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Abstract

A new model for representing PD-induced relations that are derived
from DAG-representable relations through marginalization over a subset
of their variables is introduced. The new model requires polynomial space
and a polynomial algorithm is given for testing whether a given triplet is
represented in the model. In addition a polynomial algorithm is derived
for testing whether a marginalized DAG-representable relation is DAG-
representable.

1 Introduction

This paper investigates Probabilistic Distribution (PD) induced independency
relations which are representable by Directed Acyclic Graphs (DAGs), and are
marginalized over a subset of their variables. PD-induced relations have been
shown in the literature to be representable as relations that can be defined on
various graphical models. All those graphical models have two basic properties:
They are compact, i.e., the space required for storing such a model is polynomial
in the number of variables, and they are decidable, i.e., a polynomial algorithm
exists for testing whether a given independency is represented in the model. In
particular, two such models will be encountered in this paper; the DAG model
and the Annotated Graph (AG) model. The reader is supposed to be familiar
with the DAG-model which was studied extensively in the literature. An ample
introduction to the DAG model is included in Pearl [7, 1988], Pearl [8, 2000],
and Lauritzen [3, 1996].
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The AG-model in a general form was introduced by Paz, Geva, and Studeny
in [6, 2000] and a restricted form of this model, which is all we need for this
paper, was introduced by Paz [4, 2003a] and investigated further in Paz [5,
2003b]. For the sake of completeness, we shall reproduce here some of the basic
definitions and properties of those models which are relevant for this paper.

Given a DAG-representable PD-induced relation it is often the case that we
need to marginalize the relation over a subset of variables. Unfortunately it is
seldom the case that such a marginalized relation can be represented by a DAG,
which is an easy to manage and a well understood model. The main result of
this paper is the introduction of a new model of representation, the Generalized
Annotated Graph (GAG) model which is both compact and decidable and can
represent any marginalized DAG-representable relation induced by a PD. More-
over, based on the previous paper of the author [5, 2003b], a decision procedure
is provided for checking whether a marginalized DAG-representable relation
is itself DAG-representable. A different approach to marginalized relations as
above can be found in Wermuth and Cox [12, 2000].

2 Preliminaries

2.1 Definitions and notations

UGs will denote undirected graphs G = (V, E) where V is a set of vertices and
E is a set of undirected edges connecting between two vertices. Two vertices
connected by an edge are adjacent or neighbors. A path in G of length k
is a sequence of vertices v1 . . . vk+1 such that (vi, vi+1) is an edge in E for
i < 1, . . . , k. A DAG is an acyclic directed graph D = (V,E) where V is a set
of vertices and E is a set of directed arcs connecting between two vertices in V .
The indegree (outdegree) of a vertex v in D is the number of arcs in E directed
into (out of) v. A trail of length k in D is a sequence v1 . . . vk+1 of vertices in
V such that (vi, vi+1) is an arc in E for i = 1 . . . k. If all the arcs on the trail
are directed in the same direction then the trail is called a directed path. If a
directed path exists in D from vi to vj then vj is a descendant of vi and vi is a
predecessor or ancestor of vj . If the path is of length one then vi is a parent of
vj who is a child of vi.

The skeleton of a DAG is the UG derived from the DAG when the orien-
tations of the arcs are removed. A pattern of the form vi → vj ← vk is a
collider pattern where vj is the collider. If there is no arc between vi and vk

then vj is an uncoupled collider. A collider is maximal if no directed path exists
from it to any other collider. The moralizing procedure is the procedure gener-
ating a UG from a DAG, by first joining both parents of uncoupled colliders in
the DAG by an arc, and then removing the orientation of all arcs. The edges
resulting from the coupling of the uncoupled collider are called moral edges. As
mentioned in the introduction UG’s and DAG’s represent PD-induced relations
whose elements are triplets t = (X;Y |Z) over the set of vertices of the graphs.
For a given triplet t we denote by v(t) the set of vertices v(t) = X ∪Y ∪Z. Two
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graph models are equivalent if they represent the same relation.

2.2 DAG-model

Let D = (V, E) be a DAG whose vertices are V and whose arcs are E. D
represents the relation R(D) = {t = (X; Y |Z)|t ∈ D} where X, Y, Z are disjoint
subsets of V , the vertices in V represent variables in PD, t is interpreted as “X
is independent of Y given Z” and t ∈ D means: t is represented in D. To check
whether a given triplet t is represented in D we use the Algorithm L1 below due
to Lauritzen et al. [2, 1990].
Algorithm L1:
Input: D = (V, E) and t = (X;Y |Z).

1. Let V ′ be the set of ancestor of v(t) = X ∪ Y ∪ Z and let D′(t) be the
subgraph of D over V ′.

2. Moralize D′(t) (i.e., join all uncoupled parents of uncoupled colliders in
D′(t)). Denote the resulting graph by D′′(t).

3. Remove all orientations in D′′(t) and denote the resulting UG by G(D′′(t)).

4. t ∈ G(D′′(t)) iff t ∈ D.

Remark 1 t ∈ G where G is a UG if and only if Z is a cutset in G (not
necessarily minimal) between X and Y .

The definition above and the L1 Algorithm show that the DAG model is
both compact and decidable.

2.3 Annotated Graph – model

Let D = (V,E) be a DAG. We derive from D an AG A = (G,K) where G is
a UG And K is a set of elements K = {e = (d, r(d))} as follows: G is derived
from D by moralizing D and removing all orientations from it.

For every moral edge d in G we put an element e = (d, r(d)) in K such that
d(a, b), the domain of e, is the pair of endpoints of the moral edge and r(d),
the range of e, is the set of vertices including all the uncoupled colliders in D
whose parents are a and b, and all the successors of those colliders. Notice that
d denotes both a moral edge and the pair of its endpoints. The relation R(A)
defined by the AG A is the relation below:

R(A) = {t = (X;Y |Z)|t ∈ A}

In order to check whether t ∈ A we use the algorithm L2 due to Paz [4, 2003a]
below.
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Algorithm L2
Input: An AG A = (G,K).

1. For every element e = (d, r(d)) in K such that r(d) ∩ v(t) = ∅ (v(t) =
X∪Y ∪Z). Disconnect the edge (a, b) in G corresponding to d and remove
from G all the vertices in r(d) and incident edges. Denote the resulting
UG by G(t).

2. t ∈ A if and only if t ∈ G(t).

