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The connection between the simplicity of scientific theories and the credence attributed to their predictions seems to 
permeate the practice of scientific discovery. When a scientist succeeds in explaining a set of n observations using a 
model M of complexity c then it is generally believed that the likelihood of finding another explanatory model with 
similar complexity but leading to opposite predictions decreases with increasing n and decreasing c. This paper 
derives formal relationships between n, c and the probability of ambiguous predictions by examining three modeling 
languages under binary classification tasks: perceptrons, Boolean formulae, and Boolean networks. Bounds are also 
derived for the probability of error associated with the policy of accepting only models of complexity not exceeding c. 
Human tendency to regard the simpler as the more trustworthy is given a qualified justification. 

INDEX TERMS Inductive inference, complexity, credibility, error probability, discriminating capacity, ambiguous 
generalization, simplicity, modeling, theory formation, confirmation. 

1 INTRODUCTION 

The subject matter under discussion can hardly 
be introduced in a more concise fashion than 
quoting Quine: 1 

"It is not to be wondered that theory makers seek simplicity. 
When two theories are equally defensible on other counts, 
certainly the simpler of the two is to be preferred on the score 
of both beauty and convenience. But what is remarkable is 
that the simpler of two theories is generally regarded not only 
as the more desirable but also as the more probable. If two 
theories conform equally to past observations, the simpler of 
the two is seen as 'standing the better chance of confirmation 
in future observations. Such is the maxim of the simplicity of 
nature. It seems to be implicitly assumed in every extrapo
lation and interpolation, every drawing of a smooth curve 
through plotted points. And the maxim of the uniformity of 
nature is of a piece with it, uniformity being a species of 
simplicity." 

Aside of the philosophical interest raised by 
the phenomena above, it has assumed an increas
ing practical importance. Much of today's data is 
being processed by electronic computers and an 
increasing part of the modelling activity is being 
delegated to mechanical procedures. In order for 
an automatic device to satisfactorily manage the 
generation and selection of competing hy
potheses, the programmer-user can no longer 
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hide his inductive procedures ·and preference 
criteria in the realm of intuition, but ought to 
explicate those in a formal, mechanizable way. 
The criteria for hypothesis selection carry even a 
greater significance in the area of Robotics. The 
operation of an industrial robot involves a con
tinuous generation and selection of "explana
tions", or microtheories, for all sorts of non
anticipated inputs. The criteria for selecting 
among such competing explanations, their credi
bility and complexity, would significantly affect 
the robot performance in its industrial 
environment. 

The philosopher who attempts to explain our 
natural compulsion to regard the simpler as the 
more truthful (e.g., as evidenced by the decisive 
role simplicity had in shaping the historical de
velopment of science2 ) inevitably finds himself 
facing a blind alley. Complexity is a concept 
variable with language while truth refers to some
thing absolute outside the confines of languages. 
A theory which seems complex in one language 
would appear simple in another if only one 
redefines the atomic variables of one language in 
terms of the derivatives of another. "This being 
so, how can simplicity carry any peculiar pre
sumption of objective truth?" 1 

The famous paradoxes of induction3
•

4 are pro
ducts ofthat same disparity. People tend io form 
theories in line with the particular language they 
happen to possess, while inductive logic attempts 
to capture the process of theory formation by 
language-indep.endent rules. The two will forever 
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rcmain incompatible and, similarly, one must 
resign to thc idea that no logical argument can 
possibly connect simplicity with credibility. 

But even assuming that the association be- 
tween the simple and the truthful is purely psy- 
chological, one should still be justified in explor- 
ing the origin of such perceptual illusion. 
Apparently, by a long process of evolution our 
race has learned to associate the simple with the 
trustworthy. The two must, therefore, possess 
some common qualities which make them seem 
to occur conjunctively. 

Certainly, part of the answer lies in what 
Quine' calls "subjective selectivity that makes us 
tend to see the simple and miss the complex." 
Another factor lies with the flexibility of our 
language; when a theory becomes workable we 
"force" i t  to become simple. When the need 
arises, we invent new concepts (e.g., ellipses, 
electrons, wave-functions) which get "entrenched" 
in our language as elementary entities, in terms 
or which, our theories appear simpler. This 
phenomena, though, may account for only part 

'of the answer since (as is demonstrated in Section 
3) therc is a definite limit to the process of 
simplification by intermediate variables. A point 
must eventually be reached where the added 
complexity associated with defining any new vari- 
able would overshadow the simplicity it may 
introduce. 

The central property upon which this paper 
focuscs is that of rlniqueness us. nmbiguity.  Simply 
stated, uniqueness may be exemplified by the fact 
that through any two points it is possible to pass 

,many second degree polynomials but only one 
straight line. More generally, there usually are' 
many complex theories which can explain a given 
set of observations but only a few simple theories 
(if any). Consequently, if one succeeds in finding 
a simple explanation to empirical data he is not 
likely to find another rival explanation, equally 
simple, which also explains that data. The sirn- 
plcr the theory at hand the lower the likelihood 
of refuting i t  with another theory of equivalent 
complexity. Likewise, we expect the likelihood of 
committing a prediction error on account of 
selecting the wrong theory to be lower the sim- 
oler the class from which theories are chosen. 

In this paper we give these intuitive notions a 
quantitative formulation, and derive relations be- 
tween the number of observations, the complexity 
of models and their credibilitv. The relations are 
derived for a binary discrimination task and.for 

three diflerent languages, as defined in Section 2. 
Section 3 addresses the question of how many 

observations one ought to have before becoming 
fairly certain that any rival theory agreeing with 
the data must either give the same prediction on 
the next observation or be more complex than 
the one at hand. Section 4 analyzes the reliability 
of probabilistic assertions made by theories as a 
function of their complexity. We also bound from 
above the probability of error (on future obser- 
vations) that any model of a given complexity 
might possibly make if it agrees with the data at 
hand. 

