CAUSES AND COUNTERFACTUALS: CONCEPTS, PRINCIPLES AND TOOLS

Judea Pearl Elias Bareinboim University of California, Los Angeles {judea, eb}@cs.ucla.edu

NIPS 2013 Tutorial

OUTLINE

Concepts:

- * Causal inference a paradigm shift
- * The two fundamental laws

Basic tools:

- * Graph separation
- * The truncated product formula
- * The back-door adjustment formula
- * The do-calculus

Capabilities:

- * Policy evaluation
- * Transportability
- * Mediation
- * Missing Data

WHAT KIND OF QUESTIONS SHOULD THE NEW ORACLE ANSWER THE CAUSAL HIERARCHY • Observational Questions:

- "What if we see A" Bayes Networks • Action Questions:
- "What if we do A?" Causal Bayes Networks
- Counterfactuals Questions: Functional Causal "What if we did things differently?" Diagrams
- Options: "With what probability?"

GRAPHICAL REPRESENTATIONS

FROM STATISTICAL TO CAUSAL ANALYSIS: 2. THE SHARP BOUNDARY 1. Causal and associational concepts do not mix. CAUSAL ASSOCIATIONAL Spurious correlation Regression

Spurious correlation Randomization / Intervention "Holding constant" / "Fixing" Confounding / Effect Instrumental variable Collapsibility / Granger causality Ignorability / Exogeneity Propensity score 2.

THE NEW ORACLE: STRUCTURAL CAUSAL MODELS THE WORLD AS A COLLECTION OF SPRINGS

Definition: A structural causal model is a 4-tuple $\langle V,U, F, P(u) \rangle$, where

- $V = \{V_1, ..., V_n\}$ are endogenous variables
- $U = \{U_1, ..., U_m\}$ are background variables
- $F = \{f_1, ..., f_n\}$ are functions determining V,
- $v_i = f_i(v, u)$ e.g., $y = \alpha + \beta x + u_Y$ Not regression!!!! • P(u) is a distribution over U

P(u) and F induce a distribution P(v) over observable variables

- * Mediation
- * Missing Data

FIRST LAYER OF THE CAUSAL HIERARCHY

PROBABILITIES (What if I see X=x?)

OUTLINE Concepts: * Causal inference – a paradigm shift * The two fundamental laws Basic tools: * Graph separation * The truncated product formula * The back-door adjustment formula * The do-calculus Capabilities: * Policy evaluation

- * Transportability
- * Mediation
- * Missing Data

TOOL 2. TRUNCATED FACTORIZATION PRODUCT (OPERATIONALIZING INTERVENTIONS) Corollary (Truncated Factorization, Manipulation Thm., G-comp.): The distribution generated by an intervention do(X=x)(in a Markovian model *M*) is given by the truncated factorization: $P(v_1, v_2, \dots, v_n \mid do(x)) = \prod_{i \mid V_i \notin X} P(v_i \mid pa_i)$ X = x

NO FREE LUNCH: ASSUMPTIONS ENCODED IN CBNs

Definition (Causal Bayesian Network):

P(v): observational distribution

 $P(v \mid do(x))$: experimental distribution

P*: set of all observational and experimental distributions

A DAG G is called a Causal Bayesian Network compatible with P* if and only if the following three conditions hold for every $P(v \mid do(x)) \in P^*$:

i. $P(v \mid do(x))$ is Markov relative to G;

- *ii.* $P(v_i | do(x)) = 1$, for all $V_i \in X$;
- *iii*. $P(v_i | pa_i, do(x)) = P(v_i | pa_i)$, for all $V_i \notin X$.

OUTLINE

Concepts:

- * Causal inference a paradigm shift * The two fundamental laws

Basic tools:

- * Graph separation
- * The truncated product formula
- * The back-door adjustment formula
- * The do-calculus

Capabilities:

- * Policy evaluation
- * Transportability
- * Mediation
- * Missing Data

Concepts: * Causal inference – a paradigm shift * The two fundamental laws * The two fundamental laws Basic tools: * Graph separation * The truncated product formula * The back-door adjustment formula * The do-calculus * The do-calculus Capabilities: * Policy evaluation * Transportability * Mediation * Missing Data * Missing Data

