
Strategies for Determining Causes of Events

Mark Hopkins
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
mhopkins@cs.ucla.edu

Abstract

In this paper, we study the problem of determining actual
causes of events in specific scenarios, based on a definition of
actual cause proposed by Halpern and Pearl. To this end, we
explore two different search-based approaches, enrich them
with admissible pruning techniques and compare them exper-
imentally. We also consider the task of designing algorithms
for restricted forms of the problem.

Introduction
Recently, there has been a renewed interest in establishing
a precise definition of event-to-event causation, sometimes
referred to as ”actual cause.” Although a definitive answer
has been elusive, many proposals have shown promise. This
paper focuses on a definition proposed by (Halpern & Pearl
2001), and specifically seeks to find an efficient algorithm
to determine whether one event causes another event under
this definition.

Complexity results by (Eiter & Lukasiewicz 2001) have
shown that in general, the problem of determining actual
cause under this definition is

����
-complete. Therefore, this

paper proposes and evaluates search-based strategies, for
both the complete and restricted forms of the problem. We
are not aware of any other attempts made to address this
problem from an algorithmic perspective.

Due to limited space, we provide only proof sketches for
some results. Full proofs are available in (Hopkins 2002b).

Formal Description of the Problem
This paper addresses the issue of how to detect whether
some event A caused another event B, based on a causal
model-based definition proposed in (Halpern & Pearl 2001).
Intuitively, the overarching goal is to answer causal queries
regarding a fully specified story, and more ambitiously, to
generate explanations automatically, in response to “why”
questions. An example that illustrates some of the complex-
ities of such a task is called The Desert Traveler, a story
inspired by Patrick Suppes and featured in (Pearl 2000).

Example A desert traveler � has two enemies. Enemy 1
poisons � ’s canteen, and Enemy 2, unaware of Enemy 1’s

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

action, shoots and empties the canteen before � drinks. A
week later, � is found dead and the two enemies confess to
action and intention. A jury must decide whose action was
the actual cause of � ’s death.

Here, the task is to determine whether Enemy 1’s action
or Enemy 2’s action was the actual cause of � ’s death. (Pearl
2000) phrases the general question in the language of struc-
tural causal models.

Before proceeding to formalizations, let us establish some
preliminaries. We will generally use upper-case letters (e.g.�

, �) to represent random variables, and the lower-case cor-
respondent (e.g. � ,) to represent a particular value of that
variable.
����� ���

will denote the domain of a random vari-
able

�
. We will use bold-face upper-case letters to represent

a set of random variables (e.g. � , �). The lower-case cor-
respondent (e.g. � , �) will represent a value for the corre-
sponding set. Specifically, for ����� ������� �!� �"�$#&%

, a value �
would be a mapping ��'(��)*
����� ���+�-,��!� �.,
/��0� �1#2�

,
such that �3� �$45��6
����� �$45�

.
���0�7� �
is the set of all

possible values for � .
Formally, a causal model is a triple �78 �:9��<;=�

, in which8 is a finite set of exogenous random variables,
9

is a finite
set of endogenous random variables (disjoint from 8), and; �>�@?BADC �E6F9�%

where ?BA is a function
���0�7G �)
���0� ���
that assigns a value to

�
for each setting of the

remaining variables in the model GH�I8 ,J9LK � �M%
. For

each
�

, we can define NPOQA , the parent set of
�

, to be the
set of variables in G that can affect the value of

�
(i.e. are

non-trivial arguments of ? A).
Causal models can be depicted as a causal network, a

graph whose nodes correspond to the variables in 8 ,R9
with

an edge from � to
�S6Q9

if and only if � 6 NTOUA . The en-
dogenous causal network is defined similarly, but over only
the variables in

9
. Recursive causal models are causal mod-

els whose causal networks are directed acyclic graphs. In
this paper, we restrict our analysis to recursive causal mod-
els (following the analysis of (Halpern & Pearl 2001) and
(Eiter & Lukasiewicz 2001)).

We will further assume that the domain of each random
variable is finite and explicit, that each ? A is computable
in polynomial time, and that the number of parents for any
particular variable is bounded by a constant.

Example In Fig. 1, we see the Desert Traveler scenario ex-

In Proceedings of the Eighteenth National Conference on Artificial Intelligence, AAAI Press/The MIT
Press: Menlo Park, CA, 546-552, August 2002.

TECHNICAL REPORT
R-302-A

January 2002

Figure 1: Causal model for the Desert Traveler scenario. All
variables are propositional.