2 FORMAL NOTATION FOR 
INDUCTION, MODELS AND 
LANGUAGES 

In this section we give a simple formal de- 
scription to the elements of inductive reasoning 
and the role of languages in the search for 
explanatory models. We imagine a scientist 
searching for a physical law ro explain a growing 
body of physical data. Each datum is represented 
by a pair (x,y), where x stands for the experi- 
mental condition and y denotes the experimental 
result. After collecting n observa5ons the scientist 
possesses a total evidence en = { (x , ,  y, ), (x2, 
y2). . . (x,, I.,)), which he attempts to capture with 
a model f. Let X E X ,  Y E  Y and let F* stand for 
the set of all functions X 4 I: We assume that the 
data en is generated by an underlying model 
f , ( e , ~ j , ~ F * )  which the scientist wishes to dis- 
cover. By a scientific method we mean an algor- 
ithm A which accepts the evidence en and com- 
putes a function f = A ( ~ , ) E  F* which meets some 
criteria of fitness and complexity. 

Fitness criteria measure the extent to which the 
model agrees with the evidence at hand. It is 
usually expressed in the form of a distance func- 
tion,' d[e,, A(e,)], which is zero whenever 
e , ~  A(e,). In Section 3 we shall demand a perfect 
agreement between evidence and model, that is: 

and will relax it in Section 4. 
The search ror a model /, as well as the 

computation of predictions based on f ,  are usu- 
ally performed within some linguistic structure 
which provides a symbolic representation of the 
space of potential models F*. It is with respect to 
such a language that model complexity is usually 
delined. Let a language L be a pair (7: I )  where 
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T is the set of sentences in the language, and 1 is 
its interpreter I :  T+F*. Every sentence t 6 T of 
the language represents a model via its interpre- 
tation : I ( t )  = f E F*. On each t E 7 we dehne a 
complexity measure: C : 74 R +  which may repre- 
sent either the syntactic aspect of the sentence t ,  
or the work required for the computation of I ( [ ) .  
Given C(t), we define model complexily by: 

C( f )=  min C ( t ) .  
1 :  I(r)=f 

Thus, the complexity of a model f with respect 
to a language L is defined as the complexity of 
the simplest sentence which represents that 
model. 

We now exemplify these notions using three 
diflerent languages which have frequently been 
used in Pattern Recognition. 

L'-Perceptrons6-the data is given as a con- 
junction of N-dimensional real vector x = (x', 
x2;. . ., xN)  and a class label y e  {O, 1). The models 
describable in this language are linear half spaces 
defined by a list of N +  1 real coefficients. Thus, 
each sentence t E T is an ordered list of N + 1 real 
numbers t = (w,, a,, . . ., wN+ ,), and 

1 if w , ~ ~ + o ~ x ~ + . . . w ~ x ~ > ~ ~ + ,  
i (t) = 

0 elsewhere 

Generalization or L' is often more useful, whe- 
reby a set of d features from some feature-set 
4 1 ( ~ ) ,  $Z(~),.. , is first computed and then a 
linear discrimination is performed in &space7: 
I ( t ) =  

We shall denote this language by L:. The com- 
plexity of a sentence in L: is usually equated with 
the number of features it invokes, that is C(t)=d. 

L2 - ~ o ~ i c n l  formtrln. Each data point ( x ,  y) is 
represented by a Boolean N-vector x=(xl ,  
x2,.  . .,xN), xi G (0, I ) ,  accompanied by its truth 
value y e  (0, l) .  T is the set of Boolean formula 
on N variables containing negation, conjunction, 
and disjunction connectives. T can be identified 
recursive1 y by: 

and I ( t )  corresponds to the Boolean function 
represented by t. 

Various complexity measures can be defined 
with respect to L2. The most common ones are: 
(1) formula complexity-the number of connec- 
tives in t, 2) combinational complexity-the mi- 
nimum, number of gates necessary for a circuit 
realizing I(t), and (3) time complexity-the mi- 
nimum time delay in a circuit realizing I(t). 
Combinational complexity is treated more di- 
rectly using the next language, L3. Time com- 
plexity is known8 to be related to combinational 
complexity in a rather simple manner. We, there- 
fore, take formula complexity to represent the 
complexity of I?. 

L?-Logical formula with intermediate 
varinbles. This language is similar to with the 
exception that each sentence may contain several 
Boolean expressions; the main one defines the 
model-function while the rest define the variables 
appearing in the main formula. Each sentence t ,  
therefore, constitutes an ex~jlicit blueprint for a 
logical circuit which computes l ( t ) .  The corn-. 
plexity of L3 will be taken to be the number of 
connectives in t and it also equals the number 
of gates in the corresponding circuit. LZ is 
sometimesg regarded as a subset of L3 with the 
restriction of unity fanout. t can also be regarded ' 

as a program for computing the Boolean function 
1(t). The intermediate variables would then repre- 
sent results of intermediate computations, and 
C(t) would measure the program execution time. . 

The three languages, L1, L2 and L3, will next be 
used as test vehicles to examine the connection 
between credibility arid complexity. Note that 
while I! and L3 have a full power of expression, 
as I(T)=F*,  this is not the case for LL; only 
linear half spaces can be captured by I(T). 
However, if the feature space is properly chosen 
(e.g., 4Jx) are polynomials of increasing order) 
every f E F *  can be approximated at will by an 
I(t), by taking a large enough d. Moreover, for 
any finite n we can find a t e T  such that E,,GI(r). 

3 CAPACITY AND AlvIBlGUOUS 
GENERALIZATION 

In the following two sections we imagine a 
scientist who uses simplicity as a criterion for 
selecting models in each of the three languages 
defined above. We wish to find the general laws 
which govern his performance. 

The first question we wish to answer addresses 
the likelihood of finding a simple model explain- 
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ing an evidence en. Assume that en is drawn at 
random (according to some probability distri- 
bution function), what can be said about the 
probability of finding a model with complexity 
not exceeding c which explains en? 