Remark 2 It is clear from the definitions and from the L2 Algorithm that the
AG model is both compact and decidable. In addition, it was shown in [4, 2003a]
that the AG model has the following uniqueness property: R(A1) = R(A2) im-
plies that A1 = A2 when A1 and A2 are AG’s. This property does not hold
for DAG models where it is possible for two different (and equivalent) DAGs to
define the same relation. In fact the AG (D) derived from a DAG D represents
the equivalence class of all DAGs which are equivalent to the given DAG D.

Remark 3 The AGs derived from DAG’s are a particular case of AGs as de-
fined in Paz et al. [6, 2000] and there are additional ways to derive AGs that
represent PD-induced relations which are not DAG-representable. Consider e.g.,
the example below. It was shown by Pearl [7, 1988 Ch. 3] that every DAG rep-
resentable relation is a PD-induced relation. Therefore the relation defined by
the DAG in Fig. 1 represents a PD-induced relation.

f

e

dcba

Figure 1: DAG representing relation

If we marginalize this relation over the vertices a, b, c and d we get another re-
lation, PD-induced, that can be represented by the AG A in Fig. 2, under the se-
mantics of the L2 Algorithm, with R(A) = {(a; b|∅), (b; d|c)+ symmetric images}.
But R(A) above cannot be represented by a DAG. This follows from the follow-
ing lemma that was proven in [5, 2003b].

Lemma 1 Let (G(D),K(D)) be the annotated graph representation of a DAG
D. K(D) has the following properties:
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((b,d), {a})

((a,b),{c,d})
K= }{a b dc

Figure 2: AG A representing a marginalized relation

1. For every element ((a, b), r) ∈ K(D), there is a vertex v ∈ r which is a
child of both a and b and every vertex w ∈ r is connected to some vertex
v in r whose parents are both a and b.

2. For any two elements (d1, r1), (d2, r2) in K(D), if d1 = d2 then r1 = r2.

3. For every ((a, b), r) ∈ K(D), (a, b) is an edge in G(D).

4. The set of elements K(D) is a poset (=partially ordered set) with regards
to the relation “º” defined as follows: For any two elements (dp, rp) and
(dq, rq). If dp∩rq 6= ∅ then (dp, rp) Â (dq, rq), in words “(dp, rp) is strictly
greater than (dq, rq)”. Moreover (dp, rp) Â (dq, rq) implies that rp ⊂ rq.

5. For any two elements (d1, r1) and (d2, r2) If r1 ∩ r2 6= ∅ and r1, r2 are not
a subset of one another, then there is an element (d3, r3) in K(D) such
that r3 ⊆ r1 ∩ r2.

As is easy to see the annotation, K in Fig. 2 does not satisfy the condition
4 of the lemma since the first element in K is bigger than the second but it’s
range is not a subset of the range of the second element. Therefore A is not
DAG-representable.

Remark 4 An algorithm is provided in [4, 2003a] that tests whether a given
AG, possibly derived from a marginalized DAG relation, which satisfies the (nec-
essary but not sufficient) conditions in lemma 1 above, is DAG-representable.
The main result of this work is to provide a polynomial algorithm which gener-
ates a “generalized annotated graph” representation (concept to be defined in the
sequel) which is both compact and decidable. In some cases the generalized an-
notated graph reduces to a regular annotated graph which satisfies the condition
of lemma 1. If this is the case than, using the testing algorithm in [5, 2003b]
we can check whether the given AG is DAG-representable. It is certainly not
DAG-representable if the generalized annotated graph is not a regular AG or is
a regular AG but does not satisfy the conditions of lemma 1.

Remark 5 When a given AG A is derived from a DAG then the annotation set
K = {(d, r(d))} can be interpreted as follows: The edge (a, b), in G, correspond-
ing to d, (a moral edge) represents a conditional dependency. That is: there is
some set of vertices, disjoint of r(d), Sab such that (aib|Sab) is represented in
A but a and b become dependent if any proper subset of r(d) is observed i.e.,
¬(a; b|S) if ∅ 6= S ⊆ r(d).
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3 Deriving Annotated Graphs Which are Equiv-
alent to Marginalized DAGs

3.1 Preliminary simplification

Let A(D) = (G(D), K(D)) be an AG derived from a given DAG D and equiva-
lent to D, and R(D) is to be marginalized over a subset S of it’s variables. We
want to find a proper representative for the marginalized relation RS(D). As
a preliminary observation we notice that we may assume that all the vertices
in V \S, in D, are ancestors of the vertices in S, given that we are interested
in RS(D) only. Otherwise we may reduce D and the corresponding A(D) to a
simpler and equivalent, over S, DAG and AG, D′ and A(D′) as follows:

1. Remove from D and from G(D) all vertices which are not ancestors of S
in D.

2. For any element e = (d, r) in K(D) such that r is in V \S, remove e from
K(D) and disconnect the edge corresponding to e in K(D). Denote the
resulting DAG and AG by D′ and A(D′).

To show that A(D′) represents the same relation as A(D) when marginal-
ized over S we observe that if e = (d, r) in K(D) has the property men-
tioned in step (2) above then the vertices in r cannot include ancestors
of vertices in S: Any vertex in S that has an ancestor in r must be in-
cluded in r contrary to the fact that r ∈ V \S. Therefore the vertices in r
are removed from G(D) in step (1). It follows now, by the L1 Algorithm
and it’s equivalence to the L2 Algorithm that, over S, A(D) and A(D′)
represent the same relation.

As a consequence of the above argument it is also clear that an annotated
graph A(D) such that all the vertices in V \S are ancestors of vertices in S, has
the property that every range of an element in K(D) intersects S (see step 2
of the reduction procedure above). We shall assume hereforth that the given
annotated graph A(D), to be marginalized over a subset of vertices S, has the
following two properties:

(i) All vertices in D belonging to the set V \S are ancestors of the vertices in
S.

(ii) Every range of an element in K(D) intersects S.

We proceed now with the task of constructing a generalized annotated
graph (the term will be explained in the sequel) which is equivalent to the
marginalization of D over S. We denote this generalized annotated graph by
AS(D) = (GS(D), KS(D)).
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3.2 Procedure M : For constructing AS(D)

3.2.1 Constructing the UG GS(D) = (VS(D), ES(D))

Necessarily we must have that VS(D) = S. The derivation of ES(D) requires a
more complex setup. The edges in ES(D) are separated into strong edges and
weak edges where the weak edges are intended to correspond to the domains of
the elements in KS(D). The definition of those edges is given below:

(a) If a → b is an arc in D then a—b is a strong edge in ES(D).

(b) Let (u, v) be a pair of vertices in S that are nonadjacent in D. If there is
a path in G(D) over (V \S)∩ (ancestor of {u, v}), connecting u to v and
such that the range of every moral edge on the path (if any) intersects
{u, v} then set u—v to be a strong edge in ES(D).

