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OUTLINE!

Concepts:  
  

  * Causal inference ⎯ a paradigm shift  
  * The two fundamental laws 
 

Basic tools: 
  

  * Graph separation  
  * The truncated product formula  
  * The back-door adjustment formula 
  * The do-calculus  
  

Capabilities:  
  

  * Policy evaluation  
  * Transportability 
  * Mediation 
  * Missing Data!

TRADITIONAL STATISTICAL 
INFERENCE PARADIGM 

Data 

Inference 

Q(P) 
(Aspects of P) 

e.g., 
Infer whether customers who bought product A 
would also buy product B. 
Q = P(B | A) 

 

Joint 
Distribution 

  

P 

e.g., Estimate P′(sales) if we double the price. 
How does P change to P′?  New oracle 
e.g., Estimate P′(cancer) if we ban smoking.  

FROM STATISTICAL TO CAUSAL ANALYSIS: 
1.  THE DIFFERENCES 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

change 

 

Joint 
Distribution 

  

P 

 

Joint 
Distribution 

  

P′ 

What remains invariant when P changes say, to 
satisfy P′(price=2)=1 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

change 

Note:  P′(sales) ≠ P (sales | price = 2) 
   

e.g., Doubling price ≠ seeing the price doubled. 
  

P does not tell us how it ought to change. 

FROM STATISTICAL TO CAUSAL ANALYSIS: 
1.  THE DIFFERENCES 

 

Joint 
Distribution 

  

P 

 

Joint 
Distribution 

  

P′ 

What happens when P changes? 
e.g., Estimate the probability that a customer who 
bought A would buy A if we were to double the price. 

FROM STATISTICAL TO COUNTERFACTUALS: 
1.  THE DIFFERENCES 

Probability and statistics deal with static relations 

Data 

Inference 

Q(P′) 
(Aspects of P′) 

change 

 

Joint 
Distribution 

  

P 

 

Joint 
Distribution 

  

P′ 
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Data 

Inference 

Q(M) 
(Aspects of M) 

Data  
Generating 

Model 

M – Invariant strategy (mechanism, recipe, law, 
protocol) by which Nature assigns values to 
variables in the analysis. 

 

Joint 
Distribution 

  

THE STRUCTURAL MODEL 
PARADIGM 

M 

P – model of data, M – model of reality 

P 

WHAT  KIND  OF  QUESTIONS  SHOULD  
THE  NEW  ORACLE  ANSWER 

THE  CAUSAL  HIERARCHY 

(What is?) 

(What if?) 

(Why?) 

P(y | A) 

P(y | do(A) 

P(yA’ | A) 

SYNTACTIC DISTINCTION 

•  Observational Questions: 
“What if we see A” 
  

•  Action Questions: 
“What if we do A?” 
  

•  Counterfactuals Questions: 
“What if we did things differently?” 
  

•  Options:  
“With what probability?” 

WHAT  KIND  OF  QUESTIONS  SHOULD  
THE  NEW  ORACLE  ANSWER 

THE  CAUSAL  HIERARCHY 

•  Observational Questions: 
“What if we see A” 
  

•  Action Questions: 
“What if we do A?” 
  

•  Counterfactuals Questions: 
“What if we did things differently?” 
  

•  Options:  
“With what probability?” 

Bayes Networks 

Causal Bayes Networks 

Functional Causal  
Diagrams 

GRAPHICAL  REPRESENTATIONS 

FROM STATISTICAL TO CAUSAL ANALYSIS: 
2.  THE  SHARP  BOUNDARY 

CAUSAL 
Spurious correlation 
Randomization / Intervention 
“Holding constant” / “Fixing” 
Confounding / Effect 
Instrumental variable 
Ignorability / Exogeneity 

ASSOCIATIONAL 
Regression 
Association / Independence 
“Controlling for” / Conditioning 
Odds and risk ratios 
Collapsibility / Granger causality 
Propensity score 

1.  Causal and associational concepts do not mix. 

2.    

3.    

4.    

4.  Non-standard mathematics: 
a)  Structural equation models (Wright, 1920; Simon, 1960) 
b)  Counterfactuals (Neyman-Rubin (Yx), Lewis (x        Y)) 

ASSOCIATIONAL 
Regression 
Association / Independence 
“Controlling for” / Conditioning 
Odds and risk ratios 
Collapsibility / Granger causality 
Propensity score 

1.  Causal and associational concepts do not mix. 

3.  Causal assumptions cannot be expressed in the mathematical 
language of standard statistics. 

FROM STATISTICAL TO CAUSAL ANALYSIS: 
3.  THE MENTAL BARRIERS 

2.  No causes in – no causes out (Cartwright, 1989) 

causal conclusions ⇒  } data 
causal assumptions (or experiments)   