DEFINITION I A complexity bounded suh- 
longlragr of L is a sublanguage LC= (7,, I,) such 
that 7,s 7, 1 , c l  and C ( j ' ) s c  for all / ' E  I,. 

The partition of a language into its simple part 
L, and its complex part, L- LC, induces a similar 
partition on the data space. We shall say that a 
data en is c-simple (denoted by ~ , E E , )  if there 
exists a model f E I, such that en c f: 
DEFINITION 2 The capacity of a complexity- 
bounded language is given by the number of 
observations n, satisfying 

This definiliori of capacity is a slight generali- 
zation over the conccpt originated by Cover7 k r  
Li. Loosely speaking, capacity measures the 
maximum number of samples that the scientist 
should collect if he wishes to guarantee at least 
50% chance of finding a c-simple explanation for 
the data. Clearly, n, is sensitive to the probability 
distribution which governs the data generation,, 
and reasonable assumptions must be made before 
capacity computations can be carried out. For 
LA, Cover7 has shown that if {x,, x2 . . .xn)  is in 
+-general position and if the class labels {y, ,  
y 2 , .  . . y n )  are chosen at random with equal pro- 
bability for the 2" equiprobable possible labeling 
patterns, then 

Since, for L:, P(en€E,) is independent of the 
exact location of the vectors {x,, x,. . . x,) (except 
for the loose requirement that { x , ,  X Z . .  . x,} be in 
$-general position with probability l), we can 
state that (3) holds for any distribution of en in 
which the y's are uniformly and independently 
distributed. 

From (3), it is easy to show that the capacity 
of Li is given by 

and that the probability P(eneE,) shows a pro- 
nounced threshold effect in the neighborhood of 
n=2c. .For large c, the addition of each feature 
fi~nction results in capturing an average of two 

additional samples. Moreover, almost all data 
can be modeled by LC if n<2c and hardly any 
data can be modeled when n > 2c. 

For languages and L', P ( ~ , E  E,) is no longer 
independent on the input {x,, x2 .. . x,), and one 
must assume a uniform distribution of en, in 
order to calculate the cabacity. On the other 
hand, since both X and LC are finite we can write 

P(en E E,) = 
I{en : en E ~ c 1 I  

I{en)l 
Denoting the total number of distinct evid- 

ences in E, by S(n, c) and its relative number by 
s(n,c) we have 

S(n,c) 
P(en E E,) =-=s(n, c). 

s(n, a) 
(6 

The quantity s(n,c)  is not easy to compute for 
either L' or L3, however, asymptotic expressions 
may be obtained from the literature on the 
complexity of Boolean functions. 

Lower bound: Let no be the highest integer n 
such that Ven en E E,, then 

The reason for (7) is that en€ E, implies that 
either {en, (x,+ ,, 0)) or {en, (x,+ 1 ,  1)) (or both) 
must also be in E, as an extension of some model 
f in I,. Therefore, s (n , c )  cannot decrease by a 
factor smaller than 112 for each additional 
observation. 

Upper bound: Each model f €1, agrees with 

exactly ( y )  data sets (corresponding to the 

ways of choosing n out of 2N possible 
combinations, with the truth value determined by 
f). Therefore, the total number of data sets 
covered by I,, S(n,c), is at most (assuming no 

overlap) 1lC1(T), and so 

where 
A 

n1 = logz(l,(. (9 
For LZ and C n, can be upper bounded by:" 

n, S (c+ 1)(4+ log2N) for I!?, (10) 
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and and therefore 

n, sc[4-log2c+210g,(N+c)] for L?.(ll) 

Since s(n,c) is bounded between two exponential 
functions, the capacity is likewise bounded by 

It is clearly the proximity between no and n l  that 
determines our ability to compute the capacity. 
Fortunately, the analyses of Sholomov" and 
pippingerl0 show that no/nl approaches 1 
asymptotically as N - +  co. 

Consider the set e, of all partial Boolean 
functions of N variables specified on n points. 
S h o l o m ~ v ~ ~  has shown that every element of {en) 
can be realized by a circuit of complexity not 
exceeding 

if n has a larger order of growth than N.log 
N .log log N . log log log N. Hence, we have 

At the same time (11) implies that, for N < c < ~ ~ ,  
n ,  is bounded by 

n, S N c ( l + 6 / N )  (15) 

and so, using (12), the asymptotic capacity of L3 
becomes 

log N 
+o(T)]. 

Thus, allowing the complexity of Lj to increase 
by one unit (one binary gate) would increase the 
length of the observation sequences by N obser- 
vations before models of higher complexity are 
likely to be needed. Likewise, models of com- 
plexity not exceeding n/N should be suficient to 
capture about 50 % of all observation sequences 
of length n. 

In a similar way one can arrive at the capacity 
of L2. Here, a recent result by Pippengerlo would 
be.necessary, stating that for all members of en 
would be captured by a formula of complexity 
not exceeding 

log log N 
c=-L[l log N +o( logN )] (17) 

This, coupled with (10) and (16), yields the 
asymptotic capacity of Lf: 

log log N 
n , = c ~ o g ~ [ ~ + ~ ( ~ ~ ~ ~ ) ] .  (19) 

Several points should be noted in comparing L* 
with L3. The complexity of a logical circuit with 
unrestricted fanout would, in most cases, be 
about .logN/N times lower than an equivalent 
circuit with fanout one. Equivalently, programs 
for evaluating logical expressions would be about 
logNIR: times shorter i f  the use of intermediate 
variables is allowed. From these statements one 
may get an idea of the .degree of simplification 
expected as a result of enriching the language 
with new "entrenched" predicates. 

The capacity of a language is closely related to 
another measure or perrormance introduced by 
Cover-Probabili~j oj Ambiguous Genrr~~lizution. 
lmagine a scientist who succeeds in finding f € 1 ,  
to fit the data en. What is the probability that 
another model exists, f, E I,, which also agrees 
with the past data but which contradicts f on 
the next sample to be observed? Intuitively, if 
n>>n, then most data can be fitted by only one 
model in I, and therefore the probability of 
ambiguity should be low. Likewise, for n<n, 
most data can be fitted by more than one model 
in I, and so the probability of ambiguity ought 
to be high. 