(c) Let (u, v) be a pair of vertices in S that are not adjacent in D, and do
not satisfy the condition (b) above. If (u, v) is an edge in G(D) or if there
is a path in G(D) over (V \S) ∩ {u, v} connecting u to v, then (u, v) is
set as a weak edge in ES(D). Notice that the first part of the condition
is a particular case of the second part when the path consists of a single
(moral) edge. The definition of GS(D) is now completed.

Lemma 2 If (u, v) is a strong edge in GS(D) then for any Z ⊆ S, (u; v|Z) is
not represented in D.

Proof: The lemma trivially holds for (u, v) satisfying property (a). If (u, v)
satisfies (b) and the path connecting u to v, assumed to exist in G(D), includes
no moral edges then there is a trail in D corresponding to the path in G(D)
having the property that all the vertices on it are ancestors of u or v or both.
Therefore when the L1 Algorithm checks whether (u, v;Z) is represented in
D, no vertex on the trail is removed. So the trail is transformed into a path
in the UG generated by the L1 Algorithm for D and (u, v;Z). The path is
not intercepted by any Z ⊆ S since all the vertices on the path are in V \S.
Thus the L1 Algorithm will decide that (u, v; Z) is not represented in D for
any Z ⊆ S. If the path includes moral edges then, due to the fact that the
ranges of those moral edges intersect {u, v}, those moral edges will be added
(due to the moralization procedure) to the broken trail in D corresponding to
the path in G(D) when the L1 Algorithm generates the UG corresponding to
D and (u, v;Z). Using the above argument we get again that the L1 Algorithm
will decide that (x, y;Z) is not represented in D for any Z ⊆ S. 2

The above lemma shows that if u and v are connected by a strong edge
then they cannot be separated. As mentioned before, weak edges are intended
to correspond to the domains of the elements in KS(D). It turns out however
that, for marginalized DAG’s it is often impossible to represent them as an
annotated graph with (d, r) element in the form shown in the previous sections.
We found it necessary therefore to define more general elements (d,Gd) where
Gd is an undirected graph itself whose set of vertices is a subset of S.
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The construction of those elements, as well as the semantics for deciding
whether a triplet is represented in the generalized annotated graph will be shown
subsequently. Let u—v be a weak edge in GS(D). For every such edge we con-
struct an element (d,Gd) where d = {u, v} and Gd is a graph whose construction
is given in the next section.

3.2.2 The construction of KS(D)

During the following construction some moral edges will be marked and some
pairs of consecutive edges (i.e., two edges having a common vertex) will be
designated as a forbided transition.

Notation and Definition: The graph G(S, d) denotes the subgraph of G(D)
over the union of the vertices in d and the vertices in V \S, where d = (u, v)
is a weak edge in GS(D). A legal path is a path in G(S, d) which does not
include marked edges, does not include forbidden transitions, and may include
the vertices u and v only as end vertices of the path (i.e., it does not pass
through them).

3.2.2.1 The construction of Ĝd

For every weak edge d = (u, v) in GS(D) we construct first an intermediary
graph Ĝd = (V̂d, Êd) as below:

1. If (a, b) is a moral edge in G(S, d) such that the range of the domain
(a, b) in K(D) has nonempty intersection with {u, v} then reset (a, b) as a
regular (i.e., nonmoval ) edge in G(S, d), in connection with the algorithms
and procedures described in the sequel, in this section.

2. For every remaining moral edge (a, b) in G(S, d) and for every vertex c in
G(S, d) such that c is a collider in D whose parents are a and b set the
pair of edges (a, c) and (c, b) as a forbided transition pair in G(S, d).

3. Allocate weights to the edges in G(S, d) such that moral edges get weight
1 and all other edges get weight 0.

4. Construct Ĝd = (V̂d, Êd) as follows:

(a) The vertices u and v are in V̂d.

(b) Set all other vertices in V̂d and all edges in Êd according to the
algorithm below.

Algorithm

0. Create a set W of vertices, W = ∅
Begin

1. While a legal path connecting u to v through G(S, d) exists
do begin
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1.1 Find a legal path of minimal weight connecting u to v through
G(S, d).

Remark 6 We will show that at least one such path must exist and that every
such path must have moral edges on it.

1.2 Let (p, q) be the moral edge on the above legal path closest to u with
p closer to u than q.

• Create a vertex vu,p in V̂d and an edge in Êd connecting u to vup.
• If q = v then create an edge in Êd connecting vu,p to v, else reset

W = W ∪ q

• Mark the edge (p, q).

end (while).

2. Unmark all marked edges

3. While W is not empty do begin

3.1 Remove a vertex w from W and reset W := W\w.

3.2 Find a minimal weight legal path in G(S, d) connecting w to v.

3.3 If no such path exists, then unmark all the marked edges and go to
3.

3.4 If the path has weight 0 then create edges in Êd connecting all vertices
vpq in V̂d such that q = w to v, unmark all marked edges and go to
3.

3.5 Let (r′, q′) be the moral edge on the part found in step 3.2 closest to
w with p′ closer to w then q′.

• Create a vertex vw,p′ in V̂d and edges in Êd connecting all vertices
vp,q in V̂d such that q = w to vw,p′

• If q′ = v then create an edge in Êd connecting vw,p′ to v, else
reset W = W ∪ q′.

• Mark the edge (p′, q′).

3.6 Go to 3.2

4. End of algorithm

3.2.2.2 An Example

The graph D shown below is borrowed from the paper of Verma and Pearl [11,
1991] and we want to marginalize this graph over {a, b, c, e, f} = S.

The annotated graph representation of D is shown in Fig. 4.
Notice that all ranges in K(D) have nonempty intersection with S.
The graph GS(D) is shown in Fig. 5 where strong edges are represented by

solid lines and weak edges by broken lines.
Notice the following:
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a c
b

f

qp

e

Figure 3: Graph D

G(D):

fe

p q

b ((a,p),{e})
((a,b), {e})
((p,q), {b,e})

((a,c), {f})

K={ca

Figure 4: The annotated graph A(D)

• The edges (a, e), (f, c) and (e, b) are strong edges due to criterion (a) of
strong edges.

• The edge (e, f) is a strong edge due to the path e—p—q—f in G(D) where
the range of the moral edge p—q on the path includes the vertex e.

• The edges (b, f) is a strong edge due to the path b—q—f in G(D).

• The edges (a, c) is a weak edge due to the path a—p—q—c in G(D) etc.