CAUSAL 
Spurious correlation 
Randomization / Intervention 
“Holding constant” / “Fixing” 
Confounding / Effect 
Instrumental variable 
Ignorability / Exogeneity 

y = α +βx + uY

THE  NEW  ORACLE:   
STRUCTURAL  CAUSAL  MODELS  

THE  WORLD  AS  A  COLLECTION  OF  SPRINGS 

Definition: A structural causal model is a 4-tuple 
<V,U, F, P(u)>, where 
•    V = {V1,...,Vn} are endogenous variables 
•    U = {U1,...,Um} are background variables 
•    F = {f1,..., fn} are functions determining V, 

vi = fi(v, u)   

•    P(u) is a distribution over U 
  

P(u) and F induce a distribution P(v) over 
observable variables 

e.g., Not regression!!!! 
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The Fundamental Equation of Counterfactuals: 

COUNTERFACTUALS  ARE   
EMBARRASSINGLY  SIMPLE 

U 

X (u) Y (u) 

M U 

X = x Yx (u) 

Mx 

Yx (u) Δ= YMx (u)

Definition:    
Given a SCM model M, the potential outcome Yx(u) for  
unit u is equal to the solution for Y in a mutilated model Mx,  
in which the equation for X is replaced by X = x. 

U 

X (u) Y (u) 

M U 

X = x Yx (u) 

Mx 

Definition:    
Given a SCM model M, the effect of setting X to x,  
P(Y = y | do (X=x)), is equal to the probability of Y = y in a  
mutilated model Mx, in which the equation for X is replaced  
by X = x. 

EFFECTS  OF  INTERVENTIONS  ARE   
EMBARRASSINGLY  SIMPLE 

The Fundamental Equation of Interventions: 

P(Y = y | do(X = x)) Δ
= PMx (Y = y) = P(Yx = y)

P(x, y,u) = P(u)P(x | u)P(y | x,u)

The Fundamental Equation of Interventions: 

COMPUTING  THE  EFFECTS   
OF  INTERVENTIONS 

U 

X (u) Y (u) 

M U 

X = x Yx (u) 

Mx 

P(Y = y | do(X = x)) Δ= PMx (Y = y)

P(y,u | do(x)) = P(u)P(y | x,u)
P(y | do(x)) = P(y | x,u)P(u)

u
∑

Truncated product 

Adjustment formula 

 (X  sep Y | Z )G(M )⇒ (X ⊥⊥ Y | Z )P(v)

Yx (u) = YMx (u)

THE  TWO  FUNDAMENTAL  LAWS 
OF  CAUSAL  INFERENCE 

1.  The Law of Counterfactuals (and Interventions) 
 
 
 
      (M generates and evaluates all counterfactuals.) 

2.  The Law of Conditional Independence (d-separation) 
 
 
 
(Separation in the model ⇒ independence in the distribution.) 
 

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

THE  LAW  OF 
CONDITIONAL  INDEPENDENCE 

Graph (G) Model (M) 

  
 

Gift of the Gods 
  

If the U 's are independent, the observed distribution 
P(C,R,S,W) satisfies constraints that are: 
   (1)   independent of the f 's and of P(U), 
   (2)   readable from the graph. 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )

S ⊥⊥ R |C e.g., C ⊥⊥ W | (S,R)

D-SEPARATION:  NATURE’S  LANGUAGE  
FOR  COMMUNICATING  ITS  STRUCTURE 

Every missing arrow advertises an independency, conditional 
on a separating set. 

Applications: 
1.  Model testing   
2.  Structure learning 
3.  Reducing "what if I do" questions to symbolic calculus 
4.  Reducing scientific questions to symbolic calculus 

C (Climate) 

R  
(Rain) 

                S  
(Sprinkler) 

W (Wetness) 

Graph (G) Model (M) 

 

C = fC (UC )
S = fS (C,US )
R = fR(C,UR )
W = fW (S,R,UW )
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FIRST LAYER OF THE CAUSAL HIERARCHY 
 

PROBABILITIES 
(What if I see X=x?)!

P(v1,v2,...,vn ) = P(vi | pai )
i
∏

Theorem (PV, 1991).  Every Markovian structural causal model     
M (recursive, with independent disturbances) induces a passive   
distribution P(v1,…, vn) that can be factorized as  
 
  

   
where pai are the (values of) the parents of Vi in the causal  
diagram associated with M. 
  !

Data!

Data  
Generating 

Model!

 

Joint 
Distribution 

 !

THE EMERGENCE OF THE FIRST LAYER!

M!P(v)!
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                     normal valve            abnormal valve                     !

TOOL 1. GRAPH SEPARATION 
(D-SEPARATION)!

season!

sprinkler! rain!

wet!

slippery!

x! z! y!

x! z! y!

x! z! y!

(X ⫫ Y | Z)! (X ⫫ Y | Z)!
(X ⫫ Y)!

CI1 : (Wet ⫫ Sprinkler) 

✔!

✘!

✘!

✔!

CI2 : (Wet ⫫ Season | Sprinkler)!

CI3 : (Rain ⫫ Slippery | Wet)!

CI4 : (Season ⫫ Wet | Sprinkler, Rain)!