DEFINITION x , + ~  is said to be ambiguous with 
respect to evidence e, in I, iff both {en, (x,+ ,, 0)) 
and {en, (x,,,, 1)) are irl E c .  

DEFINITION Given a probability distribution on 
{en) and {em+,) we define the probability oj' 
ambiguity P,(n,c) as the probability that x,,, is 
ambiguous with respect to a random evidence en 
in I,. 

The language L$ possesses a symmetry property 
which facilitates a ready calculation of P,(n, c). 
Here, each x,,, is ambiguous with respect to a 
fixed number of $-separable dichotomies of (x,,  
x,. . .xn)  regardless of the location of (x,, 
x, ... x,, x,, ,) (as long as it is 'in $-general 
position). Based on this property, Cover7 showed 
that if each $-separable dichotomy of {x,, 
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.u, ... x,) has equal probability then Pa(n,c) is 
given by 

and 

Thus, as long as the number of observations is 
below the capacity LC, the probability of am- 
biguity' remains unity. For a higher number of 
observations, Pa decreases at a rate inversely 
proportional to n. 

For L2 and L3 the number of dichotomies of 
( x , ,  x, . . . x,: with respect 10 n hich a giben point 
s,,,, is ambiguous usually varies with (x,, 
x, . . . x,) and x,, , . A separate analysis is there- 
fore needed, to expres: P,(n,cj in terms of s(r,~]. 
Cmsider the se! of all distinct ordered pairs !en. 
.\.,,+, ) for which en E E,, and assume all such pairs 
to be equally probable. Let a total of c, such 
data-pairs be ambiguous and c2 of them non- 
ambiguous.' Clearly, 

- - number of ambiguous pairs (en, xn+ , ) 
total number of pairs (en, x,, , ) : en E E, 

Each ambiguous pair corresponds to two labelled 
pairs (y,, , specified) which are in Ec, while each 
non-ambiguous pair corresponds to only one 
such labelled pair. Also, each data set en+,  
appears exactly n t- 1 times in the set of 2c1 +c2  
ordered pairs (en, (x,,. ,, y, + , )). Therefore, 

. .. -- 

At the same time each of the S(r1,c) ~nembers of 
:e,,l gives rise to 2'-1i ordered pairs (en, x,,,), 
and we can write 

C, +c2 = (2N - n )  S ( n ,  r ) .  (24) 

Combining (22), (23), (24) and (6),  we obtain 

For small sample size, n <no, s(n, c) is equal to ' 
unity and 

P,(n, c) = 1 for n < n,-,(c) - 1. (26) 

For sample sizes exceeding the language capacity 
a more detailed behavior of s(n,c) is needed 
before the rate of decrease of Pa(n,c) can be 
determined. An exponentially decaying s(n, c), for 
example, would yield P,(n, c)=O. Had the expon- 
ential h n ~ ~ n d s  of (7) and (8) been sulllciently tight 
nne w o ~ ~ l d  expect tn find a sharp drop in Pa.for n 
>n , .  However, the asymptotic results of 
Sholomov and Pippenger only guarantee 

"1 -no lim - -0  
n-m no 

not the vanishing of the absolute difference n, 
-no. Consequently, the exact behavior of Pa(n, c) 
for n >  n, remains an open question for L2 and L?. 

Several features of P,(n, c), however, can be 
determined directly from the upper bound of (8). 
A simple an'alysis of (25), (7) and (8) reveals that 
log[l + P,(n, c)] must be bounded by: 

2W- 1 

1 l o g , [ ~ ~ ( n , c ) + l ] 5 n l - n o .  (27) 
n = n  

On the other hand (14) and (15) imply that n, 
-no must be of order at most c log N, and hence 
(using log2(l + P) 2 P) P,(n, c) should satisfy : . . 

2 N -  I 

C Pa(n,c) . ~ c ~ ( l o g ~ )  . for L3 
n = n o  

(28) 

and 
2N-  1 

C P,(n,c) ~ c O ( l o g l o g  N )  for L ~ .  
n = n o  

(29 

The languages L2 and L3 exhibit faster decay rates 
for P,(n,c) than L1. An inverse law relation such 
as the one found for L' in (21) would render the 
left hand sides of (28) and (29) of order N, thus 
violating the inequalities. A stronger rate of fall, 
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e.g. an inverse square law, is needed to satisfy 
(28) and (29). 

It is not to be wondered that finite languages 
such as 2 and exhibit a sharper cutoff for 
ambiguity than infinite languages employing real 
parameters such as L'. Clearly, when one 
exhausts exploring all input combinations (e.g. n 
~ 2 ~ )  the model is rully specified and no more 
ambiguity exists. What is significant, though, is 
that the point of diminishing ambiguity is 
reached much earlier, at the neighborhood of 
n=n,, and the threshold in this neighborhood is 
more pronounced for L2 and L3 than L'. The 
latter is a consequence of the tightness OF the 
combinatorial bound (8) as expressed in (14) and 
(18). The significance of a sharper threshold for 
ambiguity is that for a given complexity bound c, 
a smaller number of observations is needed in . 
order to achieve a certain level of credibility in 
the model at hand. 

4 COMPLEXITY AND PROBABILITY 
OF ERROR 

Whereas P,(n,c) may, in many cases, constitute 
an adequate measure of model credibility, it is a 

' 

rather loose measure. To compute P,(n,c) we 
assumed that all en€ E, are equiprobable and 
excluded en$ E,. We now wish to extend the 
credibility measure in three directions. (1) We 
wish to include considerations of evidence-data 
not capturable by I,, en $ E,, like those generated 
by either more complex models or by non- 
deterministic processes. (2) We wish to perform a 
"worst case". analysis assuming that Nature her- 
self, in what might be regarded as a "hostile" 
manner, may select the observation sequence in 
accordance with some fixed distribution law. 
Indeed, it is rather unrealistic to assume equi- 
probable observation sequences for the mere fact 
that some experimental conditions are harder to 
satisfy than others. (3) We wish to define credi- 
bility not merely in terms of the number of 
competing models but rather directly in terms of 
the degree of agreement between the true under- 
lying model and the one at hand. 