� ��� A ; � ��� � ;
*� �
;� �����	� �

; ��� ��

 .

pressed as a recursive causal model. Here, 8 � ���TA � � � %
and

9 � � �L� � �
 � � � � %
. All variables are propositional,

with value 1 indicating a true proposition, and value 0 indi-
cating that the proposition is false.

An important aspect of causal models is their ability to
store counterfactual information. We can express counter-
factual contingencies through the use of submodels. Intu-
itively, a submodel fixes the values of a set of endogenous
variables � at � . Consequently, the values of the remain-
ing variables represent what values they would have had
if � had been � in the original model. Formally, given a
causal model � � � 8 �"90�:;=�

, �� 9
, � 6
/��0�7� �

,
the submodel of � under intervention � � � is ������� =� 8 �"90�:; ����� �

, where
; ����� ���@?���C � 6U9LK � %&, �@? A�� ��3� ��� � C ��� 6 � %

. � ����� and
; ����� are typically abbrevi-

ated ��� and
; � .

In a recursive causal model, the values of the exogenous
variables uniquely determine the values of the endogenous
variables. Hence for a causal model � � � 8 �"90�:;=�

and
a set of endogenous variables � 6 9

we can refer to the
unique value of � under 6
����� 8 �

as �"!��# �
(or sim-

ply �M�$ �
). We can define �	!&% �# �

analogously for a sub-
model �'� (and abbreviate it �(� �$ �

). Since we are deal-
ing with the issue of determining actual cause in a fully-
specified scenario, this amounts to asking causal questions
in a causal model for which the values of the exogenous
variables are given. For causal model � � � 8 �"90�:;=�

and
 6
����� 8 �

, we refer to the pair �)� � �
as a causal world.

The following properties of recursive causal models, es-
tablished in (Pearl 2000), will be useful:

Proposition 1 Let � � � 8 �"90�:;=�
be a recursive causal

model. Let 6
���0�78 �
, � 9

, * 9
, + 6

�����,* �
, � 6U9

. Then the following properties hold:

(a) �.- �$ � � �/- � �$ �
for any � 6
���0�7� �

if all directed
paths from � to � in the causal network of � are in-
tercepted by * .

(b) �.- �$ � �F�.- � �$ �
if �0- �$ � �F� .

Equipped with this background, we can now proceed to
define actual cause:

Definition 2 Let � � � 8 �"90�:;=�
be a causal model. Let�1 9

, �2 9
. � � � is an actual cause of � � �

(denoted ��3 �) in a causal world �#� � �
if the following

three conditions hold:

(AC1) �J�$ � �F� and �M�$ � � � .

(AC2) There exists * 9LK � and values � � 6
����� � �
and + 6
/��0�$* �

such that:
(a) � �4� - �$ �&5�F� .
(b) � � - �# � � � .
(c) �(� -76 �# � � � , for all 8� 9LK �7� , * �

such that9 = 8=�# �
.

(AC3) � is minimal; no subset of � satisfies conditions
AC1 and AC2.

Intuitively, � is an actual cause of � if (AC1) � and � are
the “actual values” of � and � (i.e. the values of � and �
under no intervention), and (AC2) under some counterfac-
tual contingency + , the value of � is dependent on � , such
that setting � to its actual value will ensure that � main-
tains its “actual value,” even if we force all other variables
in the model back to their “actual values.” (AC3) is a simple
minimality condition.

Example In the Desert Traveler example, we see that
� �:

(shooting the canteen) is indeed an actual cause of � � :
(death), since

� �$ � � :
, ���# � � :

, � A���;=< >?��; �$ � �A@ ,
and � A�� � < >?��; �$ � � :

. Here, our + is
� �B@ . Notice

also that � � :
is not an actual cause of � � :

under this
definition.

The question that this paper addresses is: given a causal
world �#� � �

, how can we efficiently determine whether �
is an actual cause of � ? Unfortunately, it turns out that this
problem is

� ��
-complete (Eiter & Lukasiewicz 2001).

Because of this, we focus on search strategies for deter-
mining actual cause. For simplicity, we will be restricting
our examination to single variable causation, i.e. whether� � � causes � � 	 , for

�L� � 6Q9
. This restriction is par-

tially justified by the following theorem, proven in (Eiter &
Lukasiewicz 2001), and independently in (Hopkins 2002a):

Theorem 3 Let � �H� 8 �"90�:;=�
be a causal model. Let� � �C 9

and � 6
����� � �
, � 6
���0� � �

. If �D3 �
under , then � is a singleton.

