler to the more complex is merely a
perceptual distortion of the underlying transition
from the narrow to the wider, as people fail to
record the much more [requent transitions from
the complex to the complex.

The credibility of inferred models, like thermo-
dynamical transformations, depends on the cardi-
nality of the space of descriptions. While low
cardinality 1s a necessary quality of the space of
simple descriptions the converse is not generally
true. The positive correlation between the two
may have resulted in our tendency to regard the
simpler as the more trustworthy, but cannot be
relied upon for testing credibility unless the pro-
ceclure of theory selection is examined. It would,
therefore, be more appropriate to connect credi-
bility with the nature of the selection procedure
rather than with properties of its final product.
When the former 1s not explicitly known, as is
the case with human communication, simplicity
merely serves as a rough indicator for the type of
processing that took place prior to discovery.
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