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Finally, certain concepts that are ubiquitous in human discourse can be defined only
in the Laplacian framework. We shall see, for example, that such simple concepts as “the
probability that event B occured because of event A” and “the probability that event B
would have been different if it were not for event A” cannot be defined in terms of purely
stochastic models. These so-called counterfactual concepts will require a synthesis of
the deterministic and probabilistic components embodied in the Laplacian model.

1.4.1 Structural Equations

In its general form, a functional causal model consists of a set of equations of the form
x;i = fipag uy), i=1,....n, (1.40)

where pa; (connoting parents) stands for the set of variables that directly determine the
value of X; and where the U, represent errors (or “disturbances”) due to omitted fac-
tors. Equation (1.40) is a nonlinear, nonparametric generalization of the linear structural
equation models (SEMs)

_Xl- = Eaikxk + I/ll', 1= 1,...,I’l, (141)
k#1

which have become a standard tool in economics and social science (see Chapter 5 for a
detailed exposition of this enterprise). In linear models, pa; corresponds to those vari-
ables on the r.h.s. of (1.41) that have nonzero coefficients.

The interpretation of the functional relationship in (1.40) is the standard interpreta-
tion that functions carry in physics and the natural sciences; it is a recipe, a strategy, or
a law specifying what value nature would assign to X; in response to every possible value
combination that (PA;, U;) might take on. A set of equations in the form of (1.40) and in
which each equation represents an autonomous mechanism is called a structural model,
if each variable has a distinct equation in which it appears on the left-hand side (called
the dependent variable), then the model is called a structural causal model or a causal
model for short.! Mathematically, the distinction between structural and algebraic
equations is Hhat-any—subset-sistructural-equationstis—intselavalidstructural-mede

To illustrate, Figure 1.5 depicts a canonical econometric model relating price and de-
mand through the equations

q = blp + dll + Ui, (142)
p = b2q + de + Uy, (143)

where Q is the quantity of household demand for a product A, P is the unit price of prod-
uct A, I is household income, W is the wage rate for producing product A, and U, and

cannot be ignored when the meaning of the concept is in question. Indeed, compliance with hu-
man intuition has been the ultimate criterion of adequacy in every philosophical study of causation,
and the proper incorporation of background information into statistical studies likewise relies on
accurate interpretation of causal judgment.

13 Formal treatment of causal models, structural equations, and error terms are given in Chapter 5
(Section 5.4.1) and Chapter 7 (Sections 7.1 and 7.2.5).

the formers change meaning under solution-preserving algebraic operation, such as moving terms
from one side of an equation to the other.
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P(admission | aa\le,@t) — P(admission | female, @t)

with some average of this difference over all departments. This average should measure
the increase in admission rate in a hypothetical experiment in which we instruct all
female candidates to retain their department preferences but change their gender identi-
fication (on the application form) from female to male.

Conceptually, we can define the average direct effect DE, /(Y) as the expected
change in Y induced by changing X from x to x" while keeping all mediating factors con-
stant at whatever value they would have obtained under do(x). This hypothetical change,
which Robins and Greenland (1991) called “pure” and Pearl (2001c) called “natural,” is
precisely what lawmakers instruct us to consider in race or sex discrimination cases:
“The central question in any employment-discrimination case is whether the employer
would have taken the same action had the employee been of a different race (age, sex,
religion, national origin etc.) and everything else had been the same.” (In Carson versus
Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir. (1996)).

Using the parenthetical notation of equation 3.51, Pearl (2001c) gave the following
definition for the “natural direct effect’:

DE, (Y) = E[(Y(x', Z(x))) — E(Y(x)]. (4.11)

Here, Z represents all parents of ¥ excluding X, and the expression Y(x’, Z(x)) represents
the value that ¥ would attain under the operation of setting X to x’ and, simultaneously,
setting Z to whatever value it would have obtained under the setting X = x. We see that
DE, ,/(Y), the natural direct effect of the transition from x to x', involves probabilities of
nested counterfactuals and cannot be written in terms of the do(x) operator. Therefore,
the natural direct effect cannot in general be identified, even with the help of ideal, con-
trolled experiments (see Robins and Greenland 1992 and Section 7.1 for intuitive expla-
nation). Pearl (2001c) has nevertheless shown that, if certain assumptions of “no con-
founding” are deemed valid,” the natural direct effect can be reduced to