This theorem establishes that any candidate cause that
contains multiple variables will inevitably violate the min-
imality requirement of the actual cause definition. Thus we
may restrict our focus to singleton causes.

We also do not consider our effect to be a Boolean con-
junction of primitive events � � � , since

� � � is an ac-
tual cause of � � � �E�(8 � 9 � iff

� � � is an actual cause
of � � � and

� � � is an actual cause of 8 � 9 . Thus
any algorithm that determines actual cause between primi-
tive events can immediately be applied in the more general
case through repeated applications of the algorithm.

Thus, let us consider the task of determining whether��3 	 holds in a given causal world. The first thing to no-
tice is that checking AC1 and AC3 are easy tasks. To check
AC1, we merely need to check the value of two different
random variables under a single intervention (specifically,
the null intervention). We can compute the value of every
random variable in a causal world under a single interven-
tion in polynomial time, by the following simple procedure:
choose a variable for whom the values of the parents are de-
termined, then compute the value for that variable; continue

until values for all variables are computed. Clearly, this pro-
cedure is always executable in a recursive causal world. AC3
is trivial, in light of Thm. 3.

The difficulty lies in checking whether or not AC2 holds.
The remainder of this paper deals with strategies for decid-
ing this. We should point out that the task of determining
whether AC2 holds boils down to searches through two dif-
ferent search spaces:

1. A search through possible + . The top-level task is to
find a set of variables * , and a particular value + 6

���0�$* �

that satisfies all three constraints of AC2.

2. A search through possible 8 . Notice that for a given + ,
AC2(a) and AC2(b) can be checked in polynomial time
(since each merely requires us to compute the value of a
variable under a single intervention). However, AC2(c) is
more involved. It requires us to check that there is no set
8 such that � � -76(�# � 5� 	 , where 9 � 8=�# �

. Here we are
searching for a set of variables, rather than for a particular
value for a set of variables, as in the search for + .

Algorithm-Independent Optimizations
Naturally we would like to reduce the size of these search
spaces as much as possible. To this end, we define the notion
of the projection of a causal world.

Definition 4 Let � � � 8 �"90�:;=�
be a recursive causal

model. Suppose we have a causal world �)� � �
such that9 � � �&� ��� �!� ���-# %

. To delete a variable
�-4

from �#� � �
,
�-4

is removed from
9

, and the structural equation ? A of each
child

�
of
� 4

is replaced with ?RA1C ��� , where � 4 � � 4 �$ �
.

The projection of �#� � �
over variables

� � ��� � � �!� �!�����
is a

new causal model in which
�	��
 � ������
 � ��� � �!��� #

are deleted
from �)� � �

. The W-projection of �#� � �
with respect to� 3�	 is the projection of �#� � �

over
�

, � , the variables9 A� on a path from
�

to � in the causal network of � ,
and the parents of

9 A� and � in the causal network of � .

Intuitively, deleting a variable gives us the same result as
permanently fixing it at its actual value. Now we can prove
that the question of whether � is an actual cause of 	 in�#� � �

depends only on the paths that connect
�

to � in the
causal network of � , and the nodes which influence nodes
on these paths (i.e. the W-projection). All other nodes either
do not influence Y, or do so through a parent of a node on a
path, and can be safely ignored.

Theorem 5 Let � � � 8 �"90�:;=�
be a recursive causal

model and suppose we have a causal world �#� � �
. Then� 3S	 in �)� � �

iff � 3 	 in �)� �7� �
, where � � is the

W-projection of �#� � �
.

Proof Suppose � 3F	 in �#� � �
. Then we must have * 9LK��

, + 6
�����,* �
, and � � 6
/��0� ���

such that AC2
is satisfied. Now consider the set N of variables which are
parents to variables on a path from

�
to � (except parents of�

), but are not themselves on a path from
�

to � . SupposeN - �$ � ��� . Define * � as the union of N with the subset
of * on a directed path from

�
to � , and define + � such

that + � � � � � +L� � �
for

� 6 * and + � � � � � � - �$ �
for� 6 N .