The graphs Ĝd are shown in Fig. 6.
Notice that the moral edge (p, q) in G(D) is treated as a regular edge in

the construction of Ĝ(e,c), due to the fact that the range of (p, q) includes the
vertex e (see step 1 of the construction algorithm for Ĝd), and is not included
therefore as a vertex in Ĝ(e,c).

3.2.2.3 A property of the graphs Ĝd

Definition 1 Let (u, v) be a weak edge in GS(D). A moral edge (a, b) in G(S, d)
will be called proper with regard to (u, v) iff the range corresponding to the do-
main (a, b) in K(D) has empty intersection with {u, v}.
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ba c

fe

Figure 5: The graph GS(D)

v(a,p) fa (p,q)v

b(a,c)vv(a,p) (q,c)va c

(q,c)v ce

v(q,c) c

(a,p)v ba

(a,b)v

Figure 6: The graphs Ĝd

Lemma 3 Let (u, v) be a weak edge in GS(D) for a given marginalized DAG
D over S. Then the following properties hold true:

(i) There exists at least one legal path connecting u to v in G(S, d).

(ii) Every legal path as in (i) above includes at least one proper moral edge
with regard to (u, v).

(iii) For every legal path π satisfying (i) and (ii) above there is a unique cor-
responding path π′ in Ĝ(u,v), connecting u to v, such that every vertex ve

on π′ corresponds to a proper moral edge e on π and, if ve precedes ve′ on
π′ then e precedes e′ on π.

Proof: By definition, since (u, v) is a weak edge, there is a path in G(S, d)
connecting u to v. If the path is not legal then it contains forbidden transitions.
Any such forbidden transition a—c—b corresponds to an uncoupled collider
configuration a → c ← b in D. Therefore a—b is a moral edge on G(D) which
short circuits the vertex c on the path. Replacing the forbided transitions by
the corresponding moral edges results in a legal path thus proving properties (i).
To prove (ii), let π be a legal path connecting u to v in G(S, d). If π includes
no moral edges then, as it excludes formiden transitions, it must correspond to
a trail in D such that all the vetices on it (in D) are ancestors of u of v or both
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implying that (u, v) is a strong edge, contrary to our assumption. On the other
hand, if π includes moral edges but all of them are not proper with regard to
(u, v) then we can show again that all the vertices on π are ancestors of either
u or v thus rendering (u, v) a strong edge contrary to assumption. To show this
let (a, b) and (a′, b′) be two consecutive nonproper moral edges on π. As the
path is legal, the subpath from b to a′ must have all its vertices ancestors of b or
a′ or both. Therefore, given that (a, b) and (a′, b′) are non proper we must have
that b and a′ are ancestors of u of v or both. It follows that all the vertices on
the subpath from b to a′ are ancestors of u or v or both. The same argument
works when we consider the subpath from u to a, where (a, b) is the closest to
u nonproper moral edge on π, and the subpath from b′ to v where (a′, b′) is the
closest to v nonproper moral edge on π. It follows that π must include some
proper moral edges.

This argument also applies when there is only one nonproper moral edge
on π. To prove (iii) let π be a path as in the proof of (ii) above. Consider
the first while loop in the algorithm describing the construction of the graph
Ĝ(u,v) (step 1 part (4) section 3.2.2.1). Assume that this while loop generates
a total of k vertices, say, v1, v2, . . . , vk in Ĝ(u,v) all adjacent to u in Ĝ(u,v) and
corresponding to the proper moral edges e1, . . . , ek in G(S, d). Then one of the
edges e1, . . . , ek must be included in π. Otherwise, the existence of the path π
connecting u to v and not including any of the proper moral edges e1, . . . , ek

implies the existence of a minimum weight path from u to v not including
e1, . . . , ek, but including proper moral edges (by property (i)). This would
have forced the while loop to execute an additional iteration which would have
added to the set v1, . . . , vk an additional vertex, representing a proper moral
edge on that minimal weight path. To complete the proof of property (iii) we
can now use an inductive argument: Assume that we found a partial path in
Ĝu,v : u, w1, w2, . . . , wj such that w1, . . . , wj correspond to proper moral edges
on π, e1, . . . , ej . If wj is connected to v in Ĝ(u,v) then we are done. Otherwise,
step 3.5 in the construction algorithms shown in section 3.2.2.1 will generate
a set of vertices, all connected to wj in Ĝ(u,v), corresponding to proper moral
edges. Using a similar argument as the one used above we can show that one
of those newly generated vertices corresponds to a proper moral edge on π
subsequent to ej on π. Continuing that way we can find the unique path π′ in
Ĝu,v having the property claimed in (iii). 2

Corollary 1 Let C be a vertex-cut set in Ĝ(u,v) separating u from v. Then EC

the set of proper moral edges, corresponding to C in G(S, d) are an edge-cut
separating u from v in G(S, d), over the legal paths (i.e., all legal paths are cut
by the edge cut). Moreover, if E′ is a subset of the set of proper moral edges
which is a minimal edge cut over the legal paths in G(S, d) then all the edges in
E′ are represented as vertices in Ĝd and those vertices form a vertex-cutset in
Ĝd between u and v.

Proof: The first part of the corollary follows directly from property (iii) in the
above lemma. To prove the second part we notice first that if e is a proper
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moral edge in G(S, d) and e belongs to a minimal edge cut then e must generate
a vertex in Ĝ(u,v). To prove this we use the following argument. Since e belongs
to a minimal edge cut over the legal paths there must be a minimal weight legal
path including e. Following the construction algorithm in the previous section
we must have that either e or another proper moral edge on the path, preceding
e, generates a corresponding vertex in Ĝd. If it is e then we are done, otherwise
that preceding edge, say (a, b) will dictate the insertion of b into W and, when
b is processed subsequently in step 3, we can use the same argument, for the
legal subpath from b to v, that includes e as a proper moral edge on it, in order
to show that either e or another proper moral edge on the subpath, generates
a corresponding vertex on Ĝd. Repeating this argument finitely many times
we conclude that eventually e will generate a corresponding vertex in Ĝd. Now
let C(E′) be the set of vertices corresponding to E′ in Ĝd. If C(E′) is not a
cutset between u and v in Ĝd then there is a path in Ĝd from u to v not passing
through C(E′). This path corresponds to a legal path in G(S, d) not including
any of the edges in E′, which contradicts the assumption that E′ is an edge cut
over the legal paths in G(S, d). 2

3.2.2.4 Deriving the graphs Gd out of the graphs Ĝd

Let Ĝd be the intermediary graph constructed, as shown in section 3.2.2.1 for
a given weak edge d = (u, v) in GS(D). The vertices in Ĝd, except u and
v, correspond to proper moral edges in G(S, d) and those moral edges are the
domains of some elements in K(D). To derive the graph Gd out of Ĝd we follow
the steps below:

1. For every vertex ve, except u and v, in Ĝd find the range of the element
in K(D) whose domain is e and denote it by r(e).

