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Abstract

This paper aims at assisting empirical researchers benefit from recent advances in
causal inference. The paper stresses the paradigmatic shifts that must be under-
taken in moving from traditional statistical analysis to causal analysis of multivari-
ate data. Special emphasis is placed on the assumptions that underly all causal in-
ferences, the languages used in formulating those assumptions, and the conditional
nature of causal claims inferred from nonexperimental studies. These emphases
are illustrated through a brief survey of recent results, including the control of
confounding, the assessment of causal effects, the interpretation of counterfactuals,
and a symbiosis between counterfactual and graphical methods of analysis.

Key Words: Structural equation models, confounding, noncompliance, graphical
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1 Introduction

Almost two decades have passed since Paul Holland published his seminal
paper, Holland (1986), by the same title. Our understanding of causal
inference has since increased several folds, due primarily to advances in
three areas:

1. Nonparametric structural equations.

2. Graphical models.
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3. Symbiosis between counterfactual and graphical methods.

This paper aims at summarizing and exemplifying these advances.

These advances are central to the empirical sciences because the re-
search questions that motivate most studies in the health, social and be-
havioral sciences are not statistical but causal in nature. For example, what
is the efficacy of a given drug in a given population? Whether data can
prove an employer guilty of hiring discrimination? What fraction of past
crimes could have been avoided by a given policy? What was the cause
of death of a given individual, in a specific incident? Not surprisingly,
the central target of such studies is the elucidation of cause-effect rela-
tionships among variables of interests, for example, treatments, policies,
preconditions and outcomes. While good statisticians have always known
that the elucidation of causal relationships from observational studies must
be shaped by assumptions about how the data were generated, the relative
roles of assumptions and data has been a subject of numerous controver-
sies. This paper settles these controversies by introducing useful language
for formulating such assumptions and tools for analyzing empirical data in
light of these assumptions.

In order to express causal assumptions mathematically, certain exten-
sions are required in the standard mathematical language of Statistics, and
these extensions are not generally emphasized in the mainstream literature
and education. As a result, large segments of the statistical research com-
munity find it hard to appreciate and benefit from the many theoretical
results that causal analysis has produced in the past two decades. These
include advances in graphical models (Pearl, 1988; Lauritzen, 1996; Cowell
et al., 1999), counterfactual or “potential outcome” analysis (Rosenbaum
and Rubin, 1983; Robins, 1986; Manski, 1995; Angrist et al., 1996; Green-
land et al., 1999b), structural equation models Heckman and Smith (1998),
and a more recent formulation, which unifies these approaches under a
single interpretation (Pearl, 1995a, 2000).

This paper aims at making these advances more accessible to the gen-
eral research community1 . To this end, Section 2 begins by illuminat-
ing two conceptual barriers that impede the transition from statistical to
causal analysis: (i) coping with untested assumptions and (ii) acquiring

1Excellent introductory expositions can also be found in Kaufman and Kaufman
(2001) and Robins (2001).
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new mathematical notation. Crossing these barriers, Section 3.1 then in-
troduces the fundamentals of causal modeling from a perspective that is
relatively new to the statistical literature. It is based on structural equa-
tion models (SEM), which have been used extensively in economics and
the social sciences (Goldberger, 1972; Duncan, 1975; Joreskog and Sorbom,
1978), even though the causal content of these models has been obscured
significantly since their inception (Muthen, 1987; Chou and Bentler, 1995)
(see Freedman, 1987, for critique and Pearl, 2000, Chapter 5 for histori-
cal perspective). Section 3.2 uses these modeling fundamentals to develop
simple mathematical tools for estimating causal effects and for the control
of confounding. These tools permit investigators to communicate causal
assumptions formally using diagrams, then inspect the diagram and

1. Decide whether the assumptions made are sufficient for obtaining
consistent estimates of the target quantity;

2. Derive (if the answer to item 1 is affirmative) a closed-form expression
for the target quantity in terms of distributions of observed quantities;
and

3. Suggest (if the answer to item 1 is negative) a set of observations and
experiments that, if performed, would render a consistent estimate
feasible.

Section 4 relates these tools to procedures that are used in the potential
outcome approach. Finally, Section 4.3, offers a symbiosis that exploits
the best features of the two approaches—structural models and potential
outcome.

2 From associational to causal analysis: Distinctions and
barriers

2.1 The basic distinction: coping with change

The aim of standard statistical analysis, typified by regression and other
estimation techniques, is to infer parameters of a distribution from samples
drawn of that distribution. With the help of such parameters, one can in-
fer associations among variables, estimate the likelihood of past and future
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events, as well as update the likelihood of events in light of new evidence
or new measurements. These tasks are managed well by standard statis-
tical analysis so long as experimental conditions remain the same. Causal
analysis goes one step further; its aim is to infer aspects of the data gen-
eration process. With the help of such aspects, one can deduce not only
the likelihood of events under static conditions, but also the dynamics of
events under changing conditions. This capability includes predicting the
effects of interventions (e.g., treatments or policy decisions) and sponta-
neous changes (e.g., epidemics or natural disasters), identifying causes of
reported events, and assessing responsibility and attribution (e.g., whether
event x was necessary (or sufficient) for the occurrence of event y).

This distinction implies that causal and associational concepts do not
mix. Associations characterize static conditions, while causal analysis deals
with changing conditions. There is nothing in the joint distribution of
symptoms and diseases to tell us that curing the former would or would not
cure the latter. More generally, there is nothing in a distribution function
to tell us how that distribution would differ if external conditions were to
change—say from observational to experimental setup—because the laws of
probability theory do not dictate how one property of a distribution ought
to change when another property is modified2.

Drawing analogy to visual perception, the information contained in a
probability function is analogous to a geometrical description of a three-
dimensional object; it is sufficient for predicting how that object will be
viewed from any angle outside the object, but it is insufficient for predicting
how the object will be deformed if manipulated and squeezed by external
forces. The additional information needed for making such predictions (e.g.,
the object’s resilience or elasticity) is analogous to the information that
causal assumptions provide in various forms—graphs, structural equations
or plain English. The role of this information is to identify those aspects of
the world that remain invariant when external conditions change, say due
to treatments or policy decisions.

These considerations imply that the slogan “correlation does not imply
causation” can be translated into a useful principle: one cannot substantiate

2Even the theory of stochastic processes, which provides probabilistic characterization
of certain dynamic phenomena, assumes a fixed density function over time-indexed vari-
ables. There is nothing in such a function to tell us how it would be altered if external
conditions were to change; for example, restricting a variable to a certain value, or forcing
one variable to track another.
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causal claims from associations alone, even at the population level—behind
every causal conclusion there must lie some causal assumption that is not
testable in observational studies. Cartwright (1989) expressed this principle
as “no causes in, no causes out”, meaning we cannot convert statistical
knowledge into causal knowledge.

2.2 Formulating the basic distinction

A useful demarcation line that makes the distinction between associational
and causal concepts unambiguous and easy to apply, can be formulated as
follows. An associational concept is any relationship that can be defined in
terms of a joint distribution (be it personal or frequency-based) of observed
variables, and a causal concept is any relationship that cannot be defined
from the distribution alone. Examples of associational concepts are: cor-
relation, regression, dependence, conditional independence, likelihood, col-
lapsibility, risk ratio, odd ratio, marginalization, conditionalization, “con-
trolling for,” and so on3. Examples of causal concepts are: randomization,
influence, effect, confounding, “holding constant,” disturbance, spurious
correlation, instrumental variables, intervention, explanation, attribution,
and so on. The purpose of this demarcation line is not to exclude these
causal concepts from the province of statistical analysis4 but, rather, to
make it easy for investigators to trace the assumptions that are needed
for substantiating various types of scientific claims. Every claim invoking
causal concepts must be traced to some premises that invoke such concepts;
it cannot be derived or inferred from statistical associations alone.

2.3 Ramifications of the basic distinction

This principle has far reaching consequences that are not generally recog-
nized in the standard statistics literature. Many researchers, for example,
are convinced that confounding is solidly founded in standard, frequen-
tist statistics, and that it can be given an associational definition saying

3The term ‘risk ratio’ and ‘risk factors’ have been used ambivalently in the literature;
some authors insist on a risk factor having causal influence on the outcome, and some
embrace factors that are merely associated with the outcome.

4Pearl (2000) termed this distinction “causal vs. statistical” to reflect the overwhelm-
ing emphasis on associational concepts in the statistical literature. The term “causal vs.
associational” is used here as an invitation for statisticians to correct past neglects.
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(roughly): “U is a potential confounder for examining the effect of treat-
ment X on outcome Y when both U and X and U and Y are not indepen-
dent.” That this definition and all its many variants must fail, is obvious
from basic considerations:

1. Confounding deals with the discrepancy between an association mea-
sured in an observational study and an association that would prevail
under ideal experimental conditions.

2. Associations prevailing under experimental conditions are causal
quantities because they cannot be inferred from the joint distribu-
tion alone. Therefore, confounding is a causal concept; its definition
cannot be based on statistical associations alone, since these can be
derived from the joint distribution.

Indeed, one can construct simple examples showing that the associa-
tional criterion is neither necessary nor sufficient, that is, some confounders
may not be associated with X nor with Y and some non-confounders may
be associated with both X and Y (Pearl, 2000, pp. 185–186); see also Sec-
tion 3.15. This further implies that confounding bias cannot be detected or
corrected by statistical methods alone, not even by the most sophisticated
techniques that purport to “control for confounders”, such as stepwise se-
lection Kleinbaum et al. (1998) or collapsibility-based methods Grayson
(1987). One must make some assumptions regarding causal relationships
in the problem, in particular about how the potential “confounders” affect
other covariates in the problem, before an adjustment can safely correct
for confounding bias. It follows that the rich epidemiological literature
on the control of confounding must be predicated upon some tacit causal
assumptions and, since causal vocabulary has generally been avoided in
much of that literature (e.g., Bishop, 1971; Whittemore, 1978; Grayson,
1987; Hauck et al., 1991; Becher, 1992)6, major efforts would be required to
assess the relevance of this impressive literature to the modern conception

5Similar arguments apply to the concepts of “randomization” and “instrumental vari-
ables” which are commonly thought to have associational definitions. Our demarcation
line implies that they don’t, and this implication guides us toward explicating the causal
assumptions upon which these concepts are founded (see Section 3.4). Randomization,
for example, is based on the assumption that the outcome of a fair coin is not “causally
influenced” by any variable that can be measured on a macroscopic level.

6Notable exception is the analysis of Greenland and Robins (1986).
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of confounding as effect bias Greenland et al. (1999b)7.

Another ramification of the sharp distinction between associational and
causal concepts is that any mathematical approach to causal analysis must
acquire new notation for expressing causal assumptions and causal claims.
The vocabulary of probability calculus, with its powerful operators of con-
ditionalization and marginalization, is insufficient for expressing causal in-
formation. To illustrate, the syntax of probability calculus does not permit
us to express the simple fact that “symptoms do not cause diseases”, let
alone draw mathematical conclusions from such facts. All we can say is
that two events are dependent—meaning that if we find one, we can expect
to encounter the other, but we cannot distinguish statistical dependence,
quantified by the conditional probability P (disease|symptom) from causal
dependence, for which we have no expression in standard probability cal-
culus8. Scientists seeking to express causal relationships must therefore
supplement the language of probability with a vocabulary for causality,
one in which the symbolic representation for the relation “symptoms cause
disease” is distinct from the symbolic representation of “symptoms are as-
sociated with disease.” Only after achieving such a distinction can we label
the former sentence “false,” and the latter “true”, so as to properly in-
corporate causal information in the design and interpretation of statistical
studies.

The preceding two requirements: (1) to commence causal analysis with
untested9, theoretically or judgmentally based assumptions, and (2) to ex-
tend the syntax of probability calculus, constitute, in my experience, the
two main obstacles to the acceptance of causal analysis among statisticians
and among professionals with traditional training in statistics. We shall
now explore in more detail the nature of these two barriers, and why they
have been so tough to cross.

7Although the confounding literature has permitted one causal assumption to con-
taminate its vocabulary—that the adjusted confounder must not be “affected by the
treatment”, Cox (1958)—this condition alone is insufficient for determining which vari-
ables need be adjusted for (Pearl, 2000, pp. 182–9).

8Attempts to define causal dependence by adding temporal information and condition-
ing on the entire past (e.g., Suppes, 1970) violate the statistical requirement of limiting
the analysis to “observed variables”, and encounter other insurmountable difficulties (see,
Eells, 1991; Pearl, 2001, pp. 249–257).

9By “untested” I mean untested using frequency data in nonexperimental studies.
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2.4 The barrier of untested assumptions

There are three fundamental differences between associational and causal
assumptions. First, associational assumptions, even untested, are testable
in principle, given sufficiently large sample and sufficiently fine measure-
ments. Causal assumptions, in contrast, cannot be verified even in prin-
ciple, unless one resorts to experimental control. This difference is espe-
cially accentuated in Bayesian analysis. Though the priors that Bayesians
commonly assign to statistical parameters are untested quantities, the sen-
sitivity to these priors tends to diminish with increasing sample size. In
contrast, sensitivity to priors of causal parameters, say those measuring
the effect of smoking on lung cancer, remains non-zero regardless of sample
size.

Second, associational assumptions can be expressed in the familiar lan-
guage of probability calculus, and thus assume an aura of scholarship and
scientific respectability. Causal assumptions, as we have seen before, are
deprived of that honor, and thus become immediate suspect of informal,
anecdotal or metaphysical thinking. Again, this difference becomes illumi-
nated among Bayesians, who are accustomed to accepting untested, judg-
mental assumptions, and should therefore invite causal assumptions with
open arms—they don’t. A Bayesian is prepared to accept an expert’s judg-
ment, however esoteric and untestable, so long as the judgment is presented
as a probability expression. Bayesians turn apprehensive when that same
judgment is cast in plain causal English, as in “treatment does not change
gender.” A typical example can be seen in Lindley and Novick (1981) treat-
ment of confounding, in the context of Simpson’s paradox (see Pearl, 2000,
pp. 174–182 for details).

The third resistance to causal (vis-à-vis associational) assumptions
stems from their intimidating clarity. Assumptions about abstract proper-
ties of density functions or about conditional independencies among vari-
ables are, cognitively speaking, rather opaque, hence they tend to be for-
given, rather than debated. In contrast, assumptions about how variables
cause one another are shockingly transparent, and tend therefore to invite
counter-arguments and counter-hypotheses. Ironically, it is the latter fea-
ture that often deters researchers from articulating assumptions in causal
vocabulary. Indeed, since the bulk of scientific knowledge is organized in
causal schema, scientists are incredibly creative in constructing competing
alternatives to any causal hypothesis, however plausible. Statistical hy-
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potheses in contrast, having been several levels removed from our store of
knowledge, are relatively protected from such challenges, and offer therefore
a safer ride toward the conclusion.