We will show that this + � 6
�����,* � � also satisfies
AC2. By Prop. 1(a), ��� � - � �$ � �>��� ��� - �# �

. Then, since
� - �$ � � � � � - �$ �

by Prop. 1(a), therefore � � � � - �$ � �� � � - �$ �
by Prop. 1(b). Hence � � � - �:�$ � �F� � � - �$ � 5�F	 , so

+ � satisfies AC2(a).
Now we show that it satisfies AC2(b) and (c). Take any

8 9 K � � , * �
and let 9 ��8=�# �

. By Prop. 1(a),���=- � 6 �$ � � ��� � -76 �$ �
. Also by Prop. 1(a), ��� � -76(�$ � ���� � -76 � �# �

, where 8 � is the subset of 8 on a directed path
from

�
to � , and 9 � � 8 � �$ �

. Since � - �$ � � � � -76 � �# �
by

Prop. 1(a), therefore � � � -76 �"�$ � � � �=-76 �:�$ �
by Prop. 1(b).

Hence ��� - � 6 �# � � ��� -76 � �$ � � 	 , so + � satisfies AC2(b)
and AC2(c).

Hence we can always devise an intervention consisting
only of variables on a path from

�
to � and variables in N

that satisfies AC2. Clearly, AC1 and AC3 are also satisfied
in �)� � � �

. Hence,
� � � is an actual cause of � � 	 in�#� �7� �

. The converse of this theorem is trivial.

Looking at Fig. 2, we see how this can substantially re-
duce the number of nodes in the causal network (while not
increasing the connectivity). Notice that such projection can
be done before attempting any algorithm for determining
whether � is an actual cause of 	 . Henceforth, unless stated
otherwise, we will implicitly assume that our algorithms are
operating on the W-projection with respect to the query.

Brute-Force Approach
Recall that the task of determining whether AC2 holds can
be divided into two stages: a search through possible + , and
a search through possible 8 . For the next two sections, we
will focus on the first stage, and assume that we have a black
box to check AC2(c).

There is a rather obvious brute-force search algorithm
through the space of possible + . For some ordering of the
variables of our causal world (excluding �), we simply as-
sign a value (including a possible ”non-assignment” value � ,
indicating that the variable is not part of *) to each variable,
one at a time, until all variables have been assigned values.
Then we check to see whether AC2 is satisfied by this + .
Here, we are lumping

�
into * , thus to check AC2(a) and

(b), we simply check that �.- �# ��5� 	 and �.- � � �# � � 	 ,
where + � is merely + with the setting for

�
removed. If

AC2(a) and (b) hold, then we check AC2(c) with our black
box. If this also holds, then � 3 	 . If not, we try another
setting of the variables, until we find one that satisfies AC2
or until all possibilities are exhausted.

The obvious drawback of this approach is that it amounts
to a brute-force search of a tree with depth ��� : and branch-
ing factor ��� : , where � is the number of variables in the

Figure 2: Demonstration of W-Projection

causal network (minus one, for �), and � is the size of each
variable domain in the network (plus one, for �) Here, we as-
sume for simplicity that each variable domain has the same
size. Thus this search tree has �1�:� � � : ��� �

leaf nodes.
To check whether any given leaf in the search tree satisfies

AC2(a) and (b), we potentially need to calculate the value of
each node in our network under two different interventions –
as we have discussed, this task is polynomial in the number
of endogenous variables. Supposing now that �1��� �

is the
worst-case complexity of the algorithm to check AC2(c), we
can say that the worst-case running time of this brute-force
algorithm is �1��� ��� � � � : � � �

, for some constant � .
One approach to pruning the brute-force search tree is

based on the following theorem:

Theorem 6 Let � be the causal network of recursive causal
model � � � 8 �"90�:;=�

. Let 6
/��0�78 �
,

�L� � 6�9
,� � � �16
���0� ���

, 	 6
/��0�7� �
. Suppose * 9 K �

and that every path from
�

to � in � is blocked by some
variable in * . Then for any + 6
/��0�$* �

, � � � - �# � �� � - �$ �
. In other words, either AC2(a) or AC2(b) must fail.

Furthermore, any * �	� * also has this property.

Proof By Prop. 1(a), �	� � - � �$ � � �.- � �# � � ���=- � �$ �
, for

any * � � * , + � 6
�����,* � � .
Theorem 6 implies that we can prune any subtree rooted

at node
 from our search tree, where
 is any node repre-
senting a partial variable setting � for which every path from�

to � in the causal network contains some variable set by
� to a non- � value.

The cost per node of determining whether all paths from�
to � are blocked is simply the cost of a depth-first search

of the graph, which is linear in the number of network nodes.
Thus adding this pruning to our brute-force algorithm does
not add any complexity to our asymptotic running time.