DE, «(Y) = 2 [E(Y | do(x', z)) — E(Y | do(x, 2))] P(z | do(x)). 4.12)

zZ

The intuition is simple; the natural direct effect is the weighted average of controlled
direct effects, using the causal effect P(z | do(x)) as a weighing function. Under such
assumptions, the sequential back-door criteria developed in Section 4.4 for identifying

|DExx/is I control-specific plans, P(y | X1, Xy, ..., X,), become applicable.
: In particulaWdemiﬁable in Markovian modelseﬁj\through:

oToTIary 0, TO a

X,z w')] ‘P(z x,w) P() ’

DE,v(1)=Y [EY %' zw) — E(Y

Dol dafa)) N\ pro 2 N Dl N
Pie-doto)—2Peapax—bPpagr—"1">\ (4.13)

where W satisfies thé back-door criterion relative to both X—>Z and (X,Z2)>7Y. (See Pearl
(2001c¢) and Shpitser and vanderWeele (2011).)

9 One sufficient condition is that Z(x) 1L Y(x', z) | W holds for some set W of measured covariates.
See details and graphical criteria in Pearl (2001c, 2005a) and in Petersen et al. (2006).

A
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This model is as compact as (5.7)—(5.9) and is covariance equivalent to M with respect
to the observed variables X, Y, Z. Upon setting ' = «, 8’ = B, and 6 = -y, model M’
will yield the same probabilistic predictions as those of the model of (5.7)—(5.9). Still,
when viewed as data-generating mechanisms, the two models are not equivalent. Each
tells a different story about the processes generating X, Y, and Z, so naturally their pre-
dictions differ concerning the changes that would result from subjecting these processes
to external interventions.

5.3.3 Causal Effects: The Interventional Interpretation of Structural
Equation Models

The differences between models M and M’ illustrate precisely where the structural read-
ing of simultaneous equation models comes into play, and why even causally shy re-
searchers consider structural parameters more “meaningful” than covariances and other
statistical parameters. Model M’ defined by (5.12)—(5.14), regards X as a direct par-
ticipant in the process that determines the value of Y, whereas model M, defined by
(5.7)—(5.9), views X as an indirect factor whose effect on Y is mediated by Z. This dif-
ference is not manifested in the data itself but rather in the way the data would change in
response to outside interventions. For example, suppose we wish to predict the expecta-
tion of Y after we intervene and fix the value of X to some constant x; this is denoted
E(Y|do(X = x)). After X = x is substituted into (5.13) and (5.14), model M’ yields

E[Y |do(X = x)] = E[B'a’'x + B'ey + 6x + &3] (5.15)
= (B/a/ + 8))(; (516)
model M yields
E[Y|do(X = x)] = E[Bax + Be, + yu + &3] (5.17)
= Bax. (5.18)

Upon setting o’ = «, B = B, and 6 = 1y (as required for covariance equivalence; see
(5.10) and (5.11)), we see clearly that the two models assign different magnitudes to the
(total) causal effect of X on Y: model M predicts that a unit change in x will change
E(Y) by the amount B«, whereas model M’ puts this amount at Ba + 4.

At this point, it is tempting to ask whether we should substitute x —)\.—31 for u in (5.9)
prior to taking expectations in (5.17). If we permit the substitution of (5.8) into (5.9), as
we did in deriving (5.17), why not permit the substitution of (5.7) into (5.9) as well? Af-
ter all (the argument runs), there is no harm in upholding a mathematical equality, u =
X — &1, that the modeler deems valid. This argument is fallacious, however." Structural
equations are not meant to be treated as immutable mathematical equalities. Rather, they
are meant to define a state of equilibrium — one that is violated when the equilibrium is
perturbed by outside interventions. In fact, the power of structural equation models is

15 Such arguments have led to Newcomb’s paradox in the so-called evidential decision theory (see
Section 4.1.1).
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that they encode not only the initial equilibrium state but also the information necessary
for determining which equations must be violated in order to account for a new state of
equilibrium. For example, if the intervention consists merely of holding X constant at
X, then the equation x = u + &, which represents the preintervention process determin-
ing X, should be overruled and replaced with the equation X = x. The solution to the
new set of equations then represents the new equilibrium. Thus, the essential character-
istic of structural equations that sets them apart from ordinary mathematical equations is
that the former stand not for one but for many sets of equations, each corresponding to
a subset of equations taken from the original model. Every such subset represents some
hypothetical physical reality that would prevail under a given intervention.