It is important to emphasize, therefore, that causal analysis does not
deal with defending modeling assumptions, in much the same way that
differential calculus does not deal with defending the physical validity of
a differential equation that a physicist chooses to use. In fact no analysis
void of experimental data can possibly defend causal assumptions. Instead,
causal analysis deals with the conclusions that logically follow from the
combination of data and a given set of assumptions, just in case one is
prepared to accept the latter. Thus, all causal inferences are necessarily
conditional, and the most one can demand from such analysis is:

1. That the premises be amenable to mathematical analysis.

2. That the premises be articulated in a meaningful and unambiguous
language for one to judge their plausibility or inevitability.

The structural equation language introduced in Section 3 will be shown
to have these two features.

2.5 The barrier of new notation

The need to adopt a new notation, foreign to the province of probability
theory, has been traumatic to most persons trained in statistics; partly be-
cause the adaptation of a new language is difficult in general, and partly
because statisticians—this author included—have been accustomed to as-
suming that all phenomena, processes, thoughts, and modes of inference
can be captured in the powerful language of probability theory.

How does one recognize causal expressions in the statistical literature?
Those versed in the potential-outcome notation (Neyman, 1923; Rubin,
1974; Holland, 1988), can recognize such expressions through the subscripts
that are attached to counterfactual events and counterfactual variables, e.g.
Yx(u) or Zxy. (Some authors use parenthetical expressions, e.g. Y (x, u) or
Z(x, y).) The expression Yx(u), for example, stands for the value that
outcome Y would take in individual u, had treatment X been at level x.
If u is chosen at random, Yx is a random variable, and one can talk about
the probability that Yx would attain a value y in the population, written
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P (Yx = y). Alternatively, Pearl (1995a) and Kaufman and Kaufman (2001)
used expressions of the form P (Y = y|set(X = x)) or P (Y = y|do(X = x))
to denote the probability (or frequency) that event (Y = y) would occur if
treatment condition X = x were enforced uniformly over the population10.
Still a third notation that distinguishes causal expressions is provided by
graphical models, where the arrows convey causal directionality11.

However, in the bulk of the statistical literature, causal claims rarely
appear in the mathematics. They surface only in the verbal interpretation
that investigators occasionally attach to certain associations, and in the ver-
bal description with which investigators justify assumptions. For example,
the assumption that a covariate is not affected by a treatment, a necessary
assumption for the control of confounding Cox (1958), is expressed in plain
English, not in a mathematical expression.

The absence of notational distinction between causal and statistical
relationships at first seemed harmless, because investigators were able to
keep such distinctions implicitly in their heads, and managed to confine the
mathematics to conventional, conditional probability expressions (Breslow
and Day, 1980; Miettinen and Cook, 1981). However, as problem com-
plexity grew, the notational inadequacy of probability calculus began to
surface, and intense controversies ensued in the 1980-90’s between writers
using conventional statistical notation and the few who endeavored to en-
rich probability calculus with causal vocabulary. Robins (1986, 1987), for
example, showed that conventional methods of estimating survival distribu-
tions under time-dependent treatments, (e.g., time-dependent Cox regres-
sion) may be biased. Greenland and Robins (1986) showed (using counter-
factual analysis) that conventional definitions that equated confounding to
noncollapsibility would generally lead to biased effect estimates. Holland
and Rubin (1988) came to similar conclusions. Using diagrams for guid-
ance, Weinberg (1993) noted that epidemiologists who follow established
practices and informal criteria often adjust for the wrong set of covariates.
Likewise, Robins and Greenland (1992) proved that the then prevailing

10Clearly, P (Y = y|do(X = x)) is equivalent to P (Yx = y), which is what we normally
assess in a controlled experiment, with X randomized, in which the distribution of Y is
estimated for each level x of X.

11These notational clues should be useful for detecting inadequate definitions of causal
concepts; any definition of confounding, randomization or instrumental variables that
is cast in standard probability expressions, void of graphs, counterfactual subscripts or
do(∗) operators, can safely be discarded as inadequate.
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practice of estimating direct effects by controlling intermediate variables
can lead to biased estimates. Again, using counterfactual notation, Robins
and Greenland (1989); Greenland (1999) showed that conventional crite-
ria for deciding legal responsibility (for exposure-induced damages), which
were based on risk ratio instead of probability of causation, can be severely
biased relative to judicial standards. Thus, the notational inadequacy of
standard statistics, which was first tolerated and glossed over, took a heavy
toll before explicit causal notation brought it to light.

Remarkably, despite this record of success, the mathematics of causal
analysis has remained enigmatic to most rank and file researchers, and its
potentials still lay grossly underutilized in the statistics based sciences. The
reason for this, I am firmly convinced, can be traced to the unfriendly and
ad-hoc notation in which causal analysis has been presented to the research
community. The next section provides a conceptualization that overcomes
these mental barriers; it offers both a friendly mathematical machinery for
cause-effect analysis and a formal foundation for counterfactual analysis.

3 The language of diagrams and structural equations

3.1 Linear structural equation models

How can one express mathematically the common understanding that
symptoms do not cause diseases? The earliest attempt to formulate such re-
lationship mathematically was made in the 1920’s by the geneticist Wright
(1921). Wright used a combination of equations and graphs to communi-
cate causal relationships. For example, if X stands for a disease variable
and Y stands for a certain symptom of the disease, Wright would write a
linear equation12 :

y = βx + u, (3.1)

where x stand for the level (or severity) of the disease, y stands for the
level (or severity) of the symptom, and u stands for all factors, other than
the disease in question, that could possibly affect Y . In interpreting this
equation one should think of a physical process whereby Nature examines

12Linear relations are used here for illustration purposes only; they do not represent
typical disease-symptom relations but illustrate the historical development of path analy-
sis. Additionally, we will use standardized variables, that is, zero mean and unit variance.
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the values of x and u and, accordingly, assigns to variable Y the value
y = βx + u.

Equation (3.1) still does not properly express the causal relationship
implied by this assignment process, because equations are symmetrical ob-
jects; if we re-write (3.1) as

x = (y − u)/β, (3.2)

it might be misinterpreted to mean that the symptom influences the dis-
ease, against the understanding that no such influence exists. To prevent
such misinterpretations, Wright augmented the equation with a diagram,
later called “path diagram”, in which arrows are drawn from (perceived)
causes to their (perceived) effects, and the absence of an arrow encodes
the absence of direct causal influence between the corresponding variables.
Thus, in our example, the complete model of a symptom and a disease
would be written as in Figure 1: The diagram encodes the possible ex-
istence of (direct) causal influence of X on Y , and the absence of causal
influence of Y on X, while the equations encode the quantitative relation-
ships among the variables involved, to be determined from the data. The
parameter β in the equation is called a “path coefficient” and it quantifies
the (direct) causal effect of X on Y ; given the numerical value of β, the
equation claims that a unit increase in X would result in β units increase
of Y . The variables V and U are called “exogenous”; they represent ob-
served or unobserved background factors that the modeler decides to keep
unexplained, that is, factors that influence but are not influenced by the
other variables (called “endogenous”) in the model. Unobserved exogenous
variables are sometimes called “disturbances” or “errors”, they represent
factors omitted from the model but judged to be relevant for explaining
the behavior of variables in the model. Variable V , for example, represents
factors that contribute to the disease X, which may or may not be corre-
lated with U (the factors that influence the symptom Y ). If correlation is
presumed possible, it is customary to connect the two variables, U and V ,
by a dashed double arrow, as shown in Figure 1(b).

In reading path diagrams, it is common to use kinship relations such
as parent, child, ancestor, and descendent, the interpretation of which is
usually self evident. For example, an arrow X → Y designates X as a
parent of Y and Y as a child of X. By convention, only observed variables
qualify as “parents”, thus, in Figure 1(a), only X qualifies as a parent of
Y , since U is unobserved (as indicated by the dashed arrow). Likewise, the
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V UV U

βX YβX Y

(b)(a)

x = v
y =   x + uβ

Figure 1: A simple structural equation model, and its associated diagrams. Un-

observed exogenous variables are connected by dashed arrows.

ancestors (respectively, descendants) of a given node, Y , are those variables
that can be traced from Y going against (respectively, along) the solid
arrows in the diagram. A “path” is any consecutive sequence of edges,
solid or dashed. For example, there are two paths between X and Y in
Figure 1(b), one consisting of the direct arrow X → Y while the other
tracing the nodes X, V, U and Y .

Wright’s major contribution to causal analysis, aside from introducing
the language of path diagrams, has been the development of graphical rules
for writing down the covariance of any pair of observed variables in terms
of path coefficients and of covariances among the error terms. In our simple
example, one can immediately write the relations

Cov(X, Y ) = β (3.3)

for Figure 1(a), and

Cov(X,Y ) = β + Cov(U, V ) (3.4)

for Figure 1(b) (these can be derived of course from the equations, but,
for large models, algebraic methods tend to obscure the origin of the de-
rived quantities). Under certain conditions, (e.g. if Cov(U, V ) = 0), such
relationships may allow one to solve for the path coefficients in term of
observed covariance terms only, and this amounts to inferring the magni-
tude of (direct) causal effects from observed, nonexperimental associations,
assuming of course that one is prepared to defend the causal assumptions
encoded in the diagram.

It is important to note that, in path diagrams, causal assumptions are
encoded not in the links but, rather, in the missing links. An arrow merely
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(a) (b)

W

Z

V

X

U

Y

0x

U

Y

W

Z

V

X

Figure 2: (a) The diagram associated with the structural model of Equation (3.5).

(b) The diagram associated with the modified model of Equation (3.6), represent-

ing the intervention do(X = x0).

indicates the possibility of causal connection, the strength of which remains
to be determined (from data); a missing arrow makes a definite commitment
to a zero-strength connection. In Figure 1(a), for example, the assumptions
that permits us to identify the direct effect β is encoded by the missing
double arrow between V and U , indicating Cov(U, V )=0, together with
the missing arrow from Y to X. Had any of these two links been added to
the diagram, we would not have been able to identify the direct effect β.
Such additions would amount to relaxing the assumption Cov(U, V ) = 0, or
the assumption that Y does not effect X, respectively. Note also that both
assumptions are causal, not associational, since none can be determined
from the joint density of the observed variables, X and Y ; the association
between the unobserved terms, U and V , can only be uncovered in an
experimental setting; or (in more intricate models, as in Figure 5) from
other causal assumptions.

Although each causal assumption in isolation cannot be tested, the sum
total of all causal assumptions in a model often has testable implications.
The chain model of Figure 2(a), for example, encodes seven causal assump-
tions, each corresponding to a missing arrow or a missing double-arrow
between a pair of variables. None of those assumptions is testable in isola-
tion, yet the totality of all those assumptions implies that Z is unassociated
with Y in every stratum of X. Such testable implications can be read off
the diagrams using a graphical criterion known as d-separation (see Pearl,
2000, pp. 16–19), and these constitute the only opening through which
the assumptions embodied in structural equation models can confront the
scrutiny of nonexperimental data. In other words, every conceivable statis-
tical test capable of invalidating the model is entailed by those implications.
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3.2 From linear to nonparametric models

Structural equation modeling (SEM) has been the main vehicle for effect
analysis in Economics and the Behavioral and Social Sciences (Goldberger,
1972; Duncan, 1975; Bollen, 1989). However, the bulk of SEM method-
ology was developed for linear analysis and, until recently, no comparable
methodology has been devised to extend its capabilities to models involving
dichotomous variables or nonlinear dependencies. A central requirement for
any such extension is to detach the notion of “effect” from its algebraic rep-
resentation as a coefficient in an equation, and redefine “effect” as a general
capacity to transmit changes among variables. Such an extension, based
on simulating hypothetical interventions in the model, is presented in Pearl
(1995a, 2000) and has led to new ways of defining and estimating causal
effects in nonlinear and nonparametric models (that is, models in which
the functional form of the equations is unknown).

The central idea is to exploit the invariant characteristics of structural
equations without committing to a specific functional form. For example,
the non-parametric interpretation of the diagram of Figure 2(a) corresponds
to a set of three functions, each corresponding to one of observed variables:

z = fZ(w)
x = fX(z, v) (3.5)
y = fY (x, u),

where W,V and U are assumed to be jointly independent but, otherwise,
arbitrarily distributed. Each of these functions represents a causal process
(or mechanism) that determines the value of the left variable (output) from
those on the right variables (inputs). The absence of a variable on the right
of an equations encodes the assumption that it has no direct effect on the
left variable. For example, the absence of variable Z from the arguments
of fY indicates that variations in Z will leave Y unchanged, as long as
variables U , and X remain constant. A system of such functions are said to
be structural if they are assumed to be autonomous, that is, each function
is invariant to possible changes in the form of the other functions (Simon,
1953; Holland, 1953).
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Representing interventions

This feature of invariance permits us to use structural equations as a basis
for modeling causal effects and counterfactuals. This is done through a
mathematical operator called do(x) which simulates physical interventions
by deleting certain functions from the model, replacing them by a constant
X = x, while keeping the rest of the model unchanged. For example,
to emulate an intervention do(x0) that holds X constant (at X = x0) in
model M of Figure 2(a), we replace the equation for x in Equation (3.5)
with x = x0, and obtain a new model, Mx0 ,

z = fZ(w)
x = x0 (3.6)
y = fY (x, u),

the graphical description of which is shown in Figure 2(b).

The joint distribution associated with the modified model, denoted
P (z, y|do(x0)) describes the post-intervention distribution of variables Y
and Z (also called “controlled” or “experimental” distribution), to be
distinguished from the pre-intervention distribution, P (x, y, z), associated
with the original model of Equation (3.5). For example, if X represents a
treatment variable, Y a response variable, and Z some covariate that affects
the amount of of treatment received, then the distribution P (z, y|do(x0))
gives the proportion of individuals that would attain response level Y = y
and covariate level Z = z under the hypothetical treatment X = x0 that is
administered uniformly to the population.

From this distribution, one is able to assess treatment efficacy by com-
paring aspects of this distribution at different levels of x0. A common
measure of treatment efficacy is the average difference

E(Y |do(x′0))− E(Y |do(x0)), (3.7)

where x′0 and x0 are two levels (or types) of treatment selected for compar-
ison. Another measure is the ratio

E(Y |do(x′0))/E(Y |do(x0)). (3.8)

The variance V ar(Y |do(x0)), or any other distributional parameter, can
also serve as a basis for comparison; all these measures can be obtained from
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the controlled distribution function P (Y = y|do(x)) =
∑

z P (z, y|do(x))
which was called “causal effect” in Pearl (2000, 1995a) (see footnote
10). The central question in the analysis of causal effects is the ques-
tion of identification: Can the controlled (post-intervention) distribution,
P (Y = y|do(x)), be estimated from data governed by the pre-intervention
distribution, P (z, x, y)? This is the problem of identification which has
received considerable attention by causal analysts.