CI5 : (Sprinkler ⫫ Rain | Season, Wet)!✘!

x! z! y!

x! z! y!

w! THE SECOND LAYER ON CAUSAL HIERARCHY:  
 

CAUSAL EFFECTS 
(What if I do X=x?) 
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• What happens when P changes? 
e.g., Infer whether less people would get cancer   
        if we ban smoking.  
   

Q = P(Cancer = true | do(Smoking = no))  !

CAUSAL INFERENCE:  
MOVING BETWEEN REGIMES!

Data!

Inference!

Q(P′) 
(Aspects of P′)!

P′  
Distribution 

(Regime 2) 
 !

P 
Distribution 

(Regime 1) 
 !

change!

 Not an aspect of P.!

Observation 1: 
  

The distribution alone tells us nothing about 
change; it just describes static conditions of a 

population (under a specific regime).   
 
 Observation 2:  

  

We need to be able to represent “change,”  
or how the population reacts when it 

undergoes change in regimes. !

THE BIG PICTURE:  
THE CHALLENGE OF CAUSAL INFERENCE!

Alternative world!

X! Y!

Z!

W!

•  Goal: how much Y changes with X if we vary X between two 
different constants free from the influence of Z.  

•  This is the definition of causal effect.!

Z:  age, sex 
X:  action  
W: mediator 
Y:  outcome !

Real world!

X! Y!

Z!

W!
change!

P(z, x, w, y)	

 P(y | do(x))	



METHOD FOR COMPUTING CAUSAL EFECTS: 
RANDOMIZED EXPERIMENTS!

Alternative world!

X! Y!

Z!

W!

do(X0)	



X0! Y

Z

W

do(X1)	



X
1! Y

Z

W

P(y | do(X0))	

 P(y | do(X1))	


Randomization:!

Real world!

X! Y!

Z!

W!
change!

Z:  age, sex 
X:  action  
W: mediator 
Y:  outcome !

PROBLEM 1. COMPUTING EFFECTS  
FROM OBSERVATIONAL DATA!

P(y | do(x))	

P(z, x, w, y)	



Questions:  
 * What is the relationship between P(z, x, w, y) and P(y | do(x))? 
 * Is P(y | do(x)) = P(y | x)?   

?!

Z:  age, sex 
X:  action  
W: mediator 
Y:  outcome !

Alternative world!

X! Y!

Z!

W!

Real world!

X! Y!

Z!

W!
change!
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Queries:  
  
Q1 = Pr(wet | Sprinkler = on)  
         
 
 
 
Q2 = Pr(wet | do(Sprinkler = on)) 
       

season!

sprinkler! rain!

wet!

slippery!

COMPUTING CAUSAL EFFECTS  
FROM OBSERVATIONAL DATA!

Queries:  
  
Q1 = Pr(wet | Sprinkler = on)  
        = P(p1) + P(p2) 

 
 
 
Q2 = Pr(wet | do(Sprinkler = on)) 
  

COMPUTING CAUSAL EFFECTS  
FROM OBSERVATIONAL DATA!

sprinkler!

season!

rain!

wet!

slippery!

p1!

p2!

season!

sprinkler! rain!

wet!

slippery!

Queries:  
  

Q1 = Pr(wet | Sprinkler = on)  
     = P(p1) + P(p2) 
 
 
 
Q2 = Pr(wet | do(Sprinkler = on)) 
     !

COMPUTING CAUSAL EFFECTS  
FROM OBSERVATIONAL DATA!

p1!

season!

sprinkler! rain!

wet!

slippery!

Queries:  
  
Q1 = Pr(wet | Sprinkler = on)  
     = P(p1) + P(p2) 

 
 
 
Q2 = Pr(wet | do(Sprinkler = on)) 
     !

COMPUTING CAUSAL EFFECTS  
FROM OBSERVATIONAL DATA!

p1!

season!

sprinkler! rain!

wet!

slippery!

Queries:  
  
Q1 = Pr(wet | Sprinkler = on)  
     = P(p1) + P(p2) 

 
 
 
Q2 = Pr(wet | do(Sprinkler = on)) 
     = P(p1)!

COMPUTING CAUSAL EFFECTS  
FROM OBSERVATIONAL DATA!

p1!

season!

sprinkler! rain!

wet!

slippery!

Queries:  
  
Q1 = Pr(wet | Sprinkler = on)  
        = P(p1) + P(p2) 

 
 
 
Q2 = Pr(wet | do(Sprinkler = on)) 
     = P(p1) 

∑Se,Ra,Sl  P(Se) P(Sp | Se) P(Ra | Se) P(We | Sp, Ra) P(Sl | We)!

COMPUTING CAUSAL EFFECTS  
FROM OBSERVATIONAL DATA!
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TOOL 2. TRUNCATED FACTORIZATION PRODUCT 
(OPERATIONALIZING INTERVENTIONS)!