If we take the stand that the value of structural equations lies not in summarizing dis-
tribution functions but in encoding causal information for predicting the effects of policies
(Haavelmo 1943; Marschak 1950; Simon 1953), it is natural to view such predictions as
the proper generalization of structural coefficients. For example, the proper generaliza-
tion of the coefficient B in the linear model M would be the answer to the control query,
“What would be the change in the expected value of Y if we were to intervene and change
the value of Z from z to z + 1?”, which is different, of course, from the observational
query, “What would be the difference in the expected value of Y if we were to find Z
at level z + 1 instead of level z?” Observational queries, as we discussed in Chapter 1,
can be answered directly from the joint distribution P(x, y, z), while control queries re-
quire causal information as well. Structural equations encode this causal information in
their syntax by treating the variable on the left-hand side of the equality sign as the effect
and treating those on the right as causes. In Chapter 3 we distinguished between the two
types of queries through the symbol do(-). For example, we wrote

E(Y | do(x)) £ E[Y | do(X = x)] (5.19)
for the controlled expectation and
EY|x)£EY|X =x) (5.20)

for the standard conditional or observational expectation. That E(Y | do(x)) does not
equal E(Y | x) can easily be seen in the model of (5.7)—(5.9), where E(Y|do(x)) =
aBx but E(Y | x) = ryxx = (af + %) x. Indeed, the passive observation X = x should
not violate any of the equations, and this is the justification for substituting both (5.7) and
(5.8) into (5.9) before taking the expectation.

In linear models, the answers to questions of direct control are encoded in the path
(or structural) coefficients, which can be used to derive the total effect of any variable on
another. For example, the value of E(Y | do(x)) in the model defined by (5.7)—(5.9) is
afx, that is, x times the product of the path coefficients along the path X - Z — Y.
Computation of E(Y | do(x)) would be more complicated in the nonparametric case,
even if we knew the functions fi, f5, and f3. Nevertheless, this computation is well
defined; it requires the solution (for the expectation of Y) of a modified set of equations
in which f; is “wiped out” and X is replaced by the constant x:

z = fHx, &), (5.21)
y = f3(z, u, €3). (5.22)
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any sentence of the form P(A |B) < p, where A and B are Boolean expressions rep-
resenting events. A causal model, naturally, should encode the truth values of sentences
that deal with causal relationships; these include action sentences (e.g., “A will be true
if we do B”), counterfactuals (e.g., “A would have been different were it not for B”),
and plain causal utterances (e.g., “A may cause B” or “B occurred because of A”). Such
sentences cannot be interpreted in standard propositional logic or probability calculus be-
cause they deal with changes that occur in the external world rather than with changes in
our beliefs about a static world. Causal models encode and distinguish information about
external changes through an explicit representation of the mechanisms that are altered in
such changes.

Definition 7.1.1 (Causal Model)
A causal model is a triple

M= {UV,F),
where:

(i) U is a set of background variables, (also called exogenous),2 that are deter-
mined by factors outside the model;

(i) Visa set {Vy, Va,..., V,} of variables, called endogenous, that are determined
by variables in the model — that is, variables in U U V; and

(i) F is a set of functions {fi, f»,..., f} such that each f; is a mapping from (the
respective domains of) U; U PA; to Vi, where U; C U and PA; C VNV, and the
entire set F forms a mapping from U to V. In other words, each f; in

vi=fipa,u), i=1,...,n,
assigns a value to V; that depends on (the values of) a select set of variables in
V U U, and the entire set F has a unique solution V ()34

Every causal model M can be associated with a directed graph, G(M), in which each
node corresponds to a variable and the directed edges point from members of PA; and
U; toward V;. We call such a graph the causal diagram associated with M. This graph
merely identifies the endogenous and background variables that have direct influence on
each V;; it does not specify the functional form of f;. The convention of confining the
parent set PA; to variables in V stems from the fact that the background variables are of-
ten unobservable. In general, however, we can extend the parent sets to include observed
variables in U.