A fundamental theorem in causal analysis states that such identification
would be feasible whenever the model is Markovian, that is, the graph is
acyclic (i.e., containing no directed cycles) and all the error terms are jointly
independent. Non-Markovian models, such as those involving correlated
errors (resulting from unmeasured confounders), permit identification only
under certain conditions, and these conditions can be determined from the
graph structure using the following basic theorem.

Theorem 3.1 (The Causal Markov Condition). Any distribution gen-
erated by a Markovian model M can be factorized as

P (v1, v2, . . . , vn) =
∏

i

P (vi|pai), (3.9)

where V1, V2, . . . , Vn are the endogenous variables in M , and pai are (values
of) the endogenous parents of Vi in the causal diagram associated with M .

For example, the distribution associated with the model in Figure 2(a)
can be factorized as

P (z, y, x) = P (z)P (x|z)P (y|x), (3.10)

since X is the (endogenous) parent of Y, Z is the parent of X, and Z has
no parents.

Corollary 3.1 (Truncated factorization). For any Markovian model,
the distribution generated by an intervention do(X = x0) on a set X of
endogenous variables is given by the truncated factorization

P (v1, v2, . . . , vk|do(x0)) =
∏

i|Vi 6∈X

P (vi|pai) |x=x0 , (3.11)
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where P (vi|pai) are the pre-intervention conditional probabilities13.

Corollary 3.1 instructs us to remove from the product of Equation
(3.9) all factors associated with the intervened variables (members of set
X). This follows from the fact that the post-intervention model is Marko-
vian as well, hence, following Theorem 3.1, it must generate a distribution
that is factorized according to the modified graph, yielding the truncated
product of Corollary 3.1. In our example of Figure 2(b), the distribution
P (z, y|do(x0)) associated with the modified model is given by

P (z, y|do(x0)) = P (z)P (y|x0),

where P (z) and P (y|x0) are identical to those associated with the pre-
intervention distribution of Equation (3.10). As expected, the distribution
of Z is not affected by

the intervention, since

P (z|do(x0)) =
∑

y

P (z, y|do(x0)) = P (z)
∑

y

P (y|do(x0)) = P (z),

while that of Y is sensitive to x0, and is given by

P (y|do(x0)) = P (y|x0).

This example demonstrates how the (causal) assumptions embedded in
the model M permit us to predict the post-intervention distribution from
the pre-intervention distribution, which further permits us to estimate the
causal effect of X on Y from nonexperimental data, since P (y|x0) is es-
timable from such data. Note that we have made no assumption whatso-
ever on the form of the equations or the distribution of the error terms; it is
the structure of the graph alone that permits the derivation to go through.

Deriving causal effects

The truncated factorization formula enables us to derive causal quanti-
ties directly, without dealing with equations or equation modification as

13A simple proof of the Causal Markov Theorem is given in Pearl (2000, p. 30). This
theorem was first stated in Pearl and Verma (1991), but it is implicit in the works of
Kiiveri et al. (1984) and others. Corollary 3.1 was named “Manipulation Theorem” in
Spirtes et al. (1993), and is also implicit in Robins (1987) G-computation formula. See
Lauritzen (1999).
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Figure 3: Markovian model illustrating the derivation of the causal effect of X on

Y , Equation (3.14). Error terms are not shown explicitly.

in Equation (3.6). Consider, for example, the model shown in Figure 3,in
which the error variables are kept implicit. Instead of writing down the cor-
responding five nonparametric equations, we can write the join distribution
directly as

P (x, z1, z2, z3, y) = P (z1)P (z2)P (z3|z1, z2)P (x|z1, z3)P (y|z2, z3, x), (3.12)

where each marginal or conditional probability on the right hand side is
directly estimatable from the data. Now suppose we intervene and set
variable X to x0. The post-intervention distribution can readily be written
(using the truncated factorization formula) as

P (z1, z2, z3, y|do(x0)) = P (z1)P (z2)P (z3|z1, z2)P (y|z2, z3, x0), (3.13)

and the causal effect of X on Y can be obtained immediately by marginal-
izing over the Z variables, giving

P (y|do(x0)) =
∑

z1,z2,z3

P (z1)P (z2)P (z3|z1, z2)P (y|z2, z3, x0). (3.14)

Note that this formula corresponds precisely to what is commonly called
“adjusting for Z1, Z2 and Z3” and, moreover, we can write down this for-
mula by inspection, without thinking on whether Z1, Z2 and Z3 are con-
founders, whether they lie on the causal pathways, and so on. Though such
questions can be answered explicitly from the topology of the graph, they
are dealt with automatically when we write down the truncated factoriza-
tion formula and marginalize.

Note also that the truncated factorization formula is not restricted to
interventions on a single variable; it is applicable to simultaneous or se-
quential interventions such as those invoked in the analysis of time varying
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treatment with time varying confounders Robins (1986). For example, if
X and Z2 are both treatment variables, and Z1 and Z3 are measured co-
variates, then the post-intervention distribution would be

P (z1, z3, y|do(x), do(z2)) = P (z1)P (z3|z1, z2)P (y|z2, z3, x), (3.15)

and the causal effect of the treatment sequence do(X = x), do(Z2 = z2)14

would be

P (y|do(x), do(z2)) =
∑
z1,z3

P (z1)P (z3|z1, z2)P (y|z2, z3, x). (3.16)

This expression coincides with Robins (1987) G-computation formula,
which was derived from a more complicated set of (counterfactual) assump-
tions. As noted by Robins, the formula dictates an adjustment for covari-
ates (e.g., Z3) that might be affected by previous treatments (e.g., Z2).

Coping with unmeasured confounders

Things are more complicated when we face unmeasured confounders. For
example, it is not immediately clear whether the formula in Equation (3.14)
can be estimated if any of Z1, Z2 and Z3 is not measured. A few algebraic
steps would reveal that one can perform the summation over Z1 (since Z1

and Z2 are independent) to obtain

P (y|do(x0)) =
∑
z2,z3

P (z2)P (z3|z2)P (y|z2, z3, x0), (3.17)

which means that we need only adjust for Z2 and Z3 without ever observing
Z1. But it is not immediately clear that no algebraic manipulation can fur-
ther reduce the resulting expression, or that measurement of Z3 (unlike Z1,
or Z2) is necessary in any estimation of P (y|do(x0)). Such considerations
become transparent in the graphical representation, to be discussed next.

Selecting covariates for adjustment (the back-door criterion)

Consider an observational study where we wish to find the effect of X on Y ,
for example, treatment on response, and assume that the factors deemed

14For clarity, we drop the (superfluous) subscript 0 from x0 and z20 .
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Figure 4: Markovian model illustrating the back-door criterion. Error terms are

not shown explicitly.

relevant to the problem are structured as in Figure 4; some are affecting
the response, some are affecting the treatment and some are affecting both
treatment and response. Some of these factors may be unmeasurable, such
as genetic trait or life style, others are measurable, such as gender, age, and
salary level. Our problem is to select a subset of these factors for measure-
ment and adjustment, namely, that if we compare treated vs. untreated
subjects having the same values of the selected factors, we get the correct
treatment effect in that subpopulation of subjects. Such a set of factors is
called a “sufficient set” or a set “appropriate for adjustment”.

The following criterion, named “back-door” in Pearl (1993), provides a
graphical method of selecting such a set of factors for adjustment. It states
that a set S is appropriate for adjustment if two conditions hold:

1. No element of S is a descendant of X.

2. The elements of S “block” all “back-door” paths from X to Y , namely
all paths that end with an arrow pointing to X.

In this criterion, a set S of nodes is said to block a path p if either (i)
p contains at least one arrow-emitting node that is in S, or (ii) p contains
at least one collision node that is outside S and has no descendant in S15.
For example, the set S = {Z3} blocks the path X ← W1 ← Z1 → Z3 → Y ,
because the arrow-emitting node Z3 is in S. However, the set S = {Z3}
does not block the path X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y , because

15The terms “arrow-emitting node” and “collision node” are to be interpreted literally
as illustrated by the examples given.
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none of the arrow-emitting nodes, Z1 and Z2, is in S, and the collision node
Z3 is not outside S.

Based on this criterion we see, for example, that the sets {Z1, Z2, Z3},
{Z1, Z3}, and {W2, Z3}, each is sufficient for adjustment, because each
blocks all back-door paths between X and Y . The set {Z3}, however, is
not sufficient for adjustment because, as explained above, it does not block
the path X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y .

The intuition behind the back-door criterion is as follows. The back-
door paths in the diagram carry spurious associations from X to Y , while
the paths directed along the arrows from X to Y carry causative asso-
ciations. Blocking the former paths (by conditioning on S) ensures that
the measured association between X and Y is purely causative, namely, it
correctly represents the target quantity: the causal effect of X on Y .

Formally, the implication of finding a sufficient set S is that, stratifying
on S is guaranteed to remove all confounding bias relative the causal effect
of X on Y . In other words, the risk difference in each stratum of S gives
the correct causal effect in that stratum. In the binary case, for example,
the risk difference in stratum s of S is given by

P (Y = 1|X = 1, S = s)− P (Y = 1|X = 0, S = s),

while the causal effect (of X on Y ) at that stratum is given by

P (Y = 1|do(X = 1), S = s)− P (Y = 1|do(X = 0), S = s).

These two expressions are guaranteed to be equal whenever S is a suf-
ficient set, such as {Z1, Z3} or {Z2, Z3} in Figure 4. Likewise, the average
stratified risk difference, taken over all strata,

∑
s

[P (Y = 1|X = 1, S = s)− P (Y = 1|X = 0, S = s)]P (S = s),

gives the correct causal effect of X on Y in the entire population

P (Y = 1|do(X = 1))− P (Y = 1|do(X = 0)).

In general, for multivalued variables X and Y , finding a sufficient set S
permits us to write

P (Y = y|do(X = x), S = s) = P (Y = y|X = x, S = s),
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and

P (Y = y|do(X = x)) =
∑

s

P (Y = y|X = x, S = s)P (S = s). (3.18)

Since all factors on the right hand side of the equation are estimable
(e.g., by regression) from the pre-interventional data, the causal effect can
likewise be estimated from such data without bias.

Interestingly, it can be shown that any sufficient set, S, taken as a
unit, satisfies the associational criterion that epidemiologists have been
using to define “confounders”. In other words, S must be associated with
X and, simultaneously, associated with Y , given X. This need not hold
for any specific members of S. For example, the variable Z3 in Figure 4,
though it is a member of every sufficient set and hence a confounder, can
be unassociated with both Y and X (Pearl, 2000, p. 195).

The back-door criterion allows us to write Equation (3.18) directly, by
selecting a sufficient set S from the diagram, without manipulating the
truncated factorization formula. The selection criterion can be applied
systematically to diagrams of any size and shape, thus freeing analysts
from judging whether “X is conditionally ignorable given S”, a formidable
mental task required in the potential-response framework Rosenbaum and
Rubin (1983). The criterion also enables the analyst to search for an opti-
mal set of covariate—namely, a set S that minimizes measurement cost or
sampling variability (Tian et al., 1998).

General control of confounding

Adjusting for covariates is only one of many methods that permits us to
estimate causal effects in nonexperimental studies. Pearl (1995a) has pre-
sented examples in which there exists no set of variables that is sufficient for
adjustment and where the causal effect can nevertheless be estimated con-
sistently. The estimation, in such cases, employs multi-stage adjustments.
For example, if W3 is the only observed covariate in the model of Figure 4,
then there exists no sufficient set for adjustment (because no set of observed
covariates can block the paths from X to Y through Z3), yet P (y|do(x))
can be estimated in two steps; first we estimate P (w3|do(x)) = P (w3|x)
(by virtue of the fact that there exists no back-door path from X to W3),
second we estimate P (y|do(w3)) (since X constitutes a sufficient set for the
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effect of W3 on Y ) and, finally, we combine the two effects together and
obtain

P (y|do(x)) =
∑
w3

P (w3|do(x))P (y|do(w3)). (3.19)

The analysis used in the derivation and validation of such results in-
vokes mathematical means of transforming causal quantities, represented
by expressions such as P (Y = y|do(x)), into do-free expressions deriv-
able from P (z, x, y), since only do-free expressions are estimable from non-
experimental data. When such a transformation is feasible, we are ensured
that the causal quantity is identifiable.

General graphical methods for the identification and control of con-
founders, were presented in Galles and Pearl (1995), while extensions to
problems involving multiple interventions (e.g., time varying treatments)
were developed in Pearl and Robins (1995), Kuroki and Miyakawa (1999),
and (Pearl, 2000, Chapters 3 and 4).

A recent analysis, Tian and Pearl (2002), further shows that the key to
identifiability lies not in blocking paths between X and Y but, rather, in
blocking paths between X and its immediate successors on the pathways to
Y . All existing criteria for identification are special cases of the one defined
in the following theorem:

Theorem 3.2 (Tian and Pearl (2002)). A sufficient condition for iden-
tifying the causal effect P (y|do(x)) is that every path between X and any of
its children traces at least one arrow emanating from a measured variable.16

3.3 Counterfactual analysis in structural models

Not all questions of causal character can be encoded in P (y|do(x)) type
expressions, in much the same way that not all causal questions can be
answered from experimental studies. For example, questions of attribution
(e.g., what fraction of death cases are due to specific exposure?) or of sus-
ceptibility (what fraction of some healthy unexposed population would have
gotten the disease had they been exposed?) cannot be answered from exper-
imental studies, and naturally, this kind of questions cannot be expressed

16Before applying this criterion, one may delete from the causal graph all nodes that
are not ancestors of Y .
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in P (y|do(x)) notation17. To answer such questions, a probabilistic analysis
of counterfactuals is required, one dedicated to the relation “Y would be
y had X been x in situation U = u,” denoted Yx(u) = y. Remarkably,
unknown to most economists and philosophers, structural equation mod-
els provide the formal interpretation and symbolic machinery for analyzing
such counterfactual relationships18.

The key idea is to interpret the phrase “had X been x” as an instruction
to modify the original model and replace the equation for X by a constant x,
as we have done in Equation (3.6). This replacement permits the constant
x to differ from the actual value of X (namely fX(z, v)) without rendering
the system of equations inconsistent, thus yielding a formal interpretation
of counterfactuals in multi-stage models, where the dependent variable in
one equation may be an independent variable in another.