2. Find r(e) ∩ S and denote rS(e) = r(e) ∩ S

3. For every vertex ve in Ĝd substitute the set of vertices rS(e).

4. If ve is adjacent to ve′ in Ĝd then connect all the vertices in rS(e) to all
the vertices in rS(e′). Also connect u to all the vertices in rS(e) if ve is
adjacent to u and do the same for v.

5. By construction, all the vertices in any set rS(e), as above, are in GS(D).
If some vertex w is included in several sets rS(e) for different e′s then merge
all those occurrences of w into a single vertex and connect this vertex to
all the vertices that were adjacent to some occurrence of w before the
merger.

6. Denote the resulting graph by Gd and set this graph as the annotation of
the weak edge d = (u, v) in GS(D).

Remark 7 The following relation exists between Ĝd and Gd where d = (u, v).
If C is a cutset between u and v, in Gd, then there is a cutset C ′ between u and
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v in Ĝd such that the following inclusion holds:

c′′ = {
⋃

rS(e) : ve ∈ C ′} ⊆ C

This follows from the fact that, by step 4, if ve is adjacent to ve′ in Ĝd then
all vertices in rS(e) are connected to all vertices in rS(e′) and therefore if some
vertex v1 ∈ rS(e1) is connected to some vertex v2 ∈ rS(e2) through some vertex
v3 ∈ rS(e3) in Gd then all the vertices in rS(e3) must belong to a cutset in Gd

separating v1 from v2.

3.2.2.5 Definitions of KS(D) and AS(D)

An element (d, r(d)) will be called degraded if it’s domain d is empty. For
every element in K(D) construct a degraded element (∅, rS(d)) where rS(d) =
r(d)∩ S. As mentioned in section 3 we assume that for all elements (d, r(d)) in
K(D), r(d) ∩ S 6= ∅. The set of elements KS(D) is now defined as below:

KS(D) = {(∅, rS(d)) : (d, r(d)) ∈ K(D)}
⋃

{(d,Gd) : d is a weak edge in GS(D)}
Finally we define

AS(D) = (GS(D), KS(D)).

AS(D) is the annotated graph representation of a given DAG D marginalized
over a subset S of it’s vertices.

3.2.2.6 An example (continued)

Consider again the example in section 3.2.2.2. The annotated graph represen-
tation of the DAG D in Fig. 3 is shown in Fig. 7. The graph GS(D) is shown
in Fig. 8 where S = {a, b, c, e, f}. Those graphs are reproduced here for the
benefit of the reader:

G(D):

fe

p q

b ((a,p),{e})
((a,b), {e})
((p,q), {b,e})

((a,c), {f})

K={ca

Figure 7:

The derivation of the graphs Gd are shown below:
In the same way we get for the other weak edges inGS(D).
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ba c

fe

Figure 8:

a bv(a,p)

G       :(a,f)
a f ;  G       :(a,f) a be f

v(a,b)

ba eG       :(a,b)

(a,p)v v(p,q)

(a,b);  G       :

The degraded elements are found to be:

(∅, {b, e}), (∅, {e}), (∅, {f})

The set KS(D) therefore includes all the above degraded elements and all the
elements of the form (d,Gd) where d = (a, b), (a, f), (a, c), (b, c), (e, c).

3.2.2.7 A property of the annotated graph representation of marginal-
ized DAG’s

Lemma 4 Let A(D) = (G(D), K(D)) be the annotated graph representation
of a given DAG D. Let AS(D) = (GS(D), KS(D)) be the annotated graph
representation of the marginalized relation represented by D over a subset S of
the vertices of G(D). Let t = (X; Y |Z) be a triplet such that v(t) = {X∪Y ∪Z} is
a subset of S. Let G′(D) be the graph derived from G(D) when the L2 Algorithm
is applied to A(D) for the triplet t and let (d,Gd) be a nondegraded element in
KS(D) where Gd = (Vd, Ed) and d = (u, v). Then all the paths in G′(S, d)
between u and v are disconnected if and only if (S\v(t))∩(V ′

d\{u, v}) is a cutset
between u and v in Gd.

Proof: We show first that if and only if all legal paths in G′(S, d) are disconnected
then all paths are disconnected. Trivially, we need to prove the “if” case only.
To this end, let π be a path in G(S, d) connecting u to v and assume that π
is not legal. Then it must include forbidden transitions. Any such transition
a—c—b corresponds to an uncoupled collider a → c ← b in D. Therefore a—b is
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ce f(e,c)G       :

a be fG       :(a,c) c

(b,c)G       : cb f

a moral edge in G(D) corresponding to an element in K(D) with range r(a, b),
and one can construct a legal path π′ in G(S, d) short circuiting all forbidden
transitions by their corresponding moral edges. As shown in the proof of part (ii)
of lemma 3, at least one of the moral edges on π′, short circuiting the forbidden
transitions on π must be proper. Recall that the range r(a, b) corresponding to
such a proper moral edge does not intersect {u, v}. Now if all legal paths between
u and v in G(S, d) are disconnected by the L2 Algorithm then the path π′ is
disconnected which means that a proper moral edge on π′ is disconnected. Let
(a′, b′) be the proper moral edge on π′ disconnected by the L2 Algorithm. The
condition for this to happen is that r(a′, b′)∩v(t) = ∅. But if this condition holds
then the L2 Algorithm will also remove r(a′, b′) from G(D) thus disconnecting
π. To complete the proof of the lemma it suffices therefore to show, based on
the above argument, that if and only if the conditions of the lemma hold then
all legal paths in G′(S, d) between u and v are disconnected. We proceed now
to prove this claim. Assume first that all legal paths between u and v in G(S, d)
are disconnected when the L2 Algorithm is applied to A(D) for the triplet t.
Then there is a set EC of proper moral edges in G(S, d), removed by the L2
Algorithm, which is a minimal edge-cut over the legal paths between u and v in
G(S, d). By lemma 3 this set of edges correspond to a cutset C between u and
v in Ĝd and by the construction of Gd the set of vertices C generates a set of
vertices C ′ defined as below.