2 We will try to refrain from using the term “exogenous” in referring to background conditions, be-
cause this term has acquired more refined technical connotations (see Sections 5.4.3 and 7.4). The
term “predetermined” is used in the econometric literature.

3 The choice of PA ; (connoting parents) is not arbitrary, but expresses the modeller’s understanding
of which variables Nature must consult before deciding the value of V;,

4 Uniqueness is ensured in recursive (i.e., acyclic) systems. Halpern (1998) allows multiple solu-
tions in nonrecursive systems.
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Task 3
Compute P(Y, = y) (i.e., the causal effect of smoking on cancer).
For any variable Z, by composition we have

Yy =Y, () if Z (w) =z

Since Y, (1) = Y, (4} (from (7.29)),

@u) =Y, (W) =Y, (W), wherez, =Z(u). (7.35)
Thus,
PYy=y)=PY, =y from (7.35)

S PYy=y|Z, =2 PZ, =2)
Z

DPY,=y|Z, =) PZ,=1) by composition
Z

= S PY, = y) P@, = 2). from (7.30) (7.36)

The probabilities P(¥, = y) and P(Z, = z) were computed in (7.34) and (7.31), respec-
tively. Substituting gives us

P(Yy = y) = 2 P@|x) 2, Ply|z,x) P&). (7.37)

The right-hand side of (7.37) can be computed from P(x, y, z} and coincides with the
front-door formula derived in Section 3.4.3 (equation (3.42)).

Thus, P(Y, = y) can be reduced to expressions involving probabilities of observed vari-
ables and is therefore identifiable. More generally, our completeness result (Theorem
7.3.5) implies that any identifiable counterfactual quantity can be reduced to the cor-
rect expression by repeated application of composition and effectiveness (assuming
recursiveness).

7.3.3 Axioms of Causal Relevance

In Section 1.2 we presented a set of axioms for a class of relations called graphoids
(Pearl and Paz 1987, Geiger et al. 1990) that characterize informational relevance.'® We
now develop a parallel set of axioms for causal relevance, that is, the tendency of cer-
tain events to affect the occurrence of other events in the physical world, independent of
the observer-reasoner. Informational relevance is concerned with questions of the form:
“Given that we know Z, would gaining information about X give us new information

16 «Relevance” will be used primarily as a generic name for the relationship of being relevant or ir-
relevant. It will be clear from the context when “relevance” is intended to negate “irrelevance.”
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seen that the meaning of the error term uy in the equation Y = fy(pay, uy) is captured
by the counterfactual variable ¥q,. In other words, the variable Uy can be interpreted
as a modifier of the functional mapping from PAy to Y. The statistics of such modifica-
tions is observable when pay is held fixed. This translation into counterfactual notation
may facilitate algebraic manipulations of Uy without committing to the functional form
of fy. However, from the viewpoint of model specification, the error terms should still
be viewed as (summaries of) omitted factors.

Armed with this interpretation, we can obtain graphical and counterfactual definitions
of causal concepts that were originally given error-based definitions. Examples of such
concepts are causal influence, exogeneity, and instrumental variables (Section 5.4.3).
In clarifying the relationships among error-based, counterfactual, and graphical defini-
tions of these concepts, we should first note that these three modes of description can be
organized in a simple hierarchy. Since graph separation implies independence, but inde-
pendence does not imply graph separation (Theorem 1.2.4), definitions based on graph
separation should imply those based on error-term independence. Likewise, since for
any two variables X and Y the independence relation Uy 1L Uy implies the counterfac-
tual independence Xpqy AL ¥y, (but not the other way around), it follows that defini-
tions based on error independence should imply those based on counterfactual inde-
pendence. Overall, we have the following hierarchy:

graphical criteria = error-based criteria ==~ counterfactual criteria.