To illustrate, consider again the modified model Mx0 of Equation (3.6),
formed by the intervention do(X = x0) (Figure 2(b)). Call the solution of Y
in model Mx0 the potential response of Y to x0, and denote it by the symbol
Yx0(u, v, w). This entity can be given a counterfactual interpretation, for
it stands for the way an individual with characteristics (u, v, w) would re-
spond, had the treatment been x0, rather than the treatment x = fX(z, v)
actually received by that individual. In our example, since Y does not
depend on v and w, we can write:

Yx0(u, v, w) = Yx0(u) = fY (x0, u).

Clearly, the distribution P (u, v, w) induces a well defined probability on
the counterfactual event Yx0 = y, as well as on joint counterfactual events,
such as ‘Yx0 = y AND Yx1 = y′,’ which are, in principle, unobservable
if x0 6= x1. Thus, to answer attributional questions, such as whether Y
would be y1 if X were x1, given that in fact Y is y0 and X is x0, we
need to compute the conditional probability P (Yx1 = y1|Y = y0, X = x0)

17The reason for this fundamental limitation is that no death case can be tested twice,
with and without treatment. For example, if we measure equal proportions of deaths
in the treatment and control groups, we cannot tell how many death cases are actually
attributable to the treatment itself; it is quite possible that many of those who died under
treatment would be alive if untreated and, simultaneously, many of those who survived
with treatment would have died if not treated.

18Connections between structural equations and a restricted class of counterfactuals
were first recognized by Simon and Rescher (1966). These were later generalized by Balke
and Pearl (1995) to permit counterfactual conditioning on dependent variables.
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which is well defined once we know the forms of the structural equations
and the distribution of the exogenous variables in the model. For example,
assuming a linear equation for Y (as in Figure 1),

y = βx + u,

the conditions Y = y0 and X = x0 yield V = x0 and U = y0 − βx0,
and we can conclude that, with probability one, Yx1 must take the value:
Yx1 = βx1+U = β(x1−x0)+y0. In other words, if X were x1 instead of x0,
Y would increase by β times the difference (x1−x0). In nonlinear systems,
the result would also depend on the distribution of U and, for that reason,
attributional queries are generally not identifiable in nonparametric models
(Pearl, 2000, Chapter 9).

This interpretation of counterfactuals, cast as solutions to modified sys-
tems of equations, provides the conceptual and formal link between struc-
tural equation modeling and the Neyman-Rubin potential-outcome frame-
work, as well as Robins’ extensions, which will be discussed in Section 4.
It ensures us that the end results of the two approaches will be the same;
the choice is strictly a matter of convenience or insight.

3.4 An example: Non-compliance in clinical trials

Formulating the assumptions

Consider the model of Figure 5(a) and Equation (3.5), and assume that
it represents the experimental setup in a typical clinical trial with partial
compliance. Let Z, X, Y be observed variables, where Z represents a ran-
domized treatment assignment, X is the treatment actually received, and
Y is the observed response. The U term represents all factors (unobserved)
that influence the way a subject responds to treatments; hence, an arrow
is drawn from U to Y . Similarly, V denotes all factors that influence the
subject’s compliance with the assignment, and W represents the random
device used in deciding assignment. The dependence between V and U
allows for certain factors (e.g., socio economic status or predisposition to
disease and complications) to influence both compliance and response. In
Equation (3.5), fX represents the process by which subjects select treat-
ment level and fY represents the process that determines the outcome Y .
Clearly, perfect compliance would amount to setting fX(z, v) = z while any
dependence on v represents imperfect compliance.
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Figure 5: (a) Causal diagram representing a clinical trial with imperfect compli-

ance. (b) A diagram representing interventional treatment control.

The graphical model of Figure 5(a) reflects two assumptions.

1. The assignment Z does not influence Y directly but rather through
the actual treatment taken, X. This type of assumption is called
“exclusion” restriction, for it excludes a variable (Z) from being a
determining argument of the function fY .

2. The variable Z is independent of U and V ; this is ensured through
the randomization of Z, which rules out a common cause for both Z
and U (as well as for Z and V ).

By drawing the diagram of Figure 5(a) an investigator encodes an unam-
biguous specification of these two assumptions, and permits the technical
part of the analysis to commence, under the interpretation provided by
Equation (3.5).

The target of causal analysis in this setting is to estimate the causal
effect of the treatment (X) on the the outcome (Y ). This effect is defined
as the response of the population in hypothetical experiment in which we
administer treatment at level X = x0 uniformly to the entire population
and let x0 take different values on hypothetical copies of the population.
Such hypothetical experiments is governed by the modified model of Equa-
tion (3.6) and the corresponding distribution P (y|do(x0)). An inspection
of the diagram in Figure 5(a) reveals immediately that this distribution
is not identifiable by adjusting for confounders. The graphical criterion
for such adjustment requires the existence of observed covariates on the
“back-door” path X ← V ↔ U → Y , so as to block (by stratification) the
spurious associations created by that path. Had V (or U) been observable,
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the treatment effect would have been obtained by stratification on the levels
of V

P (Y = y|do(x0)) =
∑

v

P (Y = y|X = x0, V = v)P (V = v), (3.20)

thus yielding an estimable expression that requires no measurement of U
and no assumptions relative the dependence between U and V . However,
since V (and U) are assumed to be unobserved, and since no other blocking
covariates exist, the investigator can conclude that confounding bias cannot
be removed by adjustment. Moreover, it can be shown that, in the absence
of additional assumptions, the treatment effect in such graphs cannot be
identified by any method whatsoever Balke and Pearl (1997); one must
therefore resort to approximate methods of assessment.

It is interesting to note that it is our insistence on allowing arbitrary
functions in Equation (3.5) that curtails our ability to infer the treatment
effect from nonexperimental data (when V and U are unobserved). In linear
systems, for example, the causal effect of X on Y is identifiable, as can be
seen by writing19 :

y = fY (x, u) = βx + u; (3.21)

multiplying this equation by z and taking expectations, gives

β = Cov(Z, Y )/(Cov(Z,X)), (3.22)

which reduces β to correlations among observed measurements. Equation
(3.22) is known as the instrumental variable estimand (Bowden and Turk-
ington, 1984).

Similarly, Imbens and Angrist (1994) have shown that certain nonlin-
ear restrictions of the functions fX and fY may render the causal effect
identifiable.

Bounding causal effects

When conditions for identification are not met, the best one can do is derive
bounds for the quantities of interest—namely, a range of possible values that

19Note the β represents the incremental causal effect of X on Y , defined by

β
∆
= E(Y |do(x0 + 1))− E(Y |do(x0)).

Naturally, all attempts to give β statistical interpretation have ended in frustration
(Whittaker, 1990; Wermuth, 1992; Wermuth and Cox, 1993).
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represents our ignorance about the data-generating process and that cannot
be improved with increasing sample size. In our example, this amounts to
bounding the average difference of Equation (3.7) subject to the constraint
provided by the observed distribution

P (x, y|z) =
∑
v,u

P (x, y, v, u|z)

=
∑
v,u

P (y|x, u, v)P (x|z, v)P (u, v), (3.23)

where the product decomposition is licensed by the conditional indepen-
dencies shown in Figure 5(a). Likewise, since the causal effect is governed
by the modified model of Figure 5(b), it can be written

P (y|do(x′))− P (y|do(x′′)) =
∑

u

[P (y|x′, u)− P (y|x′′, u)]P (u). (3.24)

Our task is then to bound the expression in Equation (3.24) given
the observed probabilities P (y, x|z) as expressed in Equation (3.23). This
task amounts to a constrained optimization exercise of finding the highest
and lowest values of Equation (3.24) subject to the equality constraint in
Equation (3.23), where the maximization ranges over all possible functions
P (u, v), P (y|x, u, v) and P (x|z, u) that satisfy those constraints.

Using linear-programming techniques, Balke and Pearl (1997) have de-
rived closed-form solutions for these bounds20 and showed that despite the
imperfection of the experiments, the derived bounds can yield significant
and sometimes accurate information on the treatment efficacy. Chickering
and Pearl (1997) further used Bayesian techniques (with Gibbs sampling)
to investigate the sharpness of these bounds as a function of sample size.

Testable implications

The two assumptions embodied in the model of Figure 5(a), that Z is ran-
domized and has no direct effect on Y , are untestable in general (Bonet,
2001). However, if the treatment variable may take only a finite number
of values, the combination of these two assumptions yields testable impli-
cations, and these can be used to alert investigators to possible violations

20Looser bounds were derived earlier by Robins (1989) and Manski (1990)
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of these assumptions. The testable implications take the form of inequali-
ties which restrict aspects of the observed conditional distribution P (x, y|z)
from exceeding certain bounds Pearl (1995b).

One specially convenient form that these restrictions assume is given by
the inequality

max
x

∑
y

[max
z

P (x, y|z)] ≤ 1. (3.25)

Pearl (1995b) called this restriction an instrumental inequality, because
it constitutes a necessary condition for any variable Z to qualify as an
instrument relative to the pair (X, Y ). This inequality is sharp for binary
valued X, but becomes loose when the cardinality of X increases21.

If all observed variables are binary, Equation (3.25) reduces to the four
inequalities

P (Y = 0, X = 0|Z = 0) + P (Y = 1, X = 0|Z = 1) ≤ 1
P (Y = 0, X = 1|Z = 0) + P (Y = 1, X = 1|Z = 1) ≤ 1
P (Y = 1, X = 0|Z = 0) + P (Y = 0, X = 0|Z = 1) ≤ 1
P (Y = 1, X = 1|Z = 0) + P (Y = 0, X = 1|Z = 1) ≤ 1. (3.26)

We see that the instrumental inequality is violated when the control-
ling instrument Z manages to produce significant changes in the response
variable Y while the direct cause, X, remains constant.

The instrumental inequality can be used in the detection of undesirable
side-effects. Violations of this inequality can be attributed to one of two
possibilities: either there is a direct causal effect of the assignment (Z) on
the response (Y ), unmediated by the treatment (X), or there is a common
causal factor influencing both variables. If the assignment is carefully ran-
domized, then the latter possibility is ruled out and any violation of the
instrumental inequality (even under conditions of imperfect compliance)
can safely be attributed to some direct influence of the assignment process
on subjects’ response (e.g., psychological aversion to being treated). Al-
ternatively, if one can rule out any direct effects of Z on Y , say through

21The inequality is sharp in the sense that every distribution P (x, y, z) satisfying Equa-
tion (3.25) can be generated by the model defined in Figure 5(a).
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effective use of a placebo, then any observed violation of the instrumental
inequality can safely be attributed to spurious dependence between Z and
V , namely, to selection bias.

The instrumental inequality (3.25) can be tightened appreciably if we
are willing to make additional assumptions about subjects’ behavior—for
example, that increasing recommended dosage Z would induce no individ-
ual to decrease the actual dosage X or, mathematically, that for all v we
have

fX(z1, v) ≥ fX(z2, v),

whenever z1 ≥ z2. In the binary case, such an assumption amounts to
having no contrarians in the population, namely, no individual who would
consistently act contrary to his or her assignment. Under this assump-
tion, which Imbens and Angrist (1994)call monotonicity, the inequalities in
Equation (3.26) can be tightened (Balke and Pearl, 1997) to give

P (y, X = 1|Z = 1) ≥ P (y,X = 1|Z = 0)
P (y, X = 0|Z = 0) ≥ P (y,X = 0|Z = 1) (3.27)

for all y ∈ {0, 1}. Violation of these inequalities now means either selection
bias or a direct effect of Z on Y or the presence of contrarian subjects.

It is also interesting to note that the analysis of noncompliance pre-
sented in this section is valid under more general conditions than those
shown in the graph of Figure 5(a). If an arrow from Y to X is added to
the graph, a cyclic graph containing the feedback loop X → Y → X is
obtained. Such a loop may represent, for example, patients deciding on
dosage X by continuously monitoring their response Y . Nonetheless, the
structural equation model will not change, because, under the assumption
that the process is at equilibrium, y is a unique function of x and u, and
an equation of the form

x = g(z, y, v) (3.28)

can be replaced with
x = g′(z, v′), (3.29)

such that v′ is still independent of z. The nonparametric nature of the
structural equations in Equation (3.5) permits us to make such transfor-
mations without affecting the results of the analysis. Consequently, testable
implications and nonparametric bounds obtained from the analysis of the
acyclic model are still valid for the cyclic case.
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4 The language of potential outcomes and counterfactuals

The primitive object of analysis in the potential-outcome framework is the
unit-based response variable, denoted Yx(u), read: “the value that Y would
obtain in unit u, had X been x” (Neyman, 1923; Rubin, 1974). In Section
3.3 we saw that this counterfactual entity has the natural interpretation
as representing the solution for Y in a modified system of equation, where
unit is interpreted a vector u of background factors that characterize an ex-
perimental unit. Each structural equation model thus provides a compact
representation for a huge number of counterfactual claims. The potential
outcome framework lacks such compact representation. In the potential
outcome framework, Yx(u) is taken as primitive, that is, an undefined quan-
tity in terms of which other quantities are defined. Thus, the structural
interpretation of Yx(u) can be regarded as the formal basis for the potential
outcome approach. In particular, this interpretation forms a connection be-
tween the opaque English phrase “the value that Y would obtain in unit
u, had X been x” and a mathematical model that simulates hypothetical
changes in X. The formation of the submodel Mx explicates mathemati-
cally how the hypothetical condition “had X been x” could be realized, by
pointing to and replacing the equation that is violated in making X = x a
reality. The logical consequence of such hypothetical conditions can then
be derived mathematically.

4.1 Formulating assumptions

The distinct characteristic of the potential outcome approach is that, al-
though investigators must think and communicate in terms of undefined,
hypothetical quantities such as Yx(u), the analysis itself is conducted al-
most entirely within the axiomatic framework of the probability theory.
This is accomplished, by postulating a “super” probability function on
both hypothetical and real events. If U is treated as a random variable
then the value of the counterfactual Yx(u) becomes a random variable as
well, denoted as Yx. The potential-outcome analysis proceeds by treating
the observed distribution P (x1, . . . , xn) as the marginal distribution of an
augmented probability function P ∗ defined over both observed and coun-
terfactual variables. Queries about causal effects (written P (y|do(x)) in
the structural analysis) are phrased as queries about the marginal distri-
bution of the counterfactual variable of interest, written P ∗(Yx = y). The
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new hypothetical entities Yx are treated as ordinary random variables; for
example, they are assumed to obey the axioms of probability calculus, the
laws of conditioning, and the axioms of conditional independence. More-
over, these hypothetical entities are not entirely whimsy, but are assumed
to be connected to observed variables via consistency constraints Robins
(1986) such as

X = x =⇒ Yx = Y, (4.1)

which states that, for every u, if the actual value of X turns out to be x,
then the value that Y would take on if X were x is equal to the actual
value of Y . For example, a person who chose treatment x and recovered,
would also have recovered if given treatment x by design.