Corollary (Truncated Factorization, Manipulation Thm., G-comp.):  
The distribution generated by an intervention do(X=x) 
(in a Markovian model M) is given by the truncated factorization: 
 
 
          P(v1, v2, …, vn | do(x)) = ∏    P(vi | pai)	



     i | Vi ∉ X X = x	



NO FREE LUNCH:  
ASSUMPTIONS ENCODED IN CBNs!

 
Definition (Causal Bayesian Network):  
  

P(v): observational distribution 
P(v | do(x)): experimental distribution 
P*: set of all observational and experimental distributions 
   
A DAG G is called a Causal Bayesian Network compatible  
with P* if and only if the following three conditions hold for  
every P(v | do(x)) ϵ P*:  
  
i.  P(v | do(x)) is Markov relative to G;  
ii.  P(vi | do(x)) = 1, for all Vi ϵ X;  
iii.  P(vi | pai, do(x)) = P(vi | pai), for all Vi ∉ X.  
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season!
Queries:  
  
Q1 = Pr(wet | Sprinkler = on)  
        = P(p1) + P(p2) 

 
 
 
Q2 = Pr(wet | do(Sprinkler = on)) 
     = P(p1) 

p1!

sprinkler! rain!

wet!

slippery!

∑Se,Ra,Sl  P(Se) P(Sp | Se) P(Ra | Se) P(We | Sp, Ra) P(Sl | We)!

IF SEASON IS LATENT,  
IS THE EFFECT STILL COMPUTABLE?!

p2!

= ∑Ra P(We | Sp, Ra)  P(Ra)!
  
Adjustment formula!

= ∑Ra P(We | Sp, Se)  P(Se)!

TOOL 3. BACK-DOOR CRITERION  
(THE PROBLEM OF CONFOUNDING)!

Goal: Find the effect of X on Y, P(y|do(x)), given 
measurements on auxiliary variables Z1,..., Zk!

 G !

Z3 

Z2 

Z5 

Z1 

X 

Z4 

Z6 Y 
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ELIMINATING  CONFOUNDING  BIAS 
THE  BACK-DOOR  CRITERION!

 
P(y | do(x)) is estimable if 
there is a set Z of variables that d-separates X from Y in Gx"

Moreover, P(y | do(x)) = ∑  P(y | x,z) P(z) 
(“adjusting” for Z) !

z!

Gx! G !

Z3 

Z2 

Z5 

Z1 

X 

Z4 

Z6 Y 

Z!

Z3 

Z2 

Z5 

Z1 

X 

Z4 

Z6 Y 

GOING BEYOND ADJUSTMENT!

Smoking! Tar! Cancer!

Genotype  (Unobserved)!

Goal: Find the effect of S on C, P(c | do(s)), given 
measurements on auxiliary variable T, and when latent 
variables confound the relationship S-C.!

•   What about the effect of S on T, P(t | do(s))? 
•   What about the effect of T on C, P(c | do(t))? 
 

OUTLINE!
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if  (Y ⊥⊥ Z | X,W )GXZ

if  (Y ⊥⊥ Z | X,W )GXZ (W )

if  (Y ⊥⊥ Z | X,W )GX

TOOL 3. CAUSAL CALCULUS 
(IDENTIFIABILITY REDUCED TO CALCULUS)!

Rule 1:  Ignoring observations 
 P(y | do(x), z, w) = P(y | do(x), w), 
 

Rule 2:  Action/observation exchange 
  P(y | do(x), do(z), w) = P(y | do(x), z, w), 
    

Rule 3:  Ignoring actions 
  P(y | do(x), do(z), w) = P(y | do(x), w),    !

The following transformations are valid for every interventional 
distribution generated by a structural causal model M: 
 

DERIVATION  IN  CAUSAL CALCULUS!

Smoking! Tar! Cancer!

P (c | do(s)) = Σt P (c | do(s), t) P (t  | do(s))!

= Σs′ Σt P (c | do(t), s′)  P (s′ | do(t)) P(t |s)!

= Σt P (c | do(s), do(t)) P (t  | do(s))!

= Σt P (c | do(s), do(t)) P (t | s)!

= Σt P (c | do(t)) P (t | s)!

= Σs′ Σt P (c | t,  s′)  P (s′) P(t |s)!

= Σs′ Σt P (c | t,  s′)  P (s′ | do(t)) P(t |s)!

Probability Axioms!

Probability Axioms!

Rule 2!

Rule 2!

Rule 3!

Rule 3!

Rule 2!

Genotype  (Unobserved)!

P (c | do(s))   

TECHNICAL NOTE.  
THE IDENTIFIABILITY PROBLEM!

M1	



M2	



P1(V) = P2(V)	

 Q1 = Q2	



  (i.e., ∃ f , f : P(v) → P(y | do(x)))  

  

ID PROBLEM (decision): Given two models M1 and M2 compatible 
with G that agree on the observable distribution over V, P1(v) = P2(v), 
decide whether they also agree in the target quantity Q = P(y | do(x)), 
i.e., whether the effect P(y | do(x)) is identifiable from G and P(v). !
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WHAT CAN EXPERIMENTS ON DIET REVEAL ABOUT THE 
EFFECT OF CHOLESTEROL ON HEART ATTACK?!