The concept of exogeneity may serve to illustrate this hierarchy. The pragmatic defini-
tion of exogeneity is best formulated in counterfactual or interventional terms as follows.

Exogeneity (Counterfactual Criterion)
A variable X is exogenous relative to ¥ if and only if the effect of X on Y is identical to
the conditional probability of Y given X — that is, if

PY,=y)=Py|x) (7.45)
or, equivalently,
P(Y = y|do (x)) = P(y|x); (7.46)

this in turn is equd the independence condition ¥, AL X, named “weak ignora-
bility” in Rosenbaum and Rubin (1983).%6

This definition is pragmatic in that it highlights the reasons economists should be con-
cemned with exogeneity by explicating the policy-analytic benefits of discovering that a
variable is exogenous, However, this definition fails to guide an investigator toward

26 e focus the discussion in this section on the causal component of exogeneity, which the economet-
ric literature has unfortunately renamed “‘superexogeneity” (see Section 5.4.3). Epidemiologists
refer to (7.46) as “no-confounding” (see (6.10)). We also postpone discussion of “strong ignora-
bility,” defined as the joint independence {Y,, ¥/} AL X, to Chapter 9 (Definition 9.2.3).
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a mean difference (using P(z;) = 0.50) of

0.473 _ 0,073 +0.081
0473 + 0.139 1 + 0315 + 0.073

PO | %) = plyy | xp) = = 0.662,

and an encouragement effect (intent to treat) of
P(y1|z1) — P(y; | z9) = 0.073 + 0.473 — 0.081 = 0.465.

According to (8.17), ACE(X — Y) can be bounded by

-Eﬂ%x — ¥) = 0465 — 0.073 — 0.000 = 0.392,
(X — ¥) = 0.465 -+ 0.315 + 0.000 = 0.780.

These are remarkably informative bounds: although 38.8% of the subjects deviated
from their treatment protocol, the experimenter can categorically state that, when applied
uniformly to the population, the treatment is guaranteed to increase by at least 39.2% the
probability of reducing the level of cholesterol by 28 points or more.

The impact of treatment “on the treated” is equally revealing. Using equation (8.20),
ETT(X —Y) can be evaluated precisely (since P(x;|zp) = 0):

0.465

ETT(X — Y) = —222
X=>Y) =050

= 0.762.

In words, those subjects who stayed in the program are much better off than they would
have been if not treated: the treatment can be credited with reducing cholesterol levels
by at least 28 units in 76.2% of these subjects.

8.3 COUNTERFACTUALS AND LEGAL RESPONSIBILITY

Evaluation of counterfactual probabilities could be enlightening in some legal cases in
which a plaintiff claims that a defendant’s actions were responsible for the plaintiff’s mis-
fortune. Improper rulings can easily be issued without an adequate treatment of counter-
factuals (Robins and Greenland 1989). Consider the following hypothetical and fictitious
case study, specially crafted in Balke and Pearl (1994a) to accentuate the disparity
between causal effects and causal attribution.

The marketer of PeptAid (antacid medication) randomly mailed out product samples
to 10% of the households in the city of Stress, California. In a follow-up study, researchers
determined for each individual whether they received the PeptAid sample, whether they
consumed PeptAid, and whether they developed peptic ulcers in the following month.

The causal structure for this scenario is identical to the partial compliance model
given by Figure 8.1, where z| asserts that PeptAid was received from the marketer, x,
asserts that PeptAid was consumed, and y; asserts that peptic ulceration occurred. The
data showed the following distribution:
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Table 9.3. PN as a Function of Assumptions and Available Data

Assumptions Data Available

Exogeneity Monotonicity Additional Experimental Observational Combined

+ + ERR ERR ERR

+ — bounds bounds bounds

- + covariate — corrected corrected
control ERR ERR

- + — — corrected

ERR
= = — — bounds

Note: ERR stands for the excess risk ratio, 1 — P(y | x‘)/P(y(-’ﬁ/ﬁ;;/ corrected ERR is given in (9.31).