The main conceptual difference between the two approaches is that,
whereas the structural approach views the intervention do(x) as an oper-
ation that changes the distribution but keeps the variables the same, the
potential-outcome approach views the variable Y under do(x) to be a dif-
ferent variable, Yx, loosely connected to Y through relations such as (4.1).

Pearl (2000, Chapter 7) shows, using the structural interpretation of
Yx(u), that it is indeed legitimate to treat counterfactuals as jointly dis-
tributed random variables in all respects, that consistency constraints like
(4.1) are automatically satisfied in the structural interpretation and, more-
over, that investigators need not be concerned about any additional con-
straints except the following two:

Yyz = y for all y and z (4.2)
Xz = x ⇒ Yxz = Yz for all x and z. (4.3)

Equation (4.2) ensures that the interventions do(Y = y) results in the
condition Y = y, regardless of concurrent interventions, say do(Z = z),
that are applied to variables other than Y . Equation (4.3) generalizes (4.1)
to cases where Z is held fixed, at z.

To communicate substantive causal knowledge, the potential-outcome
analyst must express causal assumptions as constraints on P ∗, usually in the
form of conditional independence assertions involving counterfactual vari-
ables. For instance, in our example of a randomized clinical trial with im-
perfect compliance (Figure 5(a)), to communicate the understanding that
the treatment assignment (Z) is randomized (hence independent of both
the way subjects react to treatments and how subjects comply with the
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assignment), the potential-outcome analyst would use the independence
constraint Z⊥⊥{Xz, Yx}22. To further formulate the understanding that Z
does not affect Y directly, except through X, the analyst would write a, so
called, “exclusion restriction” Yxz = Yx.

4.2 Performing inferences

A collection of constraints of this type might sometimes be sufficient to
permit a unique solution to the query of interest; in other cases, only bounds
on the solution can be obtained. For example, if one can plausibly assume
that a set Z of covariates satisfies the conditional independence

Yx⊥⊥X|Z (4.4)

(an assumption that was termed “conditional ignorability” by Rosenbaum
and Rubin (1983) then the causal effect P ∗(Yx = y) can readily be evaluated
to yield

P ∗(Yx = y) =
∑

z

P ∗(Yx = y|z)P (z)

(using (4.4))
=

∑
z

P ∗(Yx = y|x, z)P (z)

(using (4.1))
=

∑
z

P ∗(Y = y|x, z)P (z)

=
∑

z

P (y|x, z)P (z). (4.5)

The last expression contains no counterfactual quantities (thus permit-
ting us to drop the asterisk from P ∗) and coincides precisely with the
standard covariate-adjustment formula of Equation (3.18).

We see that the assumption of conditional ignorability (4.4) qualifies Z
as a sufficient covariate for adjustment, and is equivalent therefore to the
graphical criterion (called “back door” in Section 3.2) that qualifies such
covariates by tracing paths in the causal diagram.

22The notation Y⊥⊥X|Z stands for the conditional independence relationship P (Y =
y, X = x|Z = z) = P (Y = y|Z = z)P (X = x|Z = z), Dawid (1979).
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The derivation above may explain why the potential outcome approach
appeals to mathematical statisticians; instead of constructing new vocabu-
lary (e.g., arrows), new operators (do(x)) and new logic for causal analysis,
almost all mathematical operations in this framework are conducted within
the safe confines of probability calculus. Save for an occasional application
of rule (4.3) or (4.1), the analyst may forget that Yx stands for a counter-
factual quantity—it is treated as any other random variable, and the entire
derivation follows the course of routine probability exercises.

However, this mathematical convenience often comes at the expense
of conceptual clarity, especially at a stage where causal assumptions need
be formulated. The reader may appreciate this aspect by attempting to
judge whether the assumption of conditional ignorability Equation (4.4),
the key to the derivation of Equation (4.5), holds in any familiar situa-
tion, say in the experimental setup of Figure 5(a). This assumption reads:
“the value that Y would obtain had X been x, is independent of X, given
Z”. Paraphrased in experimental metaphors, and applied to variable V ,
this assumption reads: The way an individual with attributes V would
react to treatment X = x is independent of the treatment actually re-
ceived by that individual. Such assumptions of conditional independence
among counterfactual variables are not straightforward to comprehend or
ascertain, for they are cast in a language far removed from ordinary under-
standing of cause and effect. When counterfactual variables are not viewed
as byproducts of a deeper, process-based model, it is also hard to ascer-
tain whether all relevant counterfactual independence judgments have been
articulated, whether the judgments articulated are redundant, or whether
those judgments are self-consistent. The need to express, defend, and man-
age formidable counterfactual relationships of this type explain the slow
acceptance of causal analysis among epidemiologists and statisticians, and
why economists and social scientists continue to use structural equation
models instead of the potential-outcome alternatives advocated in Angrist
et al. (1996); Holland (1988); Sobel (1998).

On the other hand, the algebraic machinery offered by the potential-
outcome notation, once a problem is properly formalized, can be extremely
powerful in refining assumptions (Angrist et al., 1996), deriving consistent
estimands (Robins, 1986), bounding probabilities of necessary and sufficient
causation (Tian and Pearl, 2000), and combining data from experimental
and nonexperimental studies (Pearl, 2000). The Section (4.3) presents a
way of combining the best features of the two approaches. It is based on
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encoding causal assumptions in the language of diagrams, translating these
assumptions into potential outcome notation, performing the mathematics
in the algebraic language of counterfactuals and, finally, interpreting the
result in plain causal language.

4.3 Combining graphs and algebra

The formulation of causal assumptions using graphs was discussed in Sec-
tion 3. In this subsection we will systematize the translation of these as-
sumptions from graphs to counterfactual notation.

Structural equation models embody causal information in both the
equations and the probability function P (u) assigned to the error vari-
ables; the former is encoded as missing arrows in the diagrams the latter as
missing (double arrows) dashed arcs. Each parent-child family (PAi, Xi)
in a causal diagram G corresponds to an equation in the model M . Hence,
missing arrows encode exclusion assumptions, that is, claims that adding
excluded variables to an equation will not change the outcome of the hy-
pothetical experiment described by that equation. Missing dashed arcs
encode independencies among error terms in two or more equations. For
example, the absence of dashed arcs between a node Y and a set of nodes
{Z1, . . . , Zk} implies that the corresponding background variables, UY and
{UZ1 , . . . , UZk

}, are independent in P (u).

These assumptions can be translated into the potential-outcome nota-
tion using two simple rules (Pearl, 1995a, p. 704); the first interprets the
missing arrows in the graph, the second, the missing dashed arcs.

1. Exclusion restrictions: For every variable Y having parents PAY and
for every set of endogenous variables S disjoint of PAY , we have

Ypa
Y

= Ypa
Y

,s. (4.6)

2. Independence restrictions: Let Z1, . . . , Zk be any set of nodes not con-
nected to Y via dashed arcs, and let PA1, . . . , PAk be their respective
sets of parents. We have

Ypa
Y
⊥⊥{Z1 pa1 , . . . , Zk pak

}. (4.7)

The exclusion restrictions expresses the fact that each parent set in-
cludes all direct causes of the child variable, hence, fixing the parents of
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Y , determines the value of Y uniquely, and intervention on any other set
S of (endogenous) variables can no longer affect Y . The independence re-
striction translates the independence between UY and {UZ1 , . . . , UZk

} into
independence between the corresponding potential-outcome variables. This
follows from the observation that, once we set their parents, the variables
in {Y,Z1, . . . , Zk} stand in functional relationships to the U terms in their
corresponding equations.

As an example, the model shown in Figure 5(a) displays the following
parent sets

PAZ = {∅}, PAX = {Z}, PAY = {X}. (4.8)

Consequently, the exclusion restrictions translate into

Xz = Xyz

Zy = Zxy = Zx = Z (4.9)
Yx = Yxz.

The absence of any dashed arc between Z and {Y, X} translates into
the independence restriction

Z⊥⊥{Yx, Xz}. (4.10)

This is precisely the condition of randomization; Z is independent of all
its non-descendants, namely independent of U and V which are the exoge-
nous parents of Y and X, respectively. (Recall that the exogenous parents
of any variable, say Y , may be replaced by the counterfactual variable
Ypa

Y
, because holding PAY constant renders Y a deterministic function of

its exogenous parent UY .)

The role of graphs is not ended with the formulation of causal assump-
tions. Throughout an algebraic derivation, like the one shown in Equation
(4.5), the analyst may need to employ additional assumptions that are en-
tailed by the original exclusion and independence assumptions, yet are not
shown explicitly in their respective algebraic expressions. For example, it is
hardly straightforward to show that the assumptions of Equations (4.9) and
(4.10) imply the conditional independence (Yx⊥⊥Z|{Xz, X}) but do not im-
ply the conditional independence (Yx⊥⊥Z|X). These are not easily derived
by algebraic means alone. Such implications can, however, easily be tested
in the graph of Figure 5(a) using the graphical criterion for conditional
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independence, called d-separation (see Greenland et al., 1999a; Pearl, 2000,
pp. 16–17, 213–215). Thus, when the need arises to employ independencies
in the course of a derivation, the graph may assist the procedure by vividly
displaying the independencies that logically follow from our assumptions.

5 Conclusions

Statistics is strong in devising ways of describing data and inferring dis-
tributional parameters from sample. Causal inference require two addition
ingredients: a science-friendly language for articulating causal knowledge,
and a mathematical machinery for processing that knowledge, combining
it with data and drawing new causal conclusions about a phenomena. This
paper introduces nonparametric structural equations models as a formal
and meaningful language for formulating causal assumptions, and for ex-
plicating many concepts used in scientific discourse. These include: ran-
domization, intervention, direct and indirect effects, confounding, counter-
factuals, and attribution. The algebraic component of the structural lan-
guage coincides with the potential-outcome framework, and its graphical
component embraces Wright’s method of path diagrams. When unified and
synthesized, the two components offer statistical investigators a powerful
methodology for empirical research.
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Introduction: Can we measure the causal effect of discrimi-
nation?

In his excellent review of recent statistical approaches to causal inference,
Pearl proposes the following causal question motivating research in the
social sciences: “Whether data can prove an employer guilty of hiring dis-
crimination?” Here, we explore whether one can in fact apply Pearl’s causal
inference tools in the context of discrimination. Our main concern relates
to one expressed by Freedman (2003), namely the extent to which we can
engage in causal inference when the “treatment” variables of interest are
concomitants such as gender, race and age, which are not manipulable.
We examine the causal meaning of discrimination and use both the causal
framework and the explicit formulation of counterfactuals that are of inter-
est to the study of discrimination.

What is discrimination?

Discrimination is usually taken to mean the differential treatment of in-
dividuals based on a perceived characteristic or group membership. In
the United States and elsewhere, there is often a legal definition of dis-
crimination that is of relevance to our discussion: An action is said to be
discriminatory, e.g., with respect to race, if the treatment of an individual
would be different had that person been of a different race. Thus, in the
context of employment, we might wish to say that an employer’s actions
are discriminatory if he/she treats employees or applicants for positions dif-
ferently “because of” their race. But race itself is not the “cause” of labor
market discrimination, nor is it the cause of differences in access to educa-
tion, family wealth, or health outcomes. The same could be said of gender
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and of age (if we exclude the possibility of sex change operations). Unlike
age, but similarly to gender, race is a characteristic of a person that is both
a social construct and may have some distinctive physical attributes, e.g.,
related to skin color. At this level race is not a manipulable variable. In
Pearl’s notation, we cannot set do(X = x) where X is race. This is the
Freedman (2003) argument referred to above.

The issue of manipulability is less clear if one considers race to be purely
a social construct because then at least theoretically it could be manipu-
lated; however, we can manipulate and even randomize the “perception”
of race. For example, Bertrand and Mullainathan (2003) used real job
resumes but randomly assigned distinctively African American or white
names to the resumes. (An unknown here is whether names that are dis-
tinctively black or white carry other connotations beyond those associated
with only race, such as class.) Similar ideas have been used in psychology
experiments, e.g., where researchers randomly assign pictures of people of
different races as treatment effects to elicit subjects’ responses in different
settings.

There are also situations where we can manipulate information about
concomitant variables without randomization. For example, Goldin and
Rouse (2000) consider how information about the gender of applicants to
symphony orchestras was removed through the creation of blind auditions.
In this case gender was not randomized but the information about it became
unavailable. Thus it was possible to obtain data on the effect of having the
information versus not having it on the proportions of women and men who
were hired or promoted. But then we must focus our attention on knowledge
of the hiring process, so that we can eliminate alternative explanations for
the effect of information on gender. Goldin and Rouse (2000) attempted to
do this through various forms of generalized linear models, although there
is some issue about the extent to which they succeeded.

To summarize, even if we cannot manipulate concomitant variables,
there are situations where we can randomize the perception of the con-
comitant variables or we can assess the effect of a shift from having the
information available to not having it available. In these cases, we are
manipulating perception of race or gender. In our first example, the ma-
nipulation is do(X = x) where X involves randomly assigning a racially
identifiable name to a resume. In the second, the manipulation is the
access to information about gender, the “do command” creates an envi-
ronment in which discrimination based on gender is not possible because
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the information is unavailable. This case is closer to the counterfactual we
are most interested in exploring in the context of labor markets, i.e., the
expected outcome (e.g., with regard to hiring or wages) if there were no
labor market discrimination.

Counterfactuals at work

An example of the counterfactuals of interest in labor market discrimination
is the wages of individuals and groups without discrimination. However,
when the question is one of attribution, i.e., the existence of labor mar-
ket discrimination or the mechanism under which it operates, we clearly
cannot observe these counterfactuals. Thus we ask: What is the causal
relationship among race, labor market discrimination, and wages? As we
mentioned above, race certainly does not cause labor market discrimina-
tion. And labor market discrimination does not cause race, although this
idea does correspond with the notion that race and gender as social con-
structs only have meaning through their consequences. Perhaps it can be
thought of as an interaction effect-discrimination acts on race (or gender).
Due to the lack of direct data on discrimination, instead of using discrim-
ination in statistical models, we use race (or gender) with the idea that
if there were no labor market discrimination then we would expect people
with similar productivity to earn equal wages. Thus, in the absence of dis-
crimination, and with complete information on productivity, race should
not be associated with wages. The problem with implementing this logic
is that we do not have complete information on productivity and thus we
cannot discern whether an observed association between race and wages is
due to unobserved differences in productivity or is evidence of labor market
discrimination. Conversely, suppose an association between race and wages
is not observed once productivity variables are controlled for. This again
could be due to unobserved differences in productivity (in the opposite
direction), or it could be evidence of a lack of labor market discrimination.