C ′ = {
⋃

rS(a, b) : wab ∈ Ĝd, (a, b) ∈ EC}

and C ′ is a cutset between u and v in Gd, with C ′ ⊆ S. Now the condition
for the removal of the set of edges EC by the L2 Algorithm holds if and only
if r(a, b) ⊆ V (D)\v(t) for all the edges (a, b) ∈ EC . Also as v(t) is a subset
of S the above condition implies that rS(a, b) ⊆ S\v(t) for all (a, b) ∈ EC so
that C ′ ⊆ S\v(t). Furthermore, as C ′ is a cutset between u and v in Gd with
C ′ ⊆ Vd we have that (S\v(t))∩Vd is a cutset between u and v in Gd as required.
Assume now that (S\v(t)) ∩ (Vd\{u, v}) = C ′′ is a cutset between u and v in
Gd. Then, by remark 6, there must be a cutset C in Ĝd between u and v such
that for every vertex ve in C, rS(e) ⊆ C ′′. By lemma 3 the cutset C in Ĝd

corresponds to an edge cut EC over the legal paths in G(S, d). Let e be an
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edge in EC . Then e corresponds to a vertex ve in C and, as mentioned above
rS(e) ⊆ S\v(t). Now v(t) ⊆ S and therefore r(e) ⊆ V \v(t) which implies that
the condition for the removal of e from G(S, d) exists for all e ∈ EC which is an
edge cut over the legal paths between u and v in G(S, d). 2

3.3 A semantics for defining the relation represented by
the annotated graph derived from a marginalized DAG

3.3.1 Algorithm MDT

Let AS(D) = (GS(D),KS(D)) be the annotated graph representation of a DAG
D marginalized over a subset S of it’s vertices. Let t = (X;Y |Z) be a triplet
over S and let v(t) be the set of vertices v(t) = X∪Y ∪Z. To ascertain whether
t is represented in AS(D) apply the procedure below:

1. For every degraded element (∅, rS(d)) in KS(D), if rS(d) ∩ v(t) = ∅ then
remove the vertices in rS(d) and incident edges from GS(D).

2. For every nondegraded element (d,Gd) in KS(D) where d = (u, v). Iff
(S\v(t)) ∩ (Vd\{u, v}) is a cutset between u and v in Gd then remove the
edge (u, v) from GS(D).

3. t is represented in AS(D) if and only if it is represented in the UG gener-
ated from GS(D) by steps 1 and 2 above.

3.3.2 An example (continued)

Consider again the example in section 3.2.2.2. For the given subset of variables
S = {a, b, c, e, f} the annotated graph AS(D) = (GS(D),KS(D)) is shown in
section 3.2.2.6 and the graph GS(D) is reproduced below:

ba c

fe

SG  (D)

Figure 9: The graph GS(D)

Let t be the triplet t = (b, c; a|f), then v(t) = {b, c, a, f}. The degraded
element (∅, {e}) satisfies the property in step 1, {e} ∩ v(t) = ∅, therefore the
vertex e should be removed from GS(D). The condition in step 2 is satisfied for
G(a,b), G(a,f) and G(a,c) therefore the weak edges (a, b), (a, f) and (a, c) should
be removed from GS(D). The resulting UG is shown below
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a b c

f

Figure 10: Test Graph

Verifying that t is represented in the test graph we conclude that t is repre-
sented in AS(D).

3.3.3 Correctness – Main Theorem

The testing procedure described in section 3.3.1 will be referred to as the MDT
(marginalized DAG test) procedure.

Theorem 1 Let AS(D) = (GS(D),KS(D)) be the annotated graph representa-
tion of a DAG D marginalized over a subset S of it’s vertices. Let t = (X;Y |Z)
be a triplet over S. Then t is represented in D if and only if it is represented in
AS(D) through the MDT procedure.

Proof: We know that t is represented in D if and only if it is represented in
A(D) = (G(D); K(D)) through the L2 Algorithm. Denote by G1 the undirected
graph derived from G(D) by the L2 Algorithm for A(D) and t. Then t is
represented in A(D) if and only if it is represented in G1. Let G′2 be the
subgraph of G1 over the vertices V1 ∩ S. For any pair of nonadjacent vertices
(a, b) in G′2 such that there is a path in G, connecting a to b through V1\V2,
add the edge (a, b) to E′

2. Denote the resulting graph by G2. It is easy to show
and it is well known that t is represented in G2 if and only if it is represented in
G1 (recall that v(t) ⊆ S). To prove the theorem , it suffices therefore to prove
that G2 is equal to the graph generated from GS(D) by the MDT procedure.
Denote by GS(D, t) = (VS(D, t), ES(D, t)) the graph generated from GS(D)
by the MDT procedure for the triplet t. We will show that VS(D, t) = V2

and ES(D, t) = E2. Clearly, the vertices in V2 are the vertices in S except
vertices which have been removed from S by the L2 Algorithm. The removed
vertices must belong to the range of an element (d, r(d)) in KS(D) and by step
1 of the MDS procedure the vertices in rS(d) are removed from GS(D) since
r(d)∩v(t) = ∅ implies that rS(d)∩v(t) = ∅. Therefore VS(D, t) = V2. Consider
now ES(D, t). Let d = (a, b) be a strong edge in GS(D). Then it is an edge
also in GS(D, t). It could be a strong edge in GS(D) for one of two reasons: (i)
(a, b) is an arc in D. Then it is an edge in both E2 and GS(D, t). (ii) It is not
an arc in D but there is a path in G(S, d) such that all the vertices on the path
are ancestors of {a, b} and the range of every moral edge on the path (if any)
has nonempty intersection with {a, b}. Then this path is not removed when G1

is created by the L2 Algorithm, since the vertices on the path cannot belong
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to a range to be removed by the L2 Algorithm and the element corresponding
to moral edges on the path, if any, are not processed by the L2 Algorithm
preventing the removal of such moral edges. Therefore (a, b) will be an edge
in both E2 and ES(D). By step 2 of the MDT procedure d is not an edge in
ES(D, t) if and only if (S\v(t))∩ (Vd\{u, v}) is a cutset between u and v in Gd.
By lemma 4 this holds true if and only if all paths in G(S, d) between u and v
are disconnected by the L2 Algorithm. Thus (a, b) is not set as an edge in E2

when G2 is created iff it is not an edge in ES(D, t). We have thus shown that
ES(D, t) ⊆ E2. To show that E2 ⊆ ES(D, t) we notice that the edges (a, b) in
E2 are either corresponding to arcs in D, or are created due to the fact that
a path in G(S, d) exists connecting a to b which corresponds to the condition
of a strong edge in GS(D), or are created due to the fact that a path exists in
G(S, d) connecting a to b which corresponds to a weak edge in GS(D), which is
not removed by the MDT procedure. 2

4 Extensions and Final Comments

4.1 PD-induced relations that cannot be represented by
a marginalized DAG

While DAG’s are widely used as a model that can represent PD-induced rela-
tions one may ask whether it might be possible to represent every PD-induced
relation either by a DAG or, assuming the existence of latent variables, by a
marginalized DAG. The answer to this question is negative as should be ex-
pected. A counterexample is given below.