can be ascertained: exogeneity (i.e., no confounding) and monotonicity (i.e., no preven-
tion). When monotonicity does not hold, ERR provides merely a lower bound for PN, as
shown in (9.13). (The upper bound is usually unity.) The nonentries (—) in the right-hand
side of Table 9.3 represent vacuous bounds (i.e., 0 = PN = 1). In the presence of con-
founding, ERR must be corrected by the additive term [P(y|x') — P(y)1/P(x, y),
as stated in (9.31). In other words, when confounding bias (of the causal effect) is pos-
itive, PN is higher than ERR by the amount of this additive term. Clearly, owing to
the division by P(x, y), the PN bias can be many times higher than the causal effect
bias P(y|x') — P(y,). However, confounding results only from association between
exposure and other factors that affect the outcome; one need not be concerned with asso-
ciations between such factors and susceptibility to exposure (see Figure 9.2).

The last row in Table 9.3, corresponding to no assumptions whatsoever, leads to vac-
uous bounds for PN, unless we have combined data. This does not mean, however, that
justifiable assumptions other than monotonicity and exogeneity could not be helpful in
rendering PN identifiable. The use of such assumptions is explored in the next section.

9.4 IDENTIFICATION IN NONMONOTONIC MODELS

In this section we discuss the identification of probabilities of causation without making
the assumption of monotonicity. We will assume that we are given a causal model M in
which all functional relationships are known, but since the background variables U are
not observed, their distribution is not known and the model specification is not complete.

Our first step would be to study under what conditions the function P(u) can be iden-
tified, thus rendering the entire model identifiable. If M is Markovian, then the problem
can be analyzed by considering each parents—child family separately. Consider any ar-
bitrary equation in M,

y = f(pay, uy)
= (X Xg, o X Uy Upy)s (9.55)

v d
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C
/ \ Figure 11,6  Graph applicable for accessing the effect of X on ¥,
X =Y i

because the graph applicable for this task is given in Figure 11.6; F becomes a
descendant of X, and is excluded by the back-door criterion.

2. If the explanation of confounding and sufficiency sounds at variance with tradi-
tional epidemiology, it is only because traditional epidemiologists did not have
proper means of expressing the operations of blocking or creating dependencies.
They might have had a healthy intuition about dependencies, but graphs trans-
late this intuition into a formal system of closing and opening paths.

We should also note that before 1985, causal analysis in epidemiology was in a
state of confusion, because the healthy intuitions of leading epidemiologists had
to be expressed in the language of associations — an impossible task. Even the
idea that confounding stands for “bias,” namely, a “difference between two
dependencies, one that we wish to measure, the other that we do measure,” was
resisted by many (see Chapter 6), because they could not express the former
mathematically.

Therefore, instead of finding “something in graph language that is closer to tra-
ditional meaning,” we can do better: explicate what that “traditional meaning”
ought to have been.

In other words, traditional meaning was informal and occasionally misguided,
while graphical criteria are formal and mathematically proven.

Chapter 6 (pp. 183, 194) records a long history of epidemiological intuitions,
some by prominent epidemiologists, that have gone astray when confronted with
questions of confounding and adjustment (see Greenland and Robins 1986;
Wickramaratne and Holford 1987; Weinberg 1993). Although most leading epi-
demiologists today are keenly attuned to modern developments in causal analy-
sis, (e.g., Glymour and Greenland 2008), epidemiological folklore is still per-
meated with traditional intuitions that are highly suspect. (See Section 6.5.2.)

In summary, graphical criteria, as well as principles 1-3 above, give us a sensi-
ble, friendly, and unambiguous interpretation of the “traditional meaning of epi-
demiological concepts.”