Using the potential outcome notation for discrimination

Pearl suggests that we use the notion of potential outcomes in the absence
of a potential experiment in order to attribute a cause to an effect. In the
context of discrimination, we observe that race (or sex) is associated with
wages, and we would like to determine how much of this difference by race
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can be attributed to labor market discrimination. This has been the focus
of an extended research effort in the economics literature on discrimination,
mainly involving the functional forms used to assign these attributions.

Suppose, as in Haviland (2003), our goal is to assess how much of the ob-
served wage difference between demographic groups, highly educated mem-
bers of different racial and ethnic groups, is attributable to discrimination
based on demographic group membership after adjusting for differences in
qualifications. Let the unadjusted wage gap be defined by the difference in
conditional expected values,

Γ(Gj) = E(y1|Gj = 1)−E(y0|Gj = 0), (1)

where y1 and y0 are the natural logarithm of wages as though one is treated
as a member of the demographic group of interest or the base comparison
group respectively, Gj = 1 indicates that respondents are a member of
the demographic group j (black, Hispanic, or Asian men), Gj = 0 indi-
cates that respondents are a members of the base comparison group (non-
Hispanic white men), and Γ(Gj) is the wage gap for group Gj . Besides
demographic group membership, however, there are other characteristics
that affect wages and whose distributions differ between the groups. In
attempting to isolate the effect of market discrimination, the goal is to
control for pre-market characteristics in the estimates of the wage gap and
decompose the total wage gap into an amount associated with differences
in these characteristics and the amount remaining. Ideally, we would have
wages for each person, with his own characteristics besides group member-
ship, as though he were a white male and as though he were a member of
his own demographic group. (Similarly, we would want to have wages for
each white male as he would be paid were he a member of each other demo-
graphic group.) It is these missing counterfactuals that we need to estimate
in order to obtain an estimate of the average wage gap not associated with
differences in the distributions of the covariates.

Researchers have focused on obtaining a sufficient set of confounders to
estimate these missing counterfactuals consistently. The potential outcome
literature refers to this as the strong ignorability criterion: given the set
of covariates, group membership is independent of y0 (Heckman et al.,
1998). Note that there are several versions of this condition depending on
functional form and methodology (this form is specific to estimating just the
effect of ‘treatment on the treated’ and so refers only to y0). We can address
this type of assumption well by using Pearl’s suggested path diagrams.
If we assume that we have obtained such a set, then we can decompose
the unadjusted gap into a portion that is associated with differences in
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the distributions of the observed covariates and a portion that either is
associated with differences in the returns to these covariates or that is not
associated with the covariates.

A consequence of the assumption of strong ignorability of group assign-
ment given the covariates stated previously is that E(y0|Gj = 1, X = x) =
E(y0|Gj = 0, X = x). This assumption, in combination with the rest, al-
lows us to consistently estimate the decomposition of the unadjusted wage
gap into explainable and unexplainable portions. To demonstrate, let the
overall average wages in group Gj be expressed as

E(y1|Gj = 1) =
∑

X

pjxE(y1|Gj = 1, X = x), (2)

where E(y1|Gj = 1, X = x) is the expected earnings in group Gj with
characteristic X = x, and pjx is the proportion of members of group Gj

with characteristic X = x. We can consistently estimate these values using
standard data sources and estimation techniques. Similarly, for white men
we can write

E(y0|Gj = 0) =
∑

X

pWxE(y0|Gj = 0, X = x). (3)

Substituting equations (2) and (3) into equation (1) yields

E(y1|G− j = 1)−E(y0|G− j = 0)

=
∑

X

pjxE(y1|Gj = 1, X = x)−
∑

X

pWxE(y0|Gj = 0, X = x)

=
∑

X

pjx [E(y1|Gj = 1, X = x)− E(y0|Gj = 0, X = x)]

−
∑

X

[pWx − pjx] E(y0|Gj = 0, X = x). (4)

Our strong ignorability assumption allows us to use equation (4), which
may be observed, to estimate
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E(y1|G− j = 1)− E(y0|G− j = 0)

=
∑

X

pjx [E(y1|Gj = 1, X = x)−E(y0|Gj = 1, X = x)]

−
∑

X

[pWx − pjx]E(y0|Gj = 0, X = x), (5)

where the second summation gives the portion of the unadjusted gap as-
sociated with differences in the distribution of confounders, and the first is
the portion associated with unexplained differences in the returns to these
confounders.

These models are typically estimated parametrically, with separate lin-
ear regressions for each racial group (or each sex). In this framework the
expected values are regression coefficients, and what is referred to in the
example above as the probability of having a particular characteristic is
replaced by the mean of the characteristic in each group. Three problems
with these parametric models have been noted in the literature. First, there
is often a substantial lack of support in the data to make comparisons over
large portions of the union of the domains of the data for the groups of in-
terest. This problem may be exacerbated by the second problem, which is
incorrect functional form. The final, related problem is that the parametric
version of the decomposition (referred to as the Blinder-Oaxaca model and
traditionally used in studies of gender, racial, and ethnic wage gaps, e.g.,
see the review by Altonji and Blank (1999)) makes different predictions
depending on whether the coefficients from the regression on the control
group, the group of interest, or a pooled group are used to decompose the
unadjusted gap. These points and their potentially substantial effects on
estimates are demonstrated in Barsky et al. (2002).

One nonparametric alternative, matching, provides an intuitively clear
method for estimating the missing counterfactuals while avoiding the pit-
falls of parametric models in this context. To estimate the missing counter-
factual for a 32-year-old Hispanic man with a master’s degree in business
administration, i.e., his expected wage if he were paid as a white male,
Haviland (2003) uses the mean of the wages of white men of the same age
with the same highest degree and field. Assuming these counterfactuals
can be estimated for each member of the demographic group, the mean
gap conditional on age and education can be estimated by averaging over
the gaps for each individual in the group of interest. This estimate is often
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referred to as the effect of ‘treatment on the treated’ where in this case
‘treatment’ is demographic group membership under the condition of labor
market discrimination. Similarly, Pearl (2001) uses the term ‘natural direct
effect’ to describe the change we would expect in men’s employment if they
were treated as women by employers which is how an “effect of treatment
on the untreated” would be interpreted in this context.

The nonparametric method described above has the additional advan-
tage of making problems of support transparent. In fact, the matching
method of estimating the missing counterfactuals is only consistent if it is
used over the intersection of the supports of both distributions (Heckman
et al., 1998). It also provides an estimate of the full distribution of wage
gaps instead of a single point estimate for the mean.

As Pearl discusses, the fact that there are difficulties with the paramet-
ric models here has consequences for attributing causal effects. He suggests
that assigning attribution is only possible with parametric models where the
form of a specific effect of a variable or set of variables is considered known
and thus can be applied outside the range of that data. It is clear from the
econometric literature that, even assuming the set of confounders selected
to be in the model is sufficient to meet the strong ignorability criterion,
we cannot justify the parametric models. The nonparametric alternatives
require us to make estimates only within the range of the data, and thus
we must make all assumptions for estimating parameters not directly en-
countered in the data explicitly and not in the form of a parametric model.
Indeed, Pearl suggests that with nonparametric models it is not possible to
attribute causes, at least not in the areas where there is no overlap of the
data. This is similar to the problems with propensity score models when
the probability of being in the treated group is zero or one in some range of
the variables that are being controlled for (Rosenbaum and Rubin, 1983).

In summary, we highlight three sets of problems. First, we have to use
race or gender as a proxy for discrimination because we typically cannot
observe the mechanisms through which labor force discrimination occurs.
To make direct inference about discrimination, we need other information
about the data generating mechanism, e.g., how does labor market discrim-
ination operate to effect wages. Without this information we need other
untestable assumptions to carry over from one circumstance to another.
Second, even when our goal is simply to partition observed differences in
the outcome to known and unknown reasons, there are a host of problems
with what variables to include in the partition. Third, functional forms
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(parametric versus nonparametric and the form of the parametric models)
are problematic and affect whether or not we can make causal attributions.

Pearl recommends the use of path diagrams to encode causal assump-
tions and determine the conditions under which causal inference is pos-
sible. Given the preceding discussion, it is unclear how to represent the
labor market discrimination and non-labor market discrimination factors
affecting wages in a causal path diagram. Pearl notes this difficulty in
circumstances where an experiment is not possible; this is the case with
discrimination when the observable variable, race, is not manipulable. Un-
der these circumstances the researcher’s goal is to determine a sufficient
set of covariates whose distributions differ by race but are not due to labor
market discrimination in order to partition any difference in outcome by
race. Pearl’s ‘back-door’ criterion, while difficult to apply in detail without
a path diagram, is intuitively unlikely to be met by observational studies
of discrimination because the factors that affect wages and differ by race
but are not affected by market discrimination are difficult or impossible
to measure. On the other hand, these tools may all be used when race is
replaced in the model by the perception of race, which can be manipulated.

Back doors and the resume experiment

Bertrand and Mullainathan (2003) solved the problems with the ‘back door’
links in a path diagram for discrimination by randomizing a proxy variable
for race. They used real resumes with all personal identification removed
and matched these resumes to help-wanted advertisements in Chicago and
Boston. Then they randomized “African American sounding names” and
“white sounding names” to the pairs of resumes matched to each adver-
tisement. This randomization breaks the links between the education and
work experience on the resume (what an employer observes when making a
decision to call back a potential employee for an interview or not) and race.
This is what the typical observational studies cannot ensure: no matter
how many characteristics we attempt to control for, we may not have the
correct functional form and/or there may be other unobserved confounders.

There are both positive and negative consequences of their focus on a
particular early stage of the employment process. It is unclear how to re-
late the observed experimental outcome (call backs) to more typical labor
market outcomes such as employment or wages. On the other hand, this
focus makes it possible to randomize the perception of race across hypo-
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thetical people. In addition, the specificity makes this experiment similar
to a small-scale case study in that it can get closer to the actual mechanism
by which labor market discrimination occurs, the racial distinctiveness of a
name affects the probability of call backs. Thus it breaks the ties between
the usual host of confounders between race and the indicators of produc-
tivity that potential employers observe, and it comes closer to identifying
the mechanism through which labor market discrimination operates. (This
assumes that having a racially distinctive name does not carry any other
information or connotations besides race itself.) Both the randomization
and the identification of a mechanism are important for making a causal
attribution and thus making it possible to make predictions outside the
current situation. For instance, it may be possible to estimate the effect of
particular policy changes such as removing names from resumes before call
back decisions are made or having employment agencies use codes or some
other technique.

Concluding remarks

Pearl’s paper provides us with an excellent review of a number of issues from
the recent literature on causal modeling and the ways that they link to the
literature on counterfactuals and potential outcomes. We have attempted
in our discussion to show the direct relevance of these ideas to an important
policy problem to which Pearl actually refers in his opening paragraph. We
have explained not only why the issue of discrimination is of interest in the
context of causal models but also why it is far more complex than many
authors have hitherto suggested. The tools of causal inference are, we
believe, essential to such a discussion.

David Heckerman
Microsoft Research
Redmond, U.S.A.
Ross Shachter

Stanford University
Stanford, U.S.A.

We have been working with causal graphical models for over a decade
and believe that many statisticians and engineers would benefit from using
this approach, recognizing the crucial distinction between passive inference
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and active intervention. Consequently, we are delighted to see Professor
Pearl summarize his causal framework in this publication.

His framework is quite elegant and builds on seminal works in statis-
tics and decision making. His “do” graph surgery for causal models, for
example, was first proposed by Strotz and Wold (1960), and “do” itself is a
classic decision, albeit with some strong but subtle assumptions. Nonethe-
less, as Pearl describes in this contribution, statisticians have been slow to
adopt his work. Pearl gives two possible reasons why this is so. Here, we
offer and address another reason, which we find more compelling.

We first saw Pearl’s causal framework in 1993. Although the framework
seemed quite promising to us, we were puzzled by the meanings of and
assumptions underlying a critical component of his framework—namely,
the causal model.

Pearl gave (and still gives) a clear definition of cause-effect in terms
of the do operator (e.g., Pearl, 2000, page 204) and a clear definition of
the do operator in terms of a given causal model (e.g., Pearl, 2000, page
70). However, his definition of causal model was (and still is) unclear. For
example, on page 44 of his book, Pearl writes:

Definition (Causal Structure). A causal structure of a set
of variables V is a directed acyclic graph (DAG) in which each
node corresponds to a distinct element of V , and each link rep-
resents a direct functional relationship among the corresponding
variables.
Definition (Causal Model). A causal model is a pair
M =< D,ΘD > consisting of a causal structure D and a set
of parameters ΘD compatible with D. The parameters ΘD as-
sign a function xi = fi(pai, ui) to each Xi ∈ V and a probability
measure P (ui) to each ui, where PAi are the parents of Xi in D
and where each Ui is a random disturbance distributed according
to P (ui), independently of all other u.

Although it appears to be mathematically precise, we find this defi-
nition to be confusing. What is the source or semantics of the “direct
functional relationship among the corresponding variables” and the “ran-
dom disturbances”? What assumptions are we making when building such
a model?
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To answer these questions, we developed a foundation for Pearl’s frame-
work based on decision theory—in particular, the work of Savage (1954).
That is, we defined Pearl’s causal model as well as the do operator and
cause and effect in terms of Savage’s primitives (Heckerman and Shachter,
1995). As an additional benefit, we showed how Pearl’s causal model can
be equivalently represented as an influence diagram—a graphical repre-
sentation of decision making under uncertainty used now for almost three
decades (Miller et al., 1976).

Once we found this path from Savage to Pearl, we became quite com-
fortable with Pearl’s framework and the assumptions necessary to apply it.
Unfortunately, Pearl has downplayed the strong connections between his
work and decision theory as well as the suitability of the influence diagram
as a representation of causal interactions. On the contrary, we believe that
people who are familiar with decision theory will find comfort, as we have,
in these connections. Of course, some statisticians are not familiar with
decision theory and will need to understand new concepts whether study-
ing Pearl’s ideas directly or through an initial study of decision theory. In
such cases, we believe these researchers might come to an appreciation of
Pearl’s work most easily by first gaining an understanding of the implicit
decision theory.

So how do we understand Pearl’s work in terms of decision theory?
Consider Savage’s framework, which begins with a description of his primi-
tives act, consequence, and possible state of the world. Savage (1954, pages
13–14) describes and illustrates these concepts as follows:

To say that a decision is to be made is to say that one or
more acts is to be chosen, or decided on. In deciding on an act,
account must be taken of the possible states of the world, and
also of the consequences implicit in each act for each possible
state of the world. A consequence is anything that may happen
to the person.