TOOL 3. CAUSAL CALCULUS (IDENTIFIABILITY REDUCED TO CALCULUS)	
The following transformations are valid for every interventional distribution generated by a structural causal model <i>M</i> :	
Rule 1: Ignoring observations P(y do(x), z, w) = P(y do(x), w),	$\text{if } (Y \perp\!\!\!\perp Z \!\mid\! X, W)_{G_{\overline{X}}}$
Rule 2: Action/observation exchange $P(y do(x), do(z), w) = P(y do(x), z, w),$	$\text{if } (Y \perp\!\!\!\perp Z \!\mid\! X, W)_{G_{\overline{X}Z}}$
Rule 3: Ignoring actions $P(y \mid do(x), do(z), w) = P(y \mid do(x), w),$	if $(Y \perp \!\!\!\perp Z \mid X, W)_{C_{\overline{XZ(W)}}}$

SUMMARY OF POLICY EVALUATION RESULTS

· The estimability of any expression of the form

 $Q = P(y_1, y_2, \dots, y_n | do(x_1, x_2, \dots, x_m), z_1, z_2, \dots, z_k)$

can be determined given any causal graph *G* containing measured and unmeasured variables.

- If Q is estimable, then its estimand can be derived in polynomial time (by estimable we mean either from observational or from experimental studies.)
- · The algorithm is complete.
- · The causal calculus is complete for this task.

OUTLINE

Concepts:

- * Causal inference a paradigm shift * The two fundamental laws
-

Basic tools:

- * Graph separation
- * The truncated product formula
- * The back-door adjustment formula
- * The do-calculus

Capabilities:

- * Policy evaluation
- * Transportability
- * Mediation * Missing Data

PROBLEM 2. GENERALIZABILITY AMONG POPULATIONS BREAK (TRANSPORTABILITY)

Question:

Is it possible to predict the effect of X on Y in a certain population \prod^* , where no experiments can be conducted, using experimental data learned from a different population $\prod^?$

Answer: Sometimes yes.

HOW THIS PROBLEM IS SEEN IN OTHER SCIENCES? (e.g., external validity, meta-analysis, ...)

- Extrapolation across studies requires "some understanding of the reasons for the differences." (Cox, 1958)
- "`External validity' asks the question of generalizability: To what populations, settings, treatment variables, and measurement variables can this effect be generalized?" (Shadish, Cook and Campbell, 2002)
- "An experiment is said to have "external validity" if the distribution of outcomes realized by a treatment group is the same as the distribution of outcome that would be realized in an actual program." (Manski, 2007)

FROM META-ANALYSIS TO META-SYNTHESIS

The problem

How to combine results of several experimental and observational studies, each conducted on a different population and under a different set of experimental conditions, so as to construct an aggregate measure of effect size that is "better" than any one study in isolation.

SUMMARY OF TRANSPORTABILITY RESULTS

- Nonparametric transportability of experimental results from multiple environments and limited experiments can be determined provided that commonalities and differences are encoded in selection diagrams.
- When transportability is feasible, the transport formula can be derived in polynomial time.
- The algorithm is complete.
- · The causal calculus is complete for this task.

OUTLINE

Concepts:

* Causal inference – a paradigm shift * The two fundamental laws

Basic tools:

- * Graph separation
- * The truncated product formula
- * The back-door adjustment formula
- * The do-calculus

Capabilities:

- * Policy evaluation
- * Transportability
- * Mediation
- * Missing Data

MEDIATION: A GRAPHICAL-COUNTERFACTUAL SYMBIOSIS

- 1. Why decompose effects?
- 2. What is the definition of direct and indirect effects?
- 3. What are the policy implications of direct and indirect effects?
- 4. When can direct and indirect effect be estimated consistently from experimental and nonexperimental data?

SUMMARY OF RESULTS ON MEDIATION

- · Ignorability is not required for identifying natural effects
- The nonparametric estimability of natural (and controlled) direct and indirect effects can be determined in polynomial time given any causal graph *G* with both measured and unmeasured variables.
- If NDE (or NIE) is estimable, then its estimand can be derived in polynomial time.
- The algorithm is complete and was extended to any path-specific effect by Shpitser (2013).