Consider a scientist with a complexity bounded 
language LC observing data en, and attempting to 
fit it with a theory A(e,)&l,. Since en may. be 
generated by a model fo$l, (or by a non- 
deterministic model) we must give up the require- 
ment of perfect fit, and instead assume that the 

scientist only attempts' to posit a theory which 
reasonably approximates the data (e.g. that 
which minimizes the number of mistakks: (x;. . .. 
yi)$ f ), and report the degree of approximation. 
This scheme closely reflects Reichenbach's" con- 
cept of induction whereby the aim of science is 
viewed not as that of discovering true theories 
but of positing probabilistic assertions about na- 
ture with an ever increasing accuracy. 

Suppose rhe scientist reports 'that a model 
f e l ,  approximates an evidence en and that it 
disagrees with a fraction vr(e,,) of the n observed 
samples. Denoting by lTf the true probability of 
disagreement (according to the underlying distri- 
bution which governs the data generation), we 
first wish to bound the probability of disparity 
~(1 l - I  - vfI Z E )  as a function of E,  n, and the 
complexity bound c. It is intuitively believed that 
the simpler the model f the closer would v, be 
to n,, i.e., one can often find complex models for 
which v J = O ,  and which stand in no relation to 

"f. 
If the samples ( x i ,  yi) were drawn indepen- 

dently of each other, and iff were kept constant 
throughout the observation sequence one could 
then invoke Bernoulli's theorem13 and write 

~ ( l n ,  - V , I Z E ) S ~ ~ - " ~ ~ ~  (30) 

This theorem is indeed the basis of Reichenbach's 
"vindication" of induction, demonstrating that as 
long as an underlying probability n, exists the 
probability that the reported frequency v, de- 
viates from n, by any finite amount decreases 
exponentially with the number of observations. 
Unfortunately, the assumption of fixed f misses 
the most significant aspect of scientific activity. 
Scientists continuously modify their theories as 
experiments progress. In fact, the act of inventing 
a new theory to fit an existing data has, tradi- 
tionally, been given much greater esteem than the 
painstaking eRort of measuring vr for a fixed 
hypothesis. Fortunately, a recent work of 
Vapnik and ChervonenkisL4 permits the bound- 
ing of ~(1l-I -vr / )=&) even under conditions of 
data fitting. Vapnik and Chervonenkis theorem, 
which can be termed "the Bernoulli theorem for 
the hindsighted scientist", will be briefly stated 
using their terminolology: 

THEOREM Let S be a collection of subsets of n 
space X on which a probability measure P ,  is 
defined. Each sample x,,. . ., x ,  and event A E  S 
determine a relatiue frequency for A equal to the 
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quotient of the number n, of those elements of the 
sample which belong to  A and the total size 1 of 
the sample: v:'(x,,. . . ,x , )=n, / l .  If the samples are 
drawn independently then the probability that at 
least one event in S diflers from its probability PA 
b y  more than E,  for l >  2e2, satiSfies 

P sup ( P ,  - v ~ / , ( ~ E  54ms(21)e-"1'8 
[A  E s  I (31 

where mS( l )  is the maximum over ( x , ,  x ,,..., x , )  of 
the rrumber of distinct sets in {{xl, 
x,, . . ., x,) n A : A E S ) .  In other words, mS( l )  is the 
maximum number of ways that any sample of s ize  
I can be dichotomized by  the elements of S .  

In order to use (31)  for bounding P(JIII-vIJ 
> E )  we simply replace X with the space of 
sample pairs X x Y and identify S with I,. ms(n) 
would then measure the maximum over en of the 
number of distinct dichotomies (agree vs. dis- 
agree) of en induced by f as it spans I , .  For a 
I ,  we have 

because every distinct dichotomy of en must be 
induced by a different f e I , .  Moreover, for n 
s n , ,  all dichotomies can be matched by some 
f E I , ,  hence 

and 

Equation (34) exhibits a sharp threshold effect; 
the bound on P remains unity up to about 
8 1n2/e2 times the language capacity, from which 
point on it decays exponentially with n. In an 
analogy paralleling the classical Cantellis theo- 
rem,13 one may ask what sample size n would 
guarantee that ~ ( 1 l - I  - vlz E ]  would remain below 
some given level for all succeeding obser- 
vations. The answer is given by 

Thus, for L3 and large c, the addition of one gate 
to the model would necessitate roughly 
8 1 n 2 / ~ ~  1og2c additional observations in order to 

maintain the same level of 11, (see Eq. 11). For 
an addition of one connective to the model 
formula would require a uniform increase of 
8 1 n 2 / ~ ~  (4+ log, N )  observations. 

For L:, 

and so (31) becomes 

Equation (37) is similar to the one used by 
Devroye and Wagner'' to obtain performance 
bounds in error estimation for linear discrimi- 
nation procedures. Note that the exponential 
drop is somewhat slowed down by the poly- 
nomial (2n)', and so, one should expect that- 
more observations would be needed to maintain 
P at a certain level n. The exact expression 
determining n is: 

The use of each additional feature would 
necessitate roughly 

16 16c 
- 1% 
E* 

additional samples (for large c). 
It is important to note that (34) and (37) hold 

for any f in I ,  regardless of the method used by 
the scientists to discover f .  The convergence of 
( 34 )  and (37)  for large n is a product of the 
limited expressional power of the languages con- 
sidered. The lower m"2n) the less flexible is the 
scientist to tailor his model around the data and 
the higher the reliability of the reported vf. 