Consider an example. Your wife has just broken five good
eggs into a bowl when you come in and volunteer to finish mak-
ing the omelet. A sixth egg, which for some reason must either
be used for the omelet or wasted altogether, lies unbroken be-
side the bowl. You must decide what to do with this unbroken
egg. Perhaps it is not too great an oversimplification to say that
you must decide among three acts only, namely, to break it into



330 D. Heckerman and R. Shachter

state of the act
world break into bowl break into saucer throw away

good egg six-egg omelet six-egg omelet and five-egg omelet and one
a saucer to wash good egg destroyed

bad egg no omelet and five five-egg omelet and five-egg omelet
good eggs destroyed a saucer to wash

Table 1: An example illustrating acts, possible states of the world, and conse-

quences. (Taken from Savage, 1954.)

the bowl containing the other five, to break it into a saucer for
inspection, or to throw it away without inspection. Depending
on the state of the egg, each of these three acts will have some
consequence of concern to you, say that indicated by Table 1.

There are two points to emphasize. First, like Pearl but with different
language, Savage distinguishes between that which we can choose—namely,
acts—and that which we can see—namely, consequences. Second, once we
choose an act, the consequence that occurs is logically determined by the
state of the world. That is, the consequence is a deterministic function of
the act and the state of the world23. Of course, the consequences can be
(and usually are) uncertain, and this uncertainty is captured by uncertainty
in the state of the world.

With this understanding, the relationship between Savage and Pearl
is not difficult to see. The instances of Pearl’s U correspond to Savage’s
states of the world; the instances of Pearl’s V correspond to Savage’s conse-
quences; the instances of Pearl’s do operators correspond to Savage’s acts;
and Pearl’s functional relationships correspond to Savage’s deterministic
mapping from acts and states of the world to consequences. Of course,
there are many details left unsaid; and we encourage the reader to explore
them in Heckerman and Shachter (1995).

One important detail worth mentioning is the special nature of the do
operator. Given some variable X, the set of acts corresponding to do(x) can
not be a set that arbitrarily affects X. In particular, do(x) must be a set of
acts that affects X in an “atomic” way—a way that affects only X directly.

23Savage (1954) defines an act to be “a function attaching a consequence to each state
of the world.” Equivalently, we think of acts and a function mapping acts and states of
the world to consequences as separate entities. This is a common practice in decision
theory.



Statistics and Causal Inference 331

For example, if X corresponds to a person’s wealth, the act of giving the
person tax-free money might qualify as a do(x), whereas the act of giving
the person stolen (and marked) money would not, due to its additional
(presumably undesirable) consequences. In Heckerman and Shachter (1995)
we give a precise meaning to the notion of an atomic decision in terms of
Savage’s primitives, and hence define the do operator in terms of these
primitives.

In summary, we believe Pearl’s framework is not unlike a beautiful
island filled with delights and riches. As Pearl presents it, however, there
is no boat to the island. At best, one has to swim through perilous waters
to get there. We offer our work as a safe and comfortable transport to his
paradise.

Joseph B. Kadane
Department of Statistics

Carnegie Mellon University,
Pittusburg, U.S.A.

This is an excellent paper that reviews and updates the notable progress
that has been made by the author and others in recent decades in under-
standing and unrevealing the mysteries of causation. I especially commend
the author for his clarity of exposition; I would recommend this paper to
someone wanting a friendly introduction to what has been up to now a
daunting, difficult and fragmented literature.

I am struck by how compatible this work is with the Bayesian perspec-
tive. As presented by Professor Pearl, the most useful representation of
a causative model is graphical; the absence of a link implies an assump-
tion. It may not be obvious to a reader which model to assume. Indeed
a reader may wish to entertain a variety of models, each representing a
possible state of the world. Attaching subjective probabilities to each of
these models, the whole Bayesian machinery can be used to derive not only
consequences of each model separately, but also posterior probabilities of
the models themselves.

It may be objected that there will be examples in which the data are
not informative about which model obtains, and this can be foretold with
certainty before the data are available or are examined. This is neither
upsetting nor a tragedy, as it also happens in models not involving a causal
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issue. What it comes down to is that certain functions of the parameter
vector are not identified. But even in such a circumstance, a legitimate
posterior results and can be calculated. It is a problem for those who wish
to use improper prior distributions for parameters taking an infinite number
of possible values, but wish to insist on a proper posterior distribution.
However for those with proper prior distributions, lack of identification is
not a difficult or serious issue. That even an infinite number of observations
of a particular type will not settle certain questions (i.e., consistency) need
not be disturbing, both because one rarely has such a data set, and because
often we have questions that particular data sets do not and cannot resolve.
(For more about my views on identification in a Bayesian framework, see
Kadane, 1975).

How do we deal socially with such situations? For example, what has
happened to R.A.Fisher’s contention that there was no proof that smoking
causes cancer? There still is no such proof, if by proof we mean the con-
duct of an (obviously unethical) experiment in which some persons would
be randomized to smoking and be forced to smoke, while others would be
randomized not to smoke, and would be forced not to. Nonetheless, both
policy makers and the general public have come to the conclusion that
smoking is really bad for people, and cancer is one of the reasons. What
has occurred in the intervening 50 years? Fisher (1957) claimed that per-
haps incipient cancer caused people to smoke or, perhaps more plausibly,
that there was some unobserved variable that led people to be more likely
to smoke, and be more likely to get cancer. Cornfield et al. (1959) chal-
lenge many of the claims made on behalf of various hypotheses that would
exonerate smoking as a cause of lung cancer. They also give an analysis
to show that an unmeasured covariate causing both smoking and cancer
would have to have a relative risk greater than the 8 observed for smoking
to be an exonerating explanation of the data, thus anticipating some of the
work on bounding correlations that Pearl and his colleagues have extended.

Perhaps there is such a variable, but it is not unreasonable to ask what
it is, and to take the view that, after 50 years, the burden of producing evi-
dence is on those who wish to continue to take Fisher’s side of the argument.
Thus socially our priors have shifted, even without crisp proof.

We owe Professor Pearl our heartfelt thanks for making these funda-
mental issues much easier to understand. Do(read Pearl).
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Seraf́ın Moral
Dpto. de Ciencias de la Computación

e Inteligencia Artificial
Universidad de Granada, Spain.

This is an excellent exposition of recent advances in causality by Prof.
Judea Pearl. In the eighties he made very important contributions to prob-
abilistic graphical models and wrote his influential book (Pearl, 1988) which
has been a source of inspiration and knowledge for so many researchers
around the world. Then, in the nineties he has concentrated in one of
the most elusive and important concepts in scientific research: causality.
In Bayesian networks causality was always present, but it was only seen
through the induced independence relationships among the involved vari-
ables. Now, Pearl presents an approach to causal inference, which makes
use of previous advances in graphical models. He shows the difficulties of
measuring causal relationships using the classical statistics language and
supports its extension in order to clearly specify causal assumptions and
their implications. With it, former difficult and somewhat obscure rea-
sonings can be formalized in a simple and neat way. The importance and
implications of this work will be seen without doubt in the near future.
Personally, I would like to comment two aspects in which causality should
play a more important role.

The first one is related with the field of learning Bayesian networks.
In the paper, it is claimed that causality can not be discovered from sta-
tistical knowledge, but this is precisely the ultimate objective of learning
the structure of a Bayesian network, though this is done by seeing the
independencies or by optimizing a measure of adjustment of the network
to the data (score). My experience tells me that when there is a causal
mechanism that generates the data, then with usual learning algorithms
and if the sample is large enough, it is possible to discover the original
structure or an equivalent one. However, when we try to learn from real
data in which there are correlations but not causal relationships relating all
the variables, we obtain networks in which arcs can not be given a causal
interpretation. These are, in general, complex graphs that can be seen as
the basis for approximating a joint probability distribution involving all
the problem variables by means of products of smaller distributions. How-
ever, even if we can not assume ‘a priori’ causal assumptions, procedures
are based in some implications of causality. For example, Bayesian scoring
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metrics assume that we have ‘a priori’ distributions about the parameters
which are independent for different variables: the parameters for X are
independent of the parameters of Y given X. Can this be maintained if
the errors associated to X and to Y given X are not independent? This
causal interpretation is more evident in procedures using observational and
experimental data at the same time (Cooper and Yoo, 1999), in which the
truncated factorization is used in the score derivation.

The discovering of causal relationships from observational data has been
discussed in learning literature. But I think that we need more research
effort for determining what can we expect when there is not initial causal
relationships in the variables. It really would be useful to have tools to
determine when a learned arc can be given a causal interpretation. Do we
need some type of ‘a priori’ hypothesis?

The second comment is of different nature and it is related with the
role of imprecise probability in causal inference. Very often Bayesians claim
that it is always possible to assign initial ‘a priori’ probabilities, so that a
precise probability can be computed for every event of interest. Afterwards,
if these values are updated by a large sample of independent observations,
then the sensitivity to the initial ‘a priori’ values is small. Here, we have an
example in which this is not true. We have situations in which, even if we
have precise probabilities for all the observed variables, then if we want to
measure the strength of causal relationships, we can only determine bounds
for these values. To be able of determining precise values, we should assign
‘a priori’ probabilities for non observable error variables, which would really
looks something difficult for any expert. In the hypothetical case in which
they were asserted, we should be extremely careful about the conclusions
as they can have strong bias due to ‘a priori’ values even if we have a very
large sample.

I believe that one important lesson of this paper is that we should be
very clear about initial assumptions. A theory should provide means for
specifying them in a clear an unambiguous language. Then, sound inference
methods should be available to get information about events of interest. I
believe that it is important for a methodology not to hide underlaying hy-
pothesis and not to force to make more assumptions than one is ready to
accept by the available information. In that case, imprecision in probabil-
ities arises in a very natural way, as initial state of knowledge can be too
weak to determine precise values (Walley, 1991).
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But there is another aspect in which imprecise probability can play a
role in causality. It is clear that when we have two variables and a joint
probability distribution there is nothing that can help us to discriminate
causality from correlation. But if instead of having and only one probabil-
ity distribution we have several of them, then the situation can be different.
Imagine that we have two variables X and Y and that we have two pos-
sible ’a priori’ distributions p1, p2 about X and two possible conditional
distributions of Y given X, q1, q2, in such a way that the possible joint
probability distributions are all the products p1.q1, p1.q2, p2.q1, p2.q2. In
this case, we way that the joint imprecise information about (X, Y ) decom-
pose as a marginal about X and a conditional probability about Y given X.
This does not always happen and it does not imply that we can decompose
the joint information as a marginal about Y and a conditional on X given
Y . The decomposition on a marginal on X and a conditional on Y given
X makes sense when X is a cause of Y with uncorrelated errors. So, with
imprecise probability and with only two variables we have properties that
are not always verified and that are implied by the existence of a causal
relationship. A more detailed exposition of this idea can be found in Moral
and Cano (2002).

Rejoinder by J. Pearl

I wish to thank the discussants for taking the time to comment on my
paper, and further illuminating the subtle ways in which causality enters
statistical analysis.

Professor Kadane makes an important observation that causal analysis
would be fairly compatible with the Bayesian perspective if one is willing to
attach subjective probabilities to several causal models, each representing a
different configuration of mechanisms or a different vector of causal param-
eters. It should be remembered though that the number of causal models
one normally wishes to entertain would be astronomical and the task of
assigning prior probabilities to the space of causal models would thus be
hindered by a difficult problem of representation. In practice, the problem
is mitigated by assuming parameter independence, namely, that the param-
eters governing one child/parents family are independent of those governing
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another family. This leads to Bayesian scoring metrics mentioned by Pro-
fessor Moral who points out correctly, that parameter independence, an
assumption made routinely in Bayesian statistical literature, makes sense
only under specific causal assumptions. For example, the parameters of the
marginal of X can be assumed independent of the conditional of Y given
X only if X is a cause of Y, but not if Y is a cause of X. This means that
statisticians who use parameter independence in practice, are unwittingly
making causal assumptions.

The functional, or mechanism-based analysis proposed in my paper ex-
plains the connection between parameter independence and causal direc-
tionality. Indeed, if each child-parent family is associated with a different
physical mechanism, in the sense that changes in one mechanism can be
affected independently of those in other mechanisms, it makes sense then
that the parameters governing the conditional probabilities associated with
those families would be independent of one another. No such independence
is expected when the conditional probabilities do not characterize separate
causal mechanisms.

Professor Moral has identified another area where tacit causal assump-
tions have been at the root of seemingly pure statistical assumptions – the
composition of imprecise probabilities. Again, taking the Cartesian prod-
ucts of probability intervals makes sense under certain causal assumptions
and not under others, and the reason is the same, Cartesian products are
licensed by mechanism independence.

I welcome Fienberg and Haviland’s analysis of the economical effect of
discrimination within the correct framework of counterfactual analysis and
structural models. One should admire econometricians for attempting to
tackle such problems without a formal theory of causation.

I am delighted that Heckerman and Shachter (HS) agree with my obser-
vation that statisticians have been way too slow in embracing an analysis
of causation. I do not agree however with their conclusion that statisticians
would do well to approach causation via decision analysis. Quite the con-
trary, by insisting on decision analysis (DA) as a starting point HS exhibit
the same inflexibility that has held back statistics for over a century; stu-
dents of causation much break away with the confines of both associational
analysis and decision analysis.
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In Causality, page 110-112, I elaborate at some length on the relation-
ships between DA and structural causal analysis. The weaknesses of the
former lies precisely in Savage broad characterization of an act as a function
between states of the world (the variables in U) and the set of consequences
(the variables in V), without further explication of the internal nature of
that function. Although correct, this characterization is not very informa-
tive; for it does not tell us how the effect of a compound actions can be
derived from the effects of its components. It can be likened to the charac-
terization of arithmetic addition as a function from IR × IR to IR; though
true, it is way too coarse, for it does not account for the axioms of addition
and does not tell us, for example, how addition differs from multiplication,
also a function from IR × IR to IR.

DA assumes the existence of an oracle capable of predicting consistently
the consequence of any act or combination of acts from any state of the
world. Since the number of possible act-combinations is astronomical, it
is inconceivable that human decision makers can make such predictions
without further structure. Causal analysis explains how those predictions
can be obtained from a more manageable set of primitives, structured in
the form of a causal model. Given the set of functions fi in a causal model,
one can readily compute the consequence of any combination of acts, from
any state of the world. These functional relations, which HS brand as
“confusing” are in fact the building blocks on the basis of which Savage’s
oracle operates. Although it is easy to define these primitive functions in
terms of Savage actions (see Causality page 205) I found this exercise to
be counter productive and unnatural when, in reality, Savage actions are
(judgmentally) computed from those primitive functions.