Consider the following PD-induced relation, over 3 variable x, y, and z, con-
sisting of two triplets only:

R = {(x; y|∅), (x; y|z) + symmetric triplets}

Then R cannot be represented by a marginalized DAG. To prove this claim
assume that there is a DAG D with n variables, including x, y and z such that
when D is marginalized over {x, y, z}, the marginalized DAG represents R. This
assumption leads to a contradiction: Since (x; z|∅) and (y; z|∅) are not in R there
must be trails πxz and πyz in D with no colliders included in them. Let πxy be
the concatenation of the two trails πxz and πzy (which is the trail πyz reversed).
Then πxy connects between x and y and has no colliders on it except perhaps
the vertex z. If z is a collider then (x; y|z) is not represented in D. If z is not a
collider then πxy has no colliders on it and therefore (x; y|∅) is not represented
in D. Therefore R cannot be represented by marginalizing D over {x, y, z}, a
contradiction. That R is a PD-induced relation was shown by Milan Studeny
[10, private communication, 2000] as follows:

Consider the PD over the binary variables x, y and the ternary variable z.
The probability of the three variables for the different values of x, y, z is given
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below

p(0, 0, 0) = p(0, 0, 1) = p(1, 0, 1) = p(1, 0, 2) = 1
8

p(0, 1, 0) = p(1, 1, 1) = 1
4

p(x, y, z) = 0 for all other configurations

The reader can convince himself that the relation induced by the above PD is
the relation R = {(x; y|∅), (x; y|z)}. Notice however that the relation R above
is represented by the annotated graph below

G : x—z—y K = {((x, y), {z})}

see Paz [5, 2003b].

4.2 Space complexity considerations

The number of elements in the set K(D) of the annotated graph representation
of a given DAG D is bounded by the number of moral edges in G(D). For every
element (d, r(d)) in K(D) the range r(d) is a unique subset of the vertices of D,
whose removal from G(D) when a triplet t such that v(t)∩v(d) = ∅ is tested by
the L2 Algorithm, induces the removal of the edge d from G(D). The situation
is quite different when we apply the MDT procedure to the annotated graph
representation of a marginalized DAG. The space required for storing AS(D) is
still polynomial in the number of vertices of D: the number of degraded elements
is bounded by the number of moral edges in D, the number of elements (d,Gd)
is equal to the number of weak-edges in GS(D) and the set of vertices in Gd,
for every weak edge d, is a subset of the set of vertices of GS(D). The time
complexity for testing a triplet t by the MDT procedure is also polynomial as
is easy to see. On the other hand the condition for the removal of a weak edge
d from GS(D) dictated by the MDT algorithm is a complex condition i.e., d
should be removed if (S\v(t)) ∩ (Vd\{u, v}) is a cutset between u and v in Gd,
where d = (u, v). Now the number of such cutsets could be exponential so that
there may be exponentially many different conditions whose presence dictates
the disconnecting of u from v when the MDT procedure is applied to AS(D) for
different triplets t.

This feature is illustrated in the example below – introduced in Geiger et
al. [1, 1994]. Consider the DAG D = (V,E) with V = {xi|i ∈ N} ∪ {yi|i ∈
N} ∪ {uij |i, j ∈ N, i 6= j} ∪ {vij |i, j ∈ N, i 6= j} ∪ {wii|i ∈ N}

E = {xi ← uij → xj | i, j ∈ N, i 6= j}∪
{yi ← vij → yj | i, j ∈ N, i 6= j}∪
{xi ← wij → yi | i ∈ N}

An ij face of D is shown in Fig. 11:
Let A(D) = (G(D),K(D)) be the annotated graph representation of D. An

i, j face of G(D) is shown in Fig. 12.
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i uij xj

wjj

yjvijyi

wii

x

Figure 11: i, j face of D

j

xi uij xj

wjj

vijyi y

wii

Figure 12: i, j face of G(D)

The set of elements K(D) is:

K(D) = {(uij , wii){xi})|i, j ∈ N, i 6= j} ∪
{(vij , wii){yi})|i, j ∈ N, i 6= j}

Assume now that we want to marginalize D over S = {xi|i ∈ N} ∪ {yi|i ∈ N}.
An i, j face of GS(D) is shown in Fig. 13.

It is easy to verify that the edges (xi, xj), (yi, yj), (xi, yi) and (xj , yj) are
strong edges while (xi, yj) and (xj , yi) are weak edges.

Let d = (i, j) for any i and j. In order to construct G(i,j) we observe the
following. There are paths connecting xi to yi through the removed vertices
which can be found in Fig. 12:

xi—uij—wjj—yj and xi—wii—vij—yj

The condition for disconnecting those paths (consult the MSD procedure) is that
both xi and yj are not in v(t). But there are exponentially many additional
such paths even if both yi and xi are not in v(t), illustrated in Fig. 14 where
k 6= i, j,

Those paths are, fore every k 6= i, j:

xi—uik—wkk—vkj—yj
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jyiy

jxix

Figure 13: i, j face of GS(D)
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Figure 14: Paths connecting xi to yj

The condition for disconnecting those paths is that, for every k, either xk or yk is
not in v(t). Therefore Gij is as shown in Fig. 15. i.e., Vij = {xi|i ∈ N}∪{yi|i ∈
N} and Eij = {xi, xj), (xi, yi), (xj , yj), (yi, yj)} ∪ {(xi, xk), (xk, yk), (yk, yj)|k 6=
i, j}.

Notice that the number of possible cutsets in this graph is exponential since
any subset of vertices including xj , yi and at least one of {xk, yk} for each k 6= i, j
is a cutset.