At this point one may consider the case of c 
varying with n. That reflects the natural pheno- 
mena that scientific terminology tends to become 
more and more complex as more data is col- 
lected. We may ask how fast can c ( n )  be allowed 
to increase with n before the convergence of v, to 
ll, is endangered. The answer can be obtained 
directly from (31)  and (37), showing that the 
conditions: 

lim - =O for L2 and L3 r "-a nl[:(n)  
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would retain thc convergence: 

The last concept we wish to explore is the 
effect of complexi~y on the probability of error. 
Assume that we know priori that the underly- 
ing rnodel f, is in I,. In this case the scientist can 
perfectly match every en by at least one rnodel in 
I,. Assuming the scient~st discovers such a perfect 
f i t  model f and subscribes lo  it, what is the 
probability of errors in lzllure predictions? Since 
e,, cf, 1 n, - v 1 = n, would represent the error 
lrcquency in kfurc predictions. I l r  is a random 
variable since, in general, j is  chosen by some 
algorithm on the basis o l  the evidence e,, which 
is random. Thc ovcrall probability of error P, 
can be obtained by taking the expectation ell Ilf, 

Since for v = O  P(l-ll2.t) IS bounded by (31) we 
obtain (for large n and large c) :  

r 

for L3 

Notc the telatively large n u m b  of samples 
required to achieve low error probabilities for all 
languages, eslpecially L!. It is not surprising 
though that (41) exhibits slower drops of P ,  than 
those obtained Tot P,(n, c )  as (41), unlike (25), 
represents a worst case analysis tor both $ and 
p,. 

5 DISCUSSION 

Sections 3 and 4 demonstrate that under rather 
simple and general descriptions of seicntihc in- 
ference several accepted norms of credibility are 
correlated with model's simplicity. The exacl na- 
ture of this relationship though, depends on the 
language u& by the mudeller to construct rheo- 
ries with. From a practical viewpoint the analysis 
reported helps ex tend the classical notion of. 
sratistical confidence level to three commonly 
used languages with madel complexity taking the 

role traditionally played by the "degrees of, rree- 
dom" measure. The relations developed in 
Sections 3 and 4 should enable the modellcr to 
determine the number or. observations required 
rot ach~eving a desired level of. credibility for a 
rnodel of. given complexity, in much the same 
way that statisticians determine confidence in- 
tctvals for linear regression models. 
From a philosophical viewpoint it is essential 

lo note that in all cases examined the role or 
simplicity was only incidental to the analysis. We 
would havc gotten identical hcsults i F  instead of 
L, 'being a complexity bounded sublanguage we 
were 20 su'bsfiturc an arbitrary sublanguagc with 
equal number of functions. I t  r$ not the narurc of 
the functions in I, but their number I!,/ (more 
precisely, the number of sample dichotomies in- 
duced by the members oC I,) which affccts the 
various plausibility measures considered. As long 
as the scientist commits himself to a language or 
limited expressional power his data-fitting 
maneuverability would bc curtailed, and con- 
sequently, any theory he may generate that can 
stand empirical test carries a high degree af 
credibility even whcn the languagc crnploys some 
very complex function. 
Why, then, do pcopfe exhibit a higher trust in 

ampler theories? When a theory is reported we 
automatically assume thar a certain procedure 
was followed by the scientist prior to its dis- 
covery. We assume that prior to discovery the 
scientist confines his attention to the class of 
~hcories with complexity not exceeding lthe onc 
rcporred. I f  such a procedure is indeed adhered 
lo, then lhe simplicity of the rcportcd theory 
would reflect the limitation on the scientists 
rnanelrverability while trying lo  f i t  the data. In 
this case (and this case only) would a greater 
simplicity also mean a more Falsifiable, more 
icstable and so, more plausible Ihcory? 

Thc illusion that Nature seems to "talk our 
language" and behavc as though She adopts the 
same complexity scale used by people seems to 
arise each time wc face a phenomenon which 
depends on the number of configurarions within a 
glven set, The second law of Thermodynamics, 
for example, has been interpreted in many text- 
books as though Nature .exhibits an incurablc 
tendency to disrupt order. Nature, of course, 
could not prefer one state of affairs ro any other 
simply because we found an elegant description 
to the iorrnec, not more than the sequence 
HHHHHW is preferred to any  other sequence in 



;I c c ~ ~ t i - l l ~ l l p i n q  CIPC~I~IL'II~. 7'hc \ccnncl law lrn- 
plrcs ~ m l y  th31  a r t i e r t n o r i y n a m ~ c  sys tem ~cnr lq  tn 
"c.;c;~pc'+ r r t j r t i  :my n:!rrnw r c p i a n  or phase space 
1owar11 r cy lo i lS  Inryr.r YOIIIIIIC. TIIC i l l ~ ~ s i o n  or 
i i r ~  ~ r r c v r r \ ~ h l c  t r cn t l  t o w a r d  d i s o r d e r  13r1g~n;Ltrs 
w f l t t  [he f ; ~ t  ~ t i : l t  ' I I IC  voTume i l c c u v i e d  hy rtates 
( ( 1  \vh1~41 pcfiplt' can find conclxc dcwript~ons ( in 
a l l ?  I : ~ n g l i ; ~ ~ ~ l  1 %  c r t r c l n c l y  ttnirll c o n i p . ~ r c d  w ~ t h  

E I I C  cntzrc \ l x ~ c  oC pcthsjh~l~lic.;. Thc c\c:ipc f r o n ~  
l l ~ c  r ~ r n p l c r  lo I h c  more ctlrnplcn I.; m e r c l y  a 
~ w r c c p r  r ~ ; ~ l  c l l s to r l  t n n  nC r l l c  z ~ n d c r l y i n g  t r : t nv t l on  

lrmn t%lc n a r r o w  1r-1 rhc w~tlcr. ;if p c o p l c  to 
rccrrr t l  r hc  n ~ t ~ c l i  morc Crcqucn~  Imn l \ l l i r l ns  from 
the c r ~ m p l c r  ~v ~ h c  c o m p l c u .  