OUTLINE

Concepts:

* Causal inference – a paradigm shift * The two fundamental laws

Basic tools:

- * Graph separation
- * The truncated product formula
- * The back-door adjustment formula
- * The do-calculus

Capabilities:

- * Policy evaluation
- * Transportability
- * Mediation
- * Missing Data

MISSING DATA: A CAUSAL INFERENCE PERSPECTIVE (Mohan, Pearl & Tian 2013)

- · Pervasive in every experimental science.
- Huge literature, powerful software industry, deeply entrenched culture.
- Current practices are based on statistical characterization (Rubin, 1976) of a problem that is inherently causal.
- Needed: (1) theoretical guidance,
 (2) performance guarantees, and (3) tests of assumptions.

WHAT IF WE DON'T HAVE THE GRAPH?

- 1. Constructing the graph requires less knowledge than deciding whether a problem lies in MCAR, MAR or MNAR.
- 2. Understanding what the world should be like for a given procedure to work is a precondition for deciding when model's details are not necessary. (no universal estimator)
- 3. Knowing whether non-convergence is due to theoretical impediment or local optima, is extremely useful.
- 4. Graphs unveil when a model is testable.

CONCLUSIONS

- 1. Think nature, not data, not even experiment.
- 2. Think hard, but only once the rest is mechanizable.
- 3. Speak a language in which the veracity of each assumption can be judged by users, and which tells you whether any of those assumptions can be refuted by data.

Thank you

TUTORIAL BIBLIOGRAPHY

- J. Pearl (2009). Causality: Models, Reasoning, and Inference, NY: Cambridge University Press. J. Pearl, (2009). "Causal inference in statistics: An overview," Statistics Surveys, or causal inference in statistics: An overview," Statistics Surveys, or causal inference in statistics: An overview, "Statistics Surveys, or causal inference in statistics: An overview," Statistics Surveys, or causal inference in statistics: An overview, "Statistics Surveys, or causal inference, and the statistics: An overview," Statistics Surveys, or causal inference, and the statistics: An overview, "Statistics Surveys, or causal inference, and the statistics: An overview," Statistics Surveys, or causal inference, and the statistics: An overview, "Statistics Surveys, or causal inference, and the statistics: An overview, "Statistics Surveys, or causal inference, and the statistics: An overview," Statistics Surveys, or causal inference, and the statistics: An overview, "Statistics Surveys, or causal inference, and the statistics: An overview," Statistics Surveys, or causal inference, and the statistics: An overview, "Statistics Surveys, or causal inference, and the statistics: An overview," Statistics Surveys, or causal inference, and the statistics: An overview, "Statistics Surveys, or causal inference, and the statistics: An overview," Statistics Surveys, or causal inference, and the statistics: An overview, "Statistics Surveys, and the statistics: An overview, "Statistics Surveys, and the statistics: An overview," Statistics Surveys, and the statistics: An overview, "Statistics Surveys, and the statistics: An overview, "Statistics", and the statistics: An overview, "Statistics", and the statistics: An overview, "Statistics", and "St
- 3:96-146 J. Pearl & E. Bareinboim (2013). "External validity: From *do*-calculus to transportability
- J. Pearl & E. Bareinboim (2013). "External validity: From do-calculus to transportability across populations," UCLA Computer Science Department, Technical Report R-400. Submitted to Statistical Science. J. Pearl (2013). "The mathematics of causal inference," UCLA Computer Science Department, Technical Report R-416. Forthcoming, Proceedings of the Joint Statistical Meetings Conference.
- Meetings Conference. K. Mohan, J. Pearl, & J. Tian (2013). "Graphical models for inference with missing data," UCLA Computer Science Department, Technical Report R-410. J. Pearl (2013). "Interpretation and identification of causal mediation," UCLA Computer Science Department, Technical Report R-398. Forthcoming, *Psychological Methods*. P. Spirtes, C.N. Glymour, & R. Scheines (2000). *Causation, Prediction, and Search*, who for the Construction MIX Department.

- P Spirtes, C.N. Glymour, & R. Scheines (2000). Causation, Prediction, and Search, 2nd Edition. Cambridge, MA: MIT Press. J. Tian & I. Shpitser (2010). "On identifying causal Effects," In R. Dechter, H. Geffner and J.Y. Halpern (Eds.), Heuristics, Probability, and Causality: A Tribute to Judea Pearl. UK: College Publications, pp. 415-444, F. Elwert (2013). http://www.scs.wisc.edu/-felwert/Causality/ R.J.A. Little & D.B. Rubin (2002). Statistical Analysis and Missing Data. NY: Wiley.