True, there is no boat to the paradise of causation if one insists on
sailing the perilous waters of statistics. Even the heavy transport plane
offered by HS is circular and risky. There is however a beautiful bridge to
that island, friendly, safe and a walking distance away; let us not ignore
the friendly way to redemption.

References

Altonji, J. and Blank, R. (1999). Gender and race in the labor market.
In O. Ashenfelter and D. Card, eds., Handbook of Labor Economics,
vol. 3, pp. 3143–4259. Elsevier Science Press, New York.



338 J. Pearl

Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996). Identification
of causal effects using instrumental variables (with comments). Journal
of the American Statistical Association, 91(434):444–472.

Balke, A. and Pearl, J. (1995). Counterfactuals and policy analysis
in structural models. In P. Besnard and S. Hanks, eds., Uncertainty
in Artificial Intelligence, vol. 11, pp. 11–18. Morgan Kaufmann, San
Francisco.

Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies
with imperfect compliance. Journal of the American Statistical Associa-
tion, 92(439):1172–1176.

Barsky, R., Bound, J., Charles, K., and Lupton, J. (2002). Account-
ing for the black-white wealth gap: A nonparametric approach. Journal
of the American Statistical Association, 97:663–673.

Becher, H. (1992). The concept of residual confounding in regression
models and some applications. Statistics in Medicine, 11:1747–1758.

Bertrand, M. and Mullainathan, S. (2003). Are Emily and Brendan
more employable than Lakisha and Jamal? a field experiment on labor
market discrimination. NBER Working paper 9873.

Bishop, Y. (1971). Effects of collapsing multidimensional contingency
tables. Biometrics, 27:545–562.

Bollen, K. (1989). Structural Equations with Latent Variables. John
Wiley, New York.

Bonet, B. (2001). Instrumentality tests revisited. In Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 48–
55. Morgan Kaufmann, San Francisco.

Bowden, R. J. and Turkington, D. A. (1984). Instrumental Variables.
Cambridge University Press, Cambridge, England.

Breslow, N. and Day, N. (1980). The Analysis of Case-Control Studies,
vol. 11 of Statistical Methods in Cancer Research. IARC, Lyon.

Cartwright, N. (1989). Nature’s Capacities and Their Measurement .
Clarendon Press, Oxford.



Statistics and Causal Inference 339

Chickering, D. and Pearl, J. (1997). A clinician’s tool for analyzing
non-compliance. Computing Science and Statistics, 29(2):424–431.

Chou, C. and Bentler, P. (1995). Estimations and tests in structural
equation modeling. In R. Hoyle, ed., Structural Equation Modeling, pp.
37–55. Sage, Thousand Oaks.

Cooper, G. F. and Yoo, C. (1999). Causal discovery from a mixture of
experimental and observational data. In K. Laskey and H. Prade, eds.,
Proceedings of the 15th Conference on Uncertainty in Artificial Intelli-
gence, pp. 116–125. Morgan Kaufmann.

Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M.,
Shimkin, M. B., and Wynder, E. L. (1959). Smoking and lung can-
cer: Recent evidence and a discussion of some questions. Journal of the
National Cancer Institute, 22:173–203.

Cowell, R., Dawid, A., Lauritzen, S., and Spielgelhalter, D.
(1999). Probabilistic Networks and Expert Systems. Springer Verlag,
New York.

Cox, D. (1958). The Planning of Experiments. John Wiley and Sons, New
York.

Dawid, A. (1979). Conditional independence in Statistical Theory. Journal
of the Royal Statistical Society, Series B , 41(1):1–31.

Duncan, O. (1975). Introduction to Structural Equation Models. Academic
Press, New York.

Eells, E. (1991). Probabilistic Causality . Cambridge University Press,
Cambridge.

Fisher, R. A. (1957). Dangers of cigarette-smoking. British Medical
Journal , 2:297–298.

Freedman, D. (1987). As others see us: A case study in path analysis
(with discussion). Journal of Educational Statistics, 12(2):101–223.

Freedman, D. A. (2003). On specifying graphical models for causation,
and the identification problem. Technical Report 601, Department of
Statistics, University of California, Berkeley.



340 J. Pearl

Galles, D. and Pearl, J. (1995). Testing identifiability of causal effects.
In P. Besnard and S. Hanks, eds., Uncertainty in Artificial Intelligence,
vol. 11, pp. 185–195. Morgan Kaufmann, San Francisco.

Goldberger, A. (1972). Structural equation models in the Social Sci-
ences. Econometrica: Journal of the Econometric Society, 40:979–1001.

Goldin, C. and Rouse, C. (2000). Orchestrating impartiality: The im-
pact of ‘blind’ auditions on female musicians. American Economic Re-
view , 90:715–741.

Grayson, D. (1987). Confounding confounding. American Journal of
Epidemiology , 126:546–553.

Greenland, S. (1999). Relation of the probability of causation to the rel-
ative risk and the doubling dose: A methodologic error that has become
a social problem. American Journal of Public Health, 89(8):1166–1169.

Greenland, S., Pearl, J., and Robins, J. (1999a). Causal diagrams for
epidemiologic research. Epidemiology , 10(1):37–48.

Greenland, S. and Robins, J. (1986). Identifiability, exchangeability,
and epidemiological confounding. International Journal of Epidemiology,
15(3):413–419.

Greenland, S., Robins, J., and Pearl, J. (1999b). Confounding and
collapsibility in causal inference. Statistical Science, 14(1):29–46.

Hauck, W., Heuhaus, J., Kalbfleisch, J., and Anderson, S. (1991).
A consequence of omitted covariates when estimating odds ratios. Jour-
nal Clinical Epidemiology , 44(1):77–81.

Haviland, A. M. (2003). Understanding racial and gender wage gaps
among the highly educated. Unpublished Ph.D. dissertation. Carnegie
Mellon University, Dept. of Statistics and Heinz School of Public Policy.

Heckerman, D. and Shachter, R. (1995). Decision-theoretic founda-
tions for causal reasoning. Journal of Artificial Intelligence Research,
3:405–430.

Heckman, J. and Smith, J. (1998). Evaluating the welfare state. In
S. Strom, ed., Econometric and Economic Theory in the 20th Century,
pp. 1–60. Cambridge University Press, Cambridge.



Statistics and Causal Inference 341

Heckman, J. J., Ichimura, H., and Todd, P. (1998). Matching as an
Econometric evaluation estimator. Review of Economic Studies, 65:261–
294.

Holland, P. (1953). Identification problems in econometric model con-
struction. In W. Hood and T. Koopmans, eds., Studies in Econometric
Method , pp. 27–48. Wiley, New York.

Holland, P. (1986). Statistics and causal inference. Journal of the Amer-
ican Statistical Association, 81(396):945–960.

Holland, P. (1988). Causal inference, path analysis, and recursive struc-
tural equations models. In C. Clogg, ed., Sociological Methodology , pp.
449–484. American Sociological Association, Washington.

Holland, P. and Rubin, D. (1988). Causal inference in retrospective
studies. Evaluation Review , 13:203–231.

Imbens, G. and Angrist, J. (1994). Identification and estimation of local
average treatment effects. Econometrica, 62(2):467–475.

Joreskog, K. and Sorbom, D. (1978). LISREL IV: Analysis of Linear
Structural Relationships by Maximum Likelihood . International Educa-
tional Services, Chicago.

Kadane, J. B. (1975). The role of identification in Bayesian theory. In
S. E. Fienberg and A. Zellner, eds., Studies in Bayesian Econometrics
and Statistics, pp. 175–191. North Holland Publishing, Amsterdam.

Kaufman, J. and Kaufman, S. (2001). Assessment of structured socioe-
conomic effects on health. Epidemiology , 12(2):157–167.

Kiiveri, H., Speed, T., and Carlin, J. (1984). Recursive causal models.
Journal of Australian Mathematical Society, 36:30–52.

Kleinbaum, D., Kupper, L., K.E., M., and Nizam, A. (1998). Applied
Regression Analysis and Other Multivariable Methods. Duxbury Press,
Pacific Grove, 3rd ed.

Kuroki, M. and Miyakawa, M. (1999). Identifiability criteria for causal
effects of joint interventions. Journal of the Japan Statistical Society,
29(2):105–117.



342 J. Pearl

Lauritzen, S. (1996). Graphical Models. Clarendon Press, Oxford.

Lauritzen, S. L. (1999). Causal inference from graphical models. Tech-
nical Report R-99-2021, Department of Mathematical Sciences, Aalborg
University, Denmark.

Lindley, D. and Novick, M. (1981). The role of exchangeability in
inference. The Annals of Statistics, 9(1):45–58.

Manski, C. F. (1990). Nonparametric bounds on treatment effects. Amer-
ican Economic Review, Papers and Proceedings, 80:319–323.

Manski, C. F. (1995). Identification Problems in the Social Sciences.
Harvard University Press, Cambridge, MA.

Miettinen, O. and Cook, E. (1981). Confounding essence and detection.
American Journal of Epidemiology, 114:593–603.

Miller, A., Merkhofer, M., Howard, R., Matheson, J., and Rice,
T. (1976). Development of automatic aids for decision analysis. Technical
report, SRI International, Menlo Park, CA.

Moral, S. and Cano, A. (2002). Strong conditional independence for
credal sets. Annals of Mathematics and Artificial Intelligence, 35:295–
321.

Muthen, B. (1987). Response to Freedman’s critique of path analysis:
Improve credibility by better methodological training. Journal of Edu-
cational Statistics, 12(2):178–184.

Neyman, J. (1923). On the application of Probability Theory to agricul-
tural experiments. Essay on principles. Statistical Science, 5(4):465–480.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, San Mateo.

Pearl, J. (1993). Comment: Graphical models, causality, and interven-
tion. Statistical Science, 8:266–269.

Pearl, J. (1995a). Causal diagrams for empirical research. Biometrika,
82(4):669–710.



Statistics and Causal Inference 343

Pearl, J. (1995b). On the testability of causal models with latent and
instrumental variables. In P. Besnard and S. Hanks, eds., Uncertainty
in Artificial Intelligence, vol. 11, pp. 435–443. Morgan Kaufmann, San
Francisco.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cam-
bridge University Press, New York.

Pearl, J. (2001). Direct and indirect effects. In Proceedings of the Seven-
teenth Conference on Uncertainty in Artificial Intelligence, pp. 411–420.
Morgan Kaufmann, San Fransisco.

Pearl, J. and Robins, J. (1995). Probabilistic evaluation of sequen-
tial plans from causal models with hidden variables. In P. Besnard and
S. Hanks, eds., Uncertainty in Artificial Intelligence, vol. 11, pp. 444–453.
Morgan Kaufmann, San Francisco.

Pearl, J. and Verma, T. (1991). A theory of inferred causation. In
J. Allen, R. Fikes, and E. Sandewall, eds., Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Second International Con-
ference, vol. 11, pp. 441–452. Morgan Kaufmann, San Mateo, CA.

Robins, J. (1986). A new approach to causal inference in mortality studies
with a sustained exposure period – applications to control of the healthy
workers survivor effect. Mathematical Modeling , 7:1393–1512.

Robins, J. (1987). A graphical approach to the identification and estima-
tion of causal parameters in mortality studies with sustained exposure
periods. Journal of Chronic Diseases, 40(Suppl. 2):139S–161S.

Robins, J. (1989). The analysis of randomized and non-randomized AIDS
treatment trials using a new approach to causal inference in longitudinal
studies. In L. Sechrest, H. Freeman, and A. Mulley, eds., Health Service
Research Methodology: A Focus on AIDS , pp. 113–159. Public Health
Service, Washington, DC.

Robins, J. (2001). Data, design, and background knowledge in etiologic
inference. Epidemiology , 12(3):313–320.

Robins, J. and Greenland, S. (1989). The probability of causation under
a stochastic model for individual risk. Biometrics, 45:1125–1138.



344 J. Pearl

Robins, J. and Greenland, S. (1992). Identifiability and exchangeability
for direct and indirect effects. Epidemiology , 3(2):143–155.

Rosenbaum, P. and Rubin, D. (1983). The central role of propensity
score in observational studies for causal effects. Biometrika, 70:41–55.

Rubin, D. (1974). Estimating causal effects of treatments in randomized
and nonrandomized studies. Journal of Educational Psychology, 66:688–
701.

Savage, L. (1954). The Foundations of Statistics. Dover, New York.

Simon, H. (1953). Causal ordering and identifiability. In W. C. Hood and
T. Koopmans, eds., Studies in Econometric Method , vol. 11, pp. 49–74.
Wiley and Sons, Inc.

Simon, H. and Rescher, N. (1966). Cause and counterfactual. Philosophy
and Science, 33:323–340.

Sobel, M. (1998). Causal inference in statistical models of the pro-
cess of socioeconomic achievement. Sociological Methods and Research,
27(2):318–348.

Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, Pre-
diction, and Search. Springer-Verlag, New York.

Strotz, R. and Wold, H. (1960). Recursive vs. nonrecursive systems:
An attempt at synthesis. Econometrica, 28:417–427.

Suppes, P. (1970). A Probabilistic Theory of Causality. North-Holland
Publishing Co., Amsterdam.

Tian, J., Paz, A., and Pearl, J. (1998). Finding minimal separating
sets. Technical Report R-254, University of California, Los Angeles.

Tian, J. and Pearl, J. (2000). Probabilities of causation: Bounds and
identification. In Proceedings of the Sixtheenth Conference on Uncertainty
in Artificial Intelligence, pp. 589–598. Morgan Kaufmann, San Francisco,
CA.

Tian, J. and Pearl, J. (2002). On the identification of causal effects. In
Proceedings of the American Association of Artificial Intelligence. AAAI
Press/The MIT Press, Menlo Park.



Statistics and Causal Inference 345

Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities.
Chapman and Hall, New York.

Weinberg, C. (1993). Toward a clearer definition of confounding. Amer-
ican Journal of Epidemiology, 137:1–8.

Wermuth, N. (1992). On block-recursive regression equations. Brazilian
Journal of Probability and Statistics, 6:1–56. With discussion.

Wermuth, N. and Cox, D. (1993). Linear dependencies represented by
chain graphs. Statistical Science, 8(3):204–218.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statis-
tics. John Wiley, Chichester.

Whittemore, A. (1978). Collapsibility of multidimensional contingency
tables. Journal of the Royal Statistical Society, Series B , 40(3):328–340.

Wright, S. (1921). Correlation and causation. Journal of Agricultural
Research, 20(3):557–585.