Measured: 
  

  Observational study: P(x, y, z) 	


  Experimental study:  P(x, y | do(z))	


  
  
 

Needed: Q = P(y | do(x)) = ?  !
P(x, y | do(z)) 	


P(x | do(z)) 	



 
  

Z:  Diet 
X:  Cholesterol level  
Y:  Heart Attack 
    !

  (i.e., ∃ f , f : P(v), P(v | do(z)) → P(y | do(x))) 	



=!

G:!

X!

Y!

Z!

OUTLINE!
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  * The do-calculus  
  

Capabilities:  
  

  * Policy evaluation  
  * Transportability 
  * Mediation 
  * Missing Data!

SUMMARY OF  
POLICY EVALUATION RESULTS!

•  The estimability of any expression of the form 
       

	

 Q = P(y1, y2, …, yn | do(x1, x2,…,xm), z1,z2,…,zk) 	


  

can be determined given any causal graph G containing  
measured and unmeasured variables. 

 
•  If Q is estimable, then its estimand can be derived in  

polynomial time (by estimable we mean either from 
observational or from experimental studies.)!

 
•  The algorithm is complete. 

•  The causal calculus is complete for this task. 
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PROBLEM 2. GENERALIZABILITY  AMONG  
POPULATIONS  BREAK  (TRANSPORTABILITY) 

Question:  
  
Is it possible to predict the effect of X on Y in a 
certain population ∏*, where no experiments can 
be conducted, using experimental data learned 
from a different population ∏?  
 
Answer: Sometimes yes.   
 

HOW THIS PROBLEM IS SEEN IN OTHER SCIENCES? 
(e.g., external validity, meta-analysis, ...) 

 

•  Extrapolation across studies requires “some understanding 
of the reasons for the differences.” (Cox, 1958)  

  

•  “`External validity’ asks the question of generalizability: To 
what populations, settings, treatment variables, and 
measurement variables can this effect be generalized?” 
(Shadish, Cook and Campbell, 2002) 

 !
 
  
  

•  “An experiment is said to have “external validity” if the  
distribution of outcomes realized by a treatment group is the 
same as the distribution of outcome that would be realized 
in an actual program.” (Manski, 2007) 
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MOVING FROM THE “LAB” TO  
THE “REAL WORLD” ... 

Lab!

Real world!

H1!

H2!

X Y

Z

W

X! Y!

Z!

W!

Everything is assumed 
to be the same, trivially 
transportable!!

Everything is assumed 
to be different, not 
transportable...!X! Y!

Z!

W!

MOTIVATION  
WHAT CAN EXPERIMENTS IN LA TELL ABOUT NYC? 

Experimental study in LA 
Measured: 
 
     
  

Needed: 

P(x, y, z)
P(y | do(x), z)

P*(y | do(x)) =   ?

Observational study in NYC 
Measured: P*(x, y, z)

P*(z) ≠ P(z)

X  
(Intervention) 

Y 
 (Outcome) 

Z  (Age) 

= P(y | do(x), z)P*(z)
z
∑

Transport Formula (calibration): R =  

∏

F(P,Pdo,P*)

R: Π (LA)         Π* (NY)!

X 

TRANSPORT  FORMULAS  DEPEND   
ON  THE  CAUSAL  STORY 

a)  Z represents age 
 
     

b)  Z represents language skill 
 

     

c)  Z represents a bio-marker  
 

P*(y | do(x)) = P(y | do(x), z)P*(z)
z
∑

P*(y | do(x)) =

X Y 
Z 

(b) 

S 

(a) 
X Y 

(c) 
Z 

S 

P(y | do(x))

P(y | do(x), z)P*(z | x )
z
∑P*(y | do(x)) =

Y 

Z S 

fz (uz ) = f *
z
(uz )

fw(x,uw ) = f *
w
(x,uw )

fx (z,ux ) ≠ f *
w
(z,ux )

fy(w, z,uy ) ≠ f *
y
(w, z,uy )

SEMANTICS  FOR  TRANSPORTABILITY  
SELECTION  DIAGRAMS!

(G* )!

X! Y!

Z!

W!

X! Y!

Z!

W!

S1! S2!

(G)!

X! Y!W!

Z!

•   How to encode disparities and commonalities about domains?!

(D )!

TRANSPORTABILITY 
REDUCED  TO  CALCULUS 

Theorem 
A causal relation R is transportable from ∏ to ∏* if  and  
only if it is reducible, using the rules of do-calculus,  
to an expression in which S is separated from do( ).  