'l'he c h r c r l ~ h r l i ~ y  rlC 1 1 1 I c r r ~ d  mndr l~,  l i k e  r h c r m t l -  

dyn;lrn~c:ll t r: lnrl;~rmations. dcpcnrl~ on thc cardi- 
n ; t l ~ r v  111 t h c  sp:~crc or dcsc r~p ! rons .  W l r i l e  low 
c ; i r t l ~ n n l ~ ~ v  I\ :I nrcc.w. l ry c [ u : ~ l ~ t y  of rhc spacc nT 
w r i i p t r  c l c s u r ~ p ~ i a n c  rhc  corr\cr.;c i s  not y c n c r ; ~ i i y  

t r uc .  The posr l ivr .  uorrci:rf lctn hctwccn r he two  
rn i i y  h;l\e r c q u l t t t l  In our tcnclcncy tu r c ~ ; ~ r t l  r h c  

x~rnplcr ;I\ t t i c  more- rrll.;zworttzv, hztt c a n n o t  hc 
rcllcct t l p o n  for testin!: c r c d r h ~ l ~ ~ y  u n l c ~ s  the prc3- 
uc t l ! ~ r c  r r l  t henry srlrc.t8on i< r x a r n l n r d .  11 rsr~ul<l .  

r l ~ c r c i o r c .  hrr m o r u  ~ ~ p p r n p r l n t c  In c o n n c c l  crcdl- 
h ~ t ~ r y  i v ~ r i i  rhc n a t u r e  r)F thc scleur ion prnced~~rc  
r ;it hct  than w ~ r h  prnpvrlics or I ts  finiil producl. 
\Vhcn t h c  h t r m c r  15 rlrrt e r p l ~ c i t l y  knorvn, as 1 %  

t ~ c  cncc w ~ t  t i  h u m : ~ n  cr~rnrnunlc:it lcin, s i rnp l ic t t  y 
r n c r c l \  wrvc.; a <  :I r n u g l ~  i t i t l ~ c a t o r  for thc type of 
proccwtlp that Ionh p1:tct p r l r j r  10 r l i r cnvc ry .  

T I w  ,uitl!*jr n < L ~ i c ~ l m i ~ p r <  W I ! ~  fl!nnh% thr L~ticl h<i<pll.q!~lv nf 
I hc I I r p ~ ~ r l r r ~ c r ~ l  PI 4ppllctl M.~rl!cm;~l!cr a1 I hc Wcr/[r~ann 
l $ ? , t r f ~ ~ ! r  ,>I S ~ i r n ~ c .  Rcl io~nt,  lqrac!, hhcrc [hi- work wa5 
pc~l . l~r l lc t l  I h r  t i r y p ~ r !  prL~rircd ht t l lc N a ~ ~ n n n l  ktcncc 
I nrrn~l:1tlc~n. t)~vlulolr nl ( ~$rriputcr Ancarch t~nrler <;rnc~l\ 
\ t ,  2.l< '*i7q If71 1 ,mil h1( X7+- I ?211Y AOl rnsalc tlllx wawl 
p>5\ltllc. 

I W. V. O Ournc. "On S~mplc Th ro r l n  nf a Crmtplcr. 
Wor!d " Svnrhrcr. 15, t9h7, pp 803- Ilk, 

.' S Tr>ulrn~n, I v r r ~ r ~ h r  nrrcl L'ndrrrlandln~ lnd~ana 
L Tntvcr-~!) I'rcw, I I l c~mi rn~t t> i~ ,  19hI 

1 V C;. Ht rny l .  "Kcccnf I'rt>blcm\ a l  Inductron- In 
Pri~hnh~llrrer, Prnhfrmr rrnd Slirttcir,xr~. c r l r td  hv S A 
L u ~ k c n h ~ c h .  Dlrlln<c>n P u h l ~ \ h ~ r ~ g  C mnpnr>r. I 'n~ tno ,  
('a11hrn1 I. 147: pp I h l  t * ?  

4. N. ( i r j i~ lman. F I I ~  I. Frrf~cln ood Forrmrr. 2nd Fd fl4hhr- 
I t r r r l l l ,  Lnti~.anap>lrs. 19hr 

5 I (; Kcrncnc). "Thc (1st or Strnpll~ity 4n Inrluctlon" In 
J'tr lhh11111.  onlirrnnrkon and .\lmpl~crr\. rdllcrl hy 1-ortcr 
a11t1 M.rr~in. T l ~ c  O<lyruy I'rrw. Nta Y < ~ r k .  ltJhlr, pp 
?()I 321 

h M Min<ky ;~ntl S Pnprr.  Prrcrprrrrrrr. Ml't Prw,  
C':srnhrtrlpc. M;rr% . 196'4 

7 'I' M Ctwcr. ' < icnmcrrlcal and N l a i ~ r t l c ~ l  P rnp r t lm  111 
hy$tcrn\ (11 Llncar I n r q u a l ~ ~ ~ c %  w ~ t h  hpplu~ilrrrnr In 
Pnttcrn Rctnpnrt~u~n " II .S :E Imrr.wcrrnnr r r r r  Elrcrr~rnli 
t nmprrc.rr. EC'-14. 1'165. pp 120 314 

H P hl  Sp l r~ ,  " i l n  ' r ~ m c - l ! ~ d w a r e  ( 'nrnyltx~ry Tradcrrll? 
Cor Ilrrc~lcan F-unut~unf" I'rrrretdrofr rrl S i r r l h  I l ~ r v u r ~  
[n f r rm~r  mrrirl ('rmtcrcnt r on Sbsr~m .'rr.tsnrcr, pp 525-T?? 