11.3.2 Demystifying “Strong Ignorability”

Researchers working within the confines of the potential-outcome language express the
condition of “zero bias” or “no-confounding” using an independence relationship called

3 Recall that Greenland and Robins (1986) were a lone beacon of truth for many years, and even
they had to resort to the “black-box” language of “exchangeability” to define “bias,” which dis-
couraged intuitive interpretations of confounding (see Section 6.5.3), Indeed, it took epidemiolo-
gists another six years (Weinberg 1993) to discover that adjusting for factors affected by the exposure
(a{in Figure 11.5) would introduce bias.
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equivalent models
generating, 146-8
significance of, 148-9
testing for, 19, 145-6, 347
error terms, 27
counterfactual inlerpretation, 214-15, 244n,
245-6, 343
demystified, 162-3, 169-70, 343
and exogeneity, 169-70, 247
and instrumental variables, 247-8
testing correlation of, 162
etiological fraction, 284n
ETT (effect of treatment on the treated), 269-70,
343-4, 396
evidential decision theory, 108-9, 333
examples
alarms and burglaries, 7-8
bactrim, PCP, and AIDS, 118-19
betting on coins, 2967
birth control and thrombosis, 127
cholestyramine and cholesterol, 270-1, 280-1
desert traveler, 312, 323-4
drug, gender, and recovery, 174-5
firing squad, 207-13, 297-9
legal responsibility, 302-3
match and oxygen, 285, 308, 328
PeptAid and ulcer, 271-3
price and demand, 27-8, 215-17
process control, 74—6
radiation and leukemia, 299-301
sex discrimination in college admission, 127-30,
354-5, 361
smoking, tar, and cancer, 83-5, 232, 4234
two fires, 325-6
vitamin A and mortality, 278-9
excess risk ratio (ERR),&/’_, 187 4
and attribution, 292 %

corrected for confounding, 294, 304
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exchangeability

causal understanding and, 179, 384

confounding and, 196-9, 341n

De Finetti’s, 178
exclusion restrictions, 101, 232-3, 380
exogeneity, 97n, 165-70

controversies regarding, 165, 167, 169-70,

245-7
counterfactual and graphical definitions,
245-7

definition, causal, 166, 289, 333

error-based, 169-70, 247, 343

general definition, 168

hierarchy of definitions, 246

use in policy analysis, 165-6

see also confounding bias; ignorability
expectation, 9—-10

conditional, 9

controlled vs. conditional, 97, 137n, 162
explaining away, 17
explanation, 25, 58, 221-3, 285, 308-9

as attribution, 402-3

purposive, 3334

faclorization
Markov, 16
truncated, 24
faithfulness, 48
see also stability
family (in a graph), 13
front-door criterion, 81-3
applications, 83-5, 106
functional models, 26, 203-20
advantages, 32
and counterfactuals, 33, 2046
intervention in, 32
as joint distributions, 31
nonparametric, 67, 69, 94, 154-7

G-estimation, 72, 1024, 123, 352-3
Gibbs sampling
in Bayesian inference, 21, 375-7
for estimating attribution, 280
for estimating effects, 275-7
graphical models
in social science, 38-40, 97
in statistics, 12-20
graphoids, 11-12, 234
graphs
complete, 13
cyclic, 12—13, 28, 95-6, 142
directed, 12
as models of intervention, 68-70
mutilated, 23
notation and probabilities, 12
and relevance, 11

homomorphy, in imaging, 242
Hume's dilemma, 41, 238, 249, 406, 413

Subject Index

IC algorithm, 50
IC* algorithm, 52
identification, 77, 105, 366, 376
of direct effects, 126-31
by graphs, 89-94, 114-18
of plans, 118-26, 354-5
identifying models, 91-2, 105, 114-15
ignorability, 19-80, 246, 248n, 289, 3414
and back-door criterion, 80, 100, 343, 350-2
judgment of, 79, 100, 102, 350
demystified, 3414
see also exogeneity
imaging, 112, 242-3
independence, 3
conditional, 3, 11
dormant, 64, 347n, 448
indirect effects, 132, 165, 355-8
inference
causal, 22-3, 32, 85-9, 209
counterfactual, 33-9, 210-13, 2314
probabilistic, 20, 30, 31
inferred causation, 44, 45
algorithms for, 50, 52
local conditions for, 54-7
influence diagrams, 111n, 382
instrumental variables, 90, 153, 168, 247-8,
274-5, 366, 395
definitions of, 247-8
formula, 90, 153
lests for, 274-5
intent to treat analysis, 261
intervention, 22-3, 332
atornic, 70, 362
calculus of, 85-9
as conditionalization, 23, 72-4
examples, 28-9, 32
joint, 74-6, 91, 118-26
nolation, 67n, 70
stochastic, 113-14
as transformation, 724, 112, 242-3
truncated faclorization formula for, 24,
72,74
as variable, 70-2, 111
see also actions
intransitive dependence, 43, 57
INUS condition, 313-15, 321-2
invariance
of conditional independence, 31, 48, 63
of mechanisms, see aulonomy
of structural parameters, 63, 160-2, 332