R *∏( )= P*(y | do(x)) = P(y | do(x), s)
= P(y | do(x), s,w)P(w | do(x), s)
w
∑

= P(y | do(x),w)P(w | s)
w
∑

= P(y | do(x),w)P*(w)
w
∑ X Y 

Z 
S 

W 

S '
U 

W 

RESULT:  ALGORITHM  TO  DETERMINE 
IF  AN  EFFECT  IS  TRANSPORTABLE 

X Y Z 

V 

S 
T 

INPUT:  Annotated Causal Graph 
 
   
OUTPUT: 
1.  Transportable or not? 
2.  Measurements to be taken in the 

experimental study 
3.  Measurements to be taken in the 

target population 
4.  A transport formula 
5.  Completeness (Bareinboim, 2012) 

S        Factors creating differences 

P*(y | do(x)) =
P(y | do(x), z) P *(z |w)

w
∑

z
∑ P(w | do(w),t)P *(t)

t
∑
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X! Y!

(f)!
Z!

S!

X! Y!

(d)!
Z!

S!

W!

WHICH  MODEL  LICENSES  THE  TRANSPORT  
OF  THE  CAUSAL  EFFECT  X→Y!

(c)!
X! Y!Z!

S!

Y!

(e)!
Z!

S!

W! Y!Z!

S!

W!X! Y!Z!

S!

W!

(b)!
Y!X!

S!

(a)!
Y!X!

S!

S       External factors creating disparities!

Yes! Yes!No!

Yes! No!Yes!

FROM  META-ANALYSIS 
TO  META-SYNTHESIS!

The problem  
  
How to combine results of several experimental and 
observational studies, each conducted on a 
different population and under a different set of 
experimental conditions, so as to construct an 
aggregate measure of effect size that is "better" 
than any one study in isolation.  
 !

X Y 

(f) Z 

W 

X Y 

(b) Z 

W X Y 

(c) Z 
S 

W X Y 

(a) Z 

W 

X Y 

(g) Z 

W 

X Y 

(e) Z 

W 

S S 

X Y 

(h) Z 

W X Y 

(i) Z 
S 

W 

S 

X Y 

(d) Z 

W 

∏*

META-SYNTHESIS  AT  WORK 
Target population                 R = P*(y | do(x)) 

SUMMARY OF  
TRANSPORTABILITY RESULTS!

•  Nonparametric transportability of experimental results 
from multiple environments and limited experiments 
can be determined provided that commonalities and 
differences are encoded in selection diagrams. 

•  When transportability is feasible, the transport formula 
can be derived in polynomial time.   

•  The algorithm is complete.  

•  The causal calculus is complete for this task.  
 

OUTLINE!

Concepts:  
  

  * Causal inference ⎯ a paradigm shift  
  * The two fundamental laws 
 

Basic tools: 
  

  * Graph separation  
  * The truncated product formula  
  * The back-door adjustment formula 
  * The do-calculus  
  

Capabilities:  
  

  * Policy evaluation  
  * Transportability 
  * Mediation 
  * Missing Data!

MEDIATION:   
A  GRAPHICAL-COUNTERFACTUAL   

SYMBIOSIS 
1.  Why decompose effects? 

2.  What is the definition of direct and indirect 
effects? 

3.  What are the policy implications of direct and 
indirect effects? 

4.  When can direct and indirect effect be estimated 
consistently from experimental and 
nonexperimental data? 
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WHY  DECOMPOSE  EFFECTS? 

1.  To understand how Nature works 

2.  To comply with legal requirements  

3.  To predict the effects of new type of  

interventions:  deactivate a mechanism,  

rather than fix a variable 

X Z 

Y 

LEGAL  IMPLICATIONS 
OF  DIRECT  EFFECT 

What is the direct effect of X on Y ? 
 
 
(z-dependent) 

(Qualifications) 

(Hiring) 

(Gender) 

Can data prove an employer guilty of hiring discrimination? 

Adjust for Z?  No! No! 
 E(Y |do(x1),do(z))− E(Y |do(x0 ),do(z))

Identification is completely solved (Tian & Shpitser 2006) 

(CDE) 

z = f (x, u) 
y = g (x, z, u) 

X Z 

Y 

NATURAL  INTERPRETATION  OF 
AVERAGE  DIRECT  EFFECTS 

Natural Direct Effect of X on Y: 
The expected change in Y, when we change X from x0 to 
x1 and, for each u, we keep Z constant at whatever value 
it attained before the change. 
 
 
In linear models, DE = Controlled Direct Effect 

][ 001 xZx YYE x −

Robins and Greenland (1992) – Pearl (2001) 

)( 01 xx −= β

DE(x0, x1;Y )

z = f (x, u) 
y = g (x, z, u) 

X Z 

Y 

DEFINITION  OF 
INDIRECT  EFFECTS 

Indirect Effect of X on Y: 
The expected change in Y when we keep X constant, say 
at x0, and let Z change to whatever value it would have 
attained had X changed to x1.  
 
 
In linear models, IE = TE - DE  

][ 010 xZx YYE x −

);,( 10 YxxIE

No controlled indirect effect 

POLICY  IMPLICATIONS   
OF  INDIRECT  EFFECTS 

    f     

GENDER QUALIFICATION 

HIRING 

What is the indirect effect of X on Y? 