9 .! 5 Sa\spc. I hf  E'almplr*itv r ~ l  C'rlmrptmp John W11cv. 
New Ynrh. I'l7h. p h 

10 N P r p ~ n p c r ,  "Inb~rrnatlon Thcttry nnrl Thc C<rrnplc~~l ,  
ni Rtjolc 111 I u n c l ~ ~ l r i r  " M n r h p ~ r r r r ~ l  Svr!rmr 7 hrnri, 311, 
19:' pp 124- Ill? Al-o I h r l ~  Ann l S ' F S  Svmp nn Fctuml 
Cnmp Srr . flcrkclcy. IW4, pp 1 I I 113 

1 1  1. A Sholalmn\. "On f unctlt-mnlr Charactcrlz~np thc 
L'omplcxrtr 1 4  a Svsleni of L'ndcrcrmlncri Fi~wlctrn 
I-~~ncrrrnrir" S i ~ r r m r  Thpor)  Rrrri1rt.h IPrnhlcm? 
K~hr rnc l~k r )  19. IcJ'rl, pp F?3 141 

3 2 H Rctchcn hach. E~pcrrrncr rrnil Prrdrrrrnn Thr 
1 'n~vcr t~ ty  r r l (  hqca~o I'rcsr. C hlra~ci, t V 4 Y  

13 J V l?*pnrkv,  lrrrrodurr~rin rn U,rthrmntrrtil Prnhrrhrlrrt 
McGrau-tl i l l .  Ncw Yrnrl. 1427. C'h:iptcr V I  

I d  V .  N Vupnrk nnd A YA ( hervnnmkit. -On  t h ~  
l 'ntlnrrn ( c7rlrcrwrncc or Helai!vc I rcqucoclcr of I vcnlq 
In ~ l i c i r  Pr t>h. lh~ l~r+n " In '1 hmr }  i lf Proh l~h~h r i  <imt S r i  
. ~ p p i l ~ # ~ ~ ~ l l n ~ .  Xi ' [ .  I Q71. pp 2 W ? R O  

1 5  I_ 1' k \ r c ~ v c  :In<! 1 I Wapncr. "A I>~~rr~hur~u,n-lrrc 
I'crinrmancr Ilu~und In Frrnr I'qtima!~on " !LEE Trnnr on 
InCnrmurrrm I hertr \ .  17'-22, hrl I.. Scpterntur. 19'6. pp 
CSh 5 W "  

- ,ludra I'rnrl snq h ~ r n  r r h  rcl-AVIY. 
l ~ r ~ c l .  (711 4 Scplcmkr f ' I l ( 1  t fc 
rccn\ctl ~ h r  It \ drprrc In clccrrlc:!l - - cnprrlccrlnp It$vn Tcchn~on-Isr:~fl -- P \ IRIILIL~~C 111 lrchnnlngv. Elslfr. l\r.!cl. 
17) IW41. llic \I5 d q r c c  i r ~ m  
Newark ('~IIIFRP ~ I I  I npkrwcrlnk 

8": 1". - Ncwnrb. N e x  Irr\cy. In 1 1h1, rhr 
\I S JCFIK i n  phvrlcr Irclirb 

I3 ,1  I I . t r .  Ncu  Ilrun*.w~ch. Ycu Ic rwv,  nntt 
t 1  l b 1 ,  I r r r u  c7t-1 ! ~ ILJ !  cnpinccrl i l~ r r t~ rn  the l ' n l v t~hn tc  
t n -~ i t~ r f c  (11 I \r~n>blvn. Ilrooklyn. h r w  Yurh.  in 1 ' 6 5  

I1urtn.z 1'2f41 hl  hc unt engaped In mcrlrczl ~ l t i t r o n t c  rcuarch 
a t  Ncw I awl. I l n~v r r r~ l v .  Ycw I t w C .  ~ n r l  ~,+rlrht rna1hcninI!c< at 
Uewnrk ( thllc~c l nplrlctrinP I n  l'lhl hc jnirlct! R T A  
l .1h!1ra!~rrr6\, I'rrnrclnn. Xcw Jerrc~, whcrr hr c~mdrictrrl 

rewtlrctl crn rnlcrrimxenctlc mcrnnrl&, rh~rr-f i lm tranrlrttrn. Ina- 
n c > ~ r c r I ~ ! r ~ n  ~ZI~~CI a ~ r d  wy r - cond r~c r~v t  prrsmclrlc ,mrl stnraec 
r l r l i c r ; .  l n  lo65 t ~ c  prfrlrmcrl an r t  perlnlcrlt whtch fir*! prnvrd thc 
criTrcncc 01 ~ h c  Varnur k j rm  r t ~  rt~prcnntlucrr>rs. and ~ i ! t  3 

crmclplenl u l t  hc K( \ Rmnrc t l  Arrttrd for ~ l r c  rlcvrlopmcnt n in  
~ u p c r c ~ ~ t ~ t l ~ ~ c l t ~ c  pnr,ltricrrlc arnplificr In l V ( 6  11r k a r n c  
Dercctclr o l  &tl\anccd Mcninrr Dcurmq n l  I Icctrnn~c Hcrnnnr<. 
1 nc . t Faathr>rnc, C ~ l ~ l o r r i i : ~ ,  t ~ c a r l l n ~  rhc decrlopment or pl i~tcd 
wire mcmcrrtcq In  1969 hc jorncd thc xhoo l  o l  I nplnnnnF and 
Appt1cJSc~en~-e,l~n1rcrrrtvntC~[1tnrn1~1.mAn~rlcr.rvhcrc bc15 
n F3roictrt>r rrf Fngrnmr~r~p. l I 1 5  prmnl  1ntcrcTf.r lie In r~anal  
prnm.;tl~% pnttcrn rmt~gn~t~rin,:lrr~T~c~;lI  t n ~ c l l ~ ~ c o c c  anddn-r\i(1n 
lhtnrr 11,- ha$ puhl~rhccl nver 311 ttihnlcal p: lvrr  rn h l t  firldr of 
rntcrmt 

I l r  Pearl tr a mcmkr  c r l  thc h ~ m n a t l n n  Compul~np 
M.tch~ncrv IS~GART)  :1n4 rhe Inqtirutc (71 Flcctric:hl and 