—A nverse Pmbﬂbi!i‘h{ we;gh?rjjf 95

join-tree propagation, 20

Laplacian models, 26, 257

latent structure, 45
see also semi-Markovian models
projection of, 52
recovery of, 52

Lewis’s counterfactuals, 23840



Subject Index

likelihood ratio, 7
Lucas’s critique, 28, 137

machine learning, 601, 343
manipulated graph, 86, 220
Markov

assumption, 30, 69

chain, 58

compalibility, 16

factorization, 16

networks, 14, 50

parents, 14
Markov condition

causal, 30, 69

in causal discovery, 38

ordered, 19

parental (local), 19
Markov decision process (MDP), 76, 242
mechanisms, 22

modified by actions, 223-6
message passing, 20
model equivalence, 145-9
modularity, 63, 364-5
monotonicity, 291

Newcomb’s paradox, 108, 157n, 385
noisy OR gale, 31

noncompliance, 90, 261, 281, 395
nonidentifying models, 934

Occam’s razor, 45-7, 60
overdetermination, 313, 320

parents
causal, 27, 203
in graphs, 13
Markovian, 14
partial effects, 152-3
path coefficients, 240
from regression, 150-1
see also structural parameters
paths
back-door, 79
blocked, 16
directed, 12
in graphs, 12
pattern, 49-50
marked, 52
PC algorithm, 50
potential outcome framework, 333, 395
causal assumplions in, 96, 99, 102, 104, 134, 353
formal basis for, 204, 2434
limitations, 99-102, 106, 333, 343, 345, 350-2
statistical legitimacy of, 96
structural interpretation of, 98, 263—4
symbiosis with graphs, 231-4, 245
translation from graphs to, 98-102, 232-3
potential response, 204
preemption, 311-13, 322-7
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principal stratification, 264, 395
probabilistic causality, 62-3, 74, 249-57
aspirations and achievements, 249, 257
circularity in, 250-2
rejection of counterfactuals, 2547
singular causation in, 254—6
probabilistic parameters, 38
probability
conditional, 3
density, 10
joint, 6
marginal, 3
probability of causation, 33, 283-308, 396-8
Bayesian estimation of, 280-1
bounds, 289-90, 398
definition, 2867
and explanation, 285, 307-8
identification, 291-5, 304—7
probability of necessity (PN), 286
probability of sufficiency (PS), 286
properties of, 284, 287-8
probability theory, 2-10
actions in, 109-10
axioms, 3
Bayes interpretation, 2
relation to causality, 1-2, 3340, 74, 249-57, 3314
relation to logic, 1-2
sample space, 6
process control, 74-6
product decomposition, 16, 69
production, 316, 328
probability of, 286
propensity score, 93, 348-52

quantum mechanics and causation, 26, 62, 220,
257, 264n, 275
quasi-delerminism, 26, 257

randomized experiments, 33, 259, 332, 340, 388,
410, 417-8

recursiveness {axiom), 231

regression, 10, 141, 1501, 333, 367-8

Reichenbach’s principle, 30, 58, 61

relevance, 234-7, 251

reversibility (axiom), 229, 242

rool nodes, 13, 25

Salmon’s interactive fork, 58, 62
sampling
non-i.i.d., 96
variability, 95, 275-81, 397
screening off, 4, 10, 58, 251n
see also conditional independence
selection bias, 17, 163
SEM (structural equation modeling), 133-72, 356-7,
366-80
see also structural equations
semi-Markovian models, 30, 69, 76, 141, 146
see aiso latent structure