The effect of Gender on Hiring if sex discrimination 
is eliminated. 

X	

 Z	



Y	



IGNORE 

Deactivating a link – a new type of intervention 

THE  MEDIATION  FORMULAS 
IN  UNCONFOUNDED  MODELS   

X 

Z 

Y 

Fraction of responses explained by mediation 
(sufficient) 

Fraction of responses owed to mediation 
(necessary) 

z = f (x, u1) 
y = g (x, z, u2) 
u1 independent of u2 

TE − DE =

DE = [E(Y | x1, z)− E(Y | x0, z)]P(z | x0 )
z
∑

IE = [E(Y | x0, z)[P(z | x1)− P(z | x0 )
z
∑ ]

TE = E(Y | x1)− E(Y | x0 )
IE =

TE ≠ DE + IE
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THE  MEDIATION  FORMULAS 
IN  UNCONFOUNDED  MODELS   

X 

Z 

Y 

z = f (x, u1) 
y = g (x, z, u2) 
u1 independent of u2 

Complete identification conditions for confounded models 
with multiple mediators. 

DE = [E(Y | x1, z)− E(Y | x0, z)]P(z | x0 )
z
∑

IE = [E(Y | x0, z)[P(z | x1)− P(z | x0 )
z
∑ ]

TE = E(Y | x1)− E(Y | x0 ) TE ≠ DE + IE

X Y 

WEAKER  AND  TRANSPARENT CONDITIONS  
FOR  NDE  IDENTIFICATION 

M 

(a) (b) 

W  (confounder) 

There exists a set W such that: 
A-1  No member of W is a descendant of X. 
A-2  W blocks all back-door paths from M to Y, 

 disregarding the one through X. 
A-3  The W -specific effect of X on M is identifiable. 

    P(m | do(x),w)	


A-4  The W–specific effect of {X, M} on Y is identifiable. 

    P(y | do(x,m),w)	


 
 

No confounding 

X Y 

M 

T	

 Y	


W3	



W2	


W1	



Y	


W2	



M	



Y	

T	


W3	



(b) (a) (c) 

(e) (d) (f) 

WHEN  CAN  WE  IDENTIFY 
MEDIATED  EFFECTS? 

M	


W2	



W3	



M	



Y	

T	



W2	



M	



Y	



W2	



T	


W3	



M	



T	


W3	



M	



Y	



W2	



T	


W3	



T	

 Y	


W3	



W2	


W1	



Y	


W2	



M	



Y	

T	


W3	



(b) (a) (c) 

(e) (d) (f) 

WHEN  CAN  WE  IDENTIFY 
MEDIATED  EFFECTS? 

M	


W2	



W3	



M	



Y	

T	



W2	



M	



Y	



W2	



T	


W3	



M	



T	


W3	



M	



Y	



W2	



T	


W3	



SUMMARY OF  RESULTS  ON  
MEDIATION 

•  Ignorability is not required for identifying natural effects 

•  The nonparametric estimability of natural (and 
controlled) direct and indirect effects can be determined 
in polynomial time given any causal graph G with both 
measured and unmeasured variables. 

•  If NDE (or NIE) is estimable, then its estimand can be 
derived in polynomial time. 

•  The algorithm is complete and was extended to any 
path-specific effect by Shpitser (2013). 

OUTLINE!

Concepts:  
  

  * Causal inference ⎯ a paradigm shift  
  * The two fundamental laws 
 

Basic tools: 
  

  * Graph separation  
  * The truncated product formula  
  * The back-door adjustment formula 
  * The do-calculus  
  

Capabilities:  
  

  * Policy evaluation  
  * Transportability 
  * Mediation 
  * Missing Data!
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MISSING  DATA:   
A  CAUSAL  INFERENCE  PERSPECTIVE   

(Mohan, Pearl & Tian 2013) 

•  Pervasive in every experimental science. 
   

•  Huge literature, powerful software industry, 
deeply entrenched culture. 

 

•  Current practices are based on statistical 
characterization (Rubin, 1976) of a problem 
that is inherently causal. 

 

•  Needed:  (1) theoretical guidance,                 
(2) performance guarantees, and (3) tests of 
assumptions. 

WHAT  CAN  CAUSAL  THEORY 
DO  FOR  MISSING  DATA? 

 
Q-1. What should the world be like, for a given 
statistical procedure to produce the expected result? 
  

Q-2. Can we tell from the postulated world whether any 
method can produce a bias-free result?  How? 
  

Q-3. Can we tell from data if the world does not 
work as postulated? 
 

•  To answer these questions, we need models of the 
world,  i.e., process models. 