4.3 Marginalized DAG’s that can be represented by DAG’s

Based on the previous sections it is clear that marginalized DAG’s are not always
representable by DAG’s. It was shown in [5, 2003b] that the annotated graph
representation of DAG’s is unique. Moreover, the set of elements K(D) in the
representation of a DAG D does not contain degraded elements and all the
elements in K(D) have the form (d, r(d)), where r(d) is a set of vertices whose
removal from G(D) (given that r(d) ∩ v(t) = ∅ for a tested triplet) enables the
disconnection of the edge corresponding to d in G(D), when the L2 Algorithm
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Figure 15: Graph Gij

is applied to A(D), for a triplet t. This feature induces a necessary condition for
AS(D) to be represented by a DAG, namely, KS(D) must not include degraded
elements and all the nondegraded elements (d, Gd) must have the property that
there is a unique and simple set of vertices in Vd\{u, v} which separates u from v
in Gd where d = (u, v). If this necessary condition is satisfied then, based on the
MDT procedure, we can reset KS(D) so that all the elements in this set have
the form (d, r(d)) where r(d) is equal to the unique cutset separating u from v in
Gd, and then apply a polynomial procedure to AS(D), described in [5, 2003b]
which will find a DAG D representing AS(D), if such exists, or will declare
that AS(D) is not representable by a DAG (even though it satisfies the above
necessary condition). In fact, the above necessary condition can be simplified.
We will show now that if all the nondegraded elements in KS(D), (d, Gd), have
the property that there is a unique cutset separating u from v in Gd, then all
the degraded elements are superfluous and can be discarded. An element that
has this property (of unique cutset) will be called simple element.

Claim 1 If all the nondegraded elements in KS(D) are simple, then the an-
noted graphs AS(D) = (GS(D), KS(D)) and A′S(D) = (GS(D),K ′

S(D)) are
equivalent, where K ′

S(D) includes the nondegraded elements of KS(D) only.

Proof: let t be any triplet over S. If t is represented in A′S(D), through the
MDT procedure then t is represented in AS(D) since the degraded elements
many induce the removal of additional vertices, disjoint of v(t) and this cannot
change the fact that t is represented in the UG generated by the MDT procedure.

To complete the proof assume that t is represented in AS(D) but it is not
represented in A′S(D). Let t = (X; Y |Z) and let Gt and G′t be the UG’s derived
from GS(D) by the MDT procedure, for testing t, from AS(D) and A′S(D) cor-
respondingly. V ′

t includes some vertices belonging to degraded elements disjoint
of v(t) which are not included in Vt. As t is not represented in A′S(D) it is not
represented in G′t and therefore there must be a path π from some vertex x ∈ X
to some vertex y ∈ Y such that all the vertices of a subpath of π are in V ′

t \Vt.
Let π = x, v1, . . . , vk, y be such a path. Let π′ be the trail corresponding to π
in D And let vi, . . . , vj be the subpath of π′ in V ′

t \Vt. Now Vt\V ′
t includes only
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vertices from degraded elements which, as such belong to ranges of elements in
K(D). Therefore we must have that, in D, vi−1 is oriented into vi and vj+1

is oriented into vj where vi−1 and vj+1 are in Vt, since otherwise vi−1 or vj+1

or both would also belong to V ′
t \Vt, contrary to the choice of i and j, this fol-

lowing from the fact that vi → vi−1 implies that vi−1 is in the same range as
vi and similarly for vj → vj+1 (recall that vi, . . . , vj belong to the intersection
of some ranges in K(D) with S). This implies that in D, a collider must exist
on the subpath vi, . . . , vj . If the collider is coupled then we can short circuit
the subpath by the arc joining the parents of that collider. Continuing the
short circuiting process several times we will get, eventually, a trail connecting
vi−1 to vi+1, including an uncoupled collider, which is a vertex on the subpath
vi, . . . , vj .

This implies that a nondegraded element would have been included in both
AS(D) and A′S(D) which would have been processed by the MDT algorithm,
disconnecting π (notice that all the successors of the collider must belong to
V ′

t \Vt since successors of vertices in some range must belong to the same range).
This argument holds for any path connecting x to y through V ′

t \Vt and therefore,
if t is represented in AS(D) then it is represented in A′S(D) thus completing the
proof. 2

It follows from the above claim that if all the elements in KS(D) are simple,
where AS(D) is the annotated graph representation of a marginalized DAG,
then we can discard all the degraded element from KS(D). Moreover every
simple element (d,Gd) can be replaced by a regular element (d, r(d)) where
r(d) is the unique cutset disconnecting u from v in Gd, since the condition for
disconnecting u from v is that r(d), the unique cutset in Gd, is disjoint of t.

Summing up: If AS(D) = (GS(D),KS(D)) is such that all the nondegraded
elements in KS(D) are simple then KS(D) can be replaced by a regular anno-
tation and then the procedure described in [5, 2003b] can be applied to check
whether AS(D) can be represented by a DAG. This is illustrated in the example
below.

4.4 An Example

Let D be the graph shown in Fig. 16
The annotated graph representation of D is shown in Fig. 17.
Marginalizing over S = {a, b, c, d} we get the annotated graph shown in Fig.

18.
The degraded element can be discarded. An equivalent DAG can be found

and is shown in Fig. 19.

4.5 Checking whether two DAG’s are equivalent when
both are marginalized over the same subset of their
common vertices

This problem was considered in [9, 1992] where a polynomial algorithm is sug-
gested for solving it. It is reasonable to assume that the annotated graph rep-
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Figure 16: DAG representing relation
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Figure 17: DAG representing relation

resentation may also provide a way for solving the above problem. The tools
developed so far may however not be enough for this use. It may be necessary
to provide first a means of simplifying the annotated graph representation of
marginalized DAG’s so as to get some kind of canonical annotated graph which
is unique. So far it is not clear and it is probably not true that the annotated
graph representing a marginalized DAG as developed in the previous sections
is unique and it is reasonable to assume that some simplifications of the rep-
resentation is possible, by eliminating superfluous degraded elements and by
simplifying the Gd graphs. This subject is not pursued further in the work.

4.6 Conditioning

Given a GAG A, the procedure below will derive from A another GAG A′ which
represents the relation R(A) when conditioned for a subset T of its variables.

Procedure C
Input: a GAG A = (G,K) with

K = {(∅, ri) : i = i, . . . , j} ∪ (1)
{(d,Gd) : d ∈ E} (2)

and a subset T ⊂ V where G = (V, E).
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Figure 18: DAG representing relation
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Figure 19: DAG representing relation

1. For every element in K(∅, ri) such that ri ∩ T 6= ∅, remove (∅, ri) from K

2. For every element in K (d,Gd) such that d ∩ T 6= ∅, remove (d,Gd) from
K.

3. Remove T and incident edges from G.

4. For any element (d,Gd) not removed in step 2, such that Vd ∩ T 6= ∅ do:
For any vertex v ∈ Vd ∩ T , remove v from Vd and connect by an edge any
two vertices u and w such that both u and w are adjacent to v in Gd.

Set A′ = (G′, K ′) where G′ is the graph derived in step 3 and K ′ is the
annotation derived from K after completion of steps 1,2, and 4.

• End of procedure
The fact that the procedure is correct follows directly from the MDT
algorithm and is left to the reader.
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