•  Statistical characterization of the problem is too 
crude, e.g., MCAR, MAR, MNAR. 

recoverable non-recoverable 

testable 
untestable 

Graphical Models for Inference With Missing Data 
Karthika Mohan, Judea Pearl and Jin Tian 

Distribution  with missing values 

Graph depicting the missingness process 

Observed proxy of Z 
 Z* 

Treatment 

Discomfort 
      

Outcome 

Cause of missingness 
in Z 

 Z 

 X 
 

Y 

RZ 

X Y Z* RZ P(Z*,X,Y,RZ) 

0 0 0 0 0.01 

0 0 1 0 0.21 

0 1 0 0 0.01 

0 1 1 0 0.04 

1 0 0 0 0.02 

1 0 1 0 0.20 

1 1 0 0 0.05 

1 1 1 0 0.08 

0 0 m 1 0.01 

0 1 m 1 0.02 

1 0 m 1 0.30 

1 1 m 1 0.05 

(From Mohan et al., NIPS-2013)    
          

Recoverability of Query (Q) 
A given query Q is termed recoverable if in the limit of large 
samples a consistent estimate of  Q can be computed given 
both data  and graph, as if no data were missing. 

 Z* 

Treatment 

Discomfort 
      

Outcome 

 Z 

 X 
 

Y 

RZ 

ܳ = ܲ ܺ,ܻ,ܼ  
  = ܲ ܼ ܺ,ܻ ܲ(ܺ,ܻ) 

     = ܲ ܼ ܴܼ = 0,ܺ,ܻ ܲ(ܺ,ܻ) 
     = ܲ ܼ   ܴܼ = 0,ܺ,ܻ ܲ(ܺ,ܻ) 

  X,Y | ࢆܴ     ܼ
d-separation 
•   

Is Q=P(X,Y,Z) recoverable? 

 *   

Recoverability of Query (Q) 
A given query Q is termed recoverable if in the limit of large 
samples a consistent estimate of  Q can be computed given 
both data  and graph, as if no data were missing. 

 Z* 

Treatment 

Discomfort 
      

Outcome 

 Z 

 X 
 

Y 

RZ 

ܳ = ܲ ܺ,ܻ,ܼ  
  = ܲ ܼ ܺ,ܻ ܲ(ܺ,ܻ) 

     = ܲ ܼ ܴܼ = 0,ܺ,ܻ ܲ(ܺ,ܻ) 
     = ܲ ܼ   ܴܼ = 0,ܺ,ܻ ܲ(ܺ,ܻ) 

  X,Y | ࢆܴ     ܼ
d-separation 
•   

Is Q=P(X,Y,Z) recoverable? 

 *   

 z ⊥⊥ x | y w ⊥⊥ xy | z   ⇒   x ⊥⊥ wz | y

WHY  GRAPHS? 

1.  Match the organization of human 
 knowledge 

1a.  Guard veracity of assumptions  
1b.  Assure transparency of assumptions 
1c.  Assure transparency of their logical 

 ramifications 
 

2.      Blueprints for simulation 
3.  Unveil testable implications 

x	

 y	

 z	

 w	


Recoverability 
Given a missingness model G and data D, when is a 
quantity Q estimable from D without bias?  
  

Non-recoverability 
Theoretical impediment to any estimation strategy 
 

Testability 
Given a model G, when does it have testable implications 
(refutable by some partially-observed data D' )?   
   

What is known about Recoverability and Testability? 

 RECOVERABILITY  AND  TESTABILITY 

MCAR	

 recoverable almost testable 
MAR	

 recoverable uncharted 
MNAR	

 uncharted uncharted 
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P(X)

P(X |Y )

P(X,Y ,Z )

P(X,Y ,Z )

Z	



Y	

X	



RX	

 RY	



Z	

 Y	


X	



RZ	

 RY	



(a) 

(g) 

RX	



(d) 

Y	

X	



RX	

 RY	



IS  P(X,Y)  RECOVERABLE? 

Y	

X	



RX	

 RY	



Y	

X	



RX	

 RY	



Z	

 Y	


X	



RY	

 RX	

RZ	



X	

 Y	


Z	



RX	

 RY	

RZ	



Y	

X	



RX	

 RY	



Y	

X	



RX	


(b) (c) 

(e) (f) 

(h) (i) 

  

  

  

  

RY	



WHAT  IF  WE  DON’T  HAVE   
THE GRAPH? 

1.  Constructing the graph requires less knowledge than 
deciding whether a problem lies in MCAR, MAR or 
MNAR. 

2.  Understanding what the world should be like for a 
given procedure to work is a precondition for deciding 
when model's details are not necessary. 
(no universal estimator) 

3.  Knowing whether non-convergence is due to 
theoretical impediment or local optima, is extremely 
useful. 

4.  Graphs unveil when a model is testable. 

CONCLUSIONS CONCLUSIONS 

 
1.  Think nature, not data, not even experiment. 

2.  Think hard, but only once – the rest is 
mechanizable. 

 
3.  Speak a language in which the veracity of each 

assumption can be judged by users, and which 
tells you whether any of those assumptions can 
be refuted by data. 

Thank you 
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