The benefit of this pruning will depend on the order in
which we assign values to variables, and this paper does not
address this issue.

Intervention-Proving Approach
Let us continue to treat AC2(c) as a black box, and exam-
ine a different approach to searching through the space of
possible + . To determine whether AC2(a) and (b) are satis-
fied for query ��3�	 , we are looking for some + , such that��� - �$ � ��	 and ��� � - �$ � 5� 	 for some � � 5� � . We can
actually encode part of this goal into the search space itself.
For example, we could choose to only search the space of
interventions + � such that �.- � �$ � 5��	 . Then for each in-
tervention of the form + � �I� � + , we would need only to
check that � � - � 	 .

We can think of this as “proving” interventions + � such
that �.- � �$ � 5�S	 in the causal model. We begin by sup-
posing that � 5� 	 , and work backwards to prove which
interventions would be consistent with � 5�>	 . Take, for
instance, the Desert Traveler formulation. Suppose we want
to determine whether

� � :
is an actual cause of � � :

.
Suppose that � 5� :

. What are the possible instantiations
of � ’s parents in that case? In fact, the only possibility is�@
 � @ � � � @ % . It is easy to see that under every inter-
vention + � such that �.- � �# �"5� :

, it must be the case that

 - � �$ � � @ and
� - � �$ � �D@ . More importantly, our claim

is that �� ��;=< >?��; �$ �	5� :
. Now let us take this new inter-

vention we have produced, and attempt to eliminate
�

from
it in the same way. Notice that the intervention requires that
condition

� � @ will materialize. There are three full in-
stantiations of the parents of

�
that force

�
’s value to be @ :� � � @ � �>�A@ % , � � � : � �S� @ % , � � � : � �S� : %

.
Thus, we can replace

� �C@ with these three instantia-
tions to create three new interventions. Furthermore, if we
continue this process (eliminating the variables in a reverse
topological order), as shown in Fig. 3, then for every inter-
vention + � we produce, �.- � �# � 5� : .

A few observations are in order. At certain points, it is
possible to derive inconsistent interventions. These are im-
mediately thrown out (marked by X’s in the figure). Also,
each level of the tree can be thought of as “eliminating” a
single variable in the manner described above. However, at
each level, we may also choose not to eliminate the variable
(indicated by the rightmost child of each node).

Once we have derived a number of interventions + � such
that �.- � �$ � 5� 	 , we simply take the ones of the form + � �� � + , and check to see if ���=- � 	 and AC2(c) are satisfied.
The relevant interventions are circled in the figure. Notice
that the intervention � � ��@ � � � @ % is discovered.

The pseudocode for the general intervention-proving al-
gorithm is presented in Figure 4. Notice that Figure 3 does
not correspond exactly to the tree searched by Figure 4, in
the sense that if we choose to keep the setting for variable
�-��� �

at depth � of the tree, we do not actually generate a du-
plicate intervention at depth � � : . Instead, we merely keep
track of our ”virtual depth” in the tree that ensures that we
only eliminate variables in reverse topological order.

It is clear that if the intervention-proving search tree gen-
erates every intervention + � such that �.- � �# � 5� 	 , and no
intervention + � such that �.- � �$ � ��	 , then this algorithm
will work correctly. Indeed, we can prove half of this.

Lemma 7 For every intervention + � found by
� �$�:�#� � � � � � 	 �

, �.- � �# �&5�F	 .

Proof sketch For a node � in the � � search tree, define
+L� � �

as the intervention that � represents. It can be proven
by induction that if +L� � �

sets variable
�

to � , then for any
descendant
 of � in the � � search tree, we have

� -������ �
� . Thus, since the root of the � � search tree generates only

Figure 3: Intervention-Proving Search Tree for the Desert
Traveler Scenario (query: � � � : � 3��7� � : �)

Algorithm IP(CausalWorld (M,), Cause X=x, Effect Y=y):

1. Let M’ be the W-projection of (M,) wrt x y.
2. Let I(n) be a reverse topological order of the

endogenous variables of M’ such that Y=I(0).

3. For all interventions y’ such that y’ y:
- if(IPTreeWalk(y’, 0) == true) then return true.

4. Return false.

bool IPTreeWalk(Intervention ’, int treedepth):
1. If ’ is of the form x’ , then check that Y () = y.

If so, then check that satisfies AC2(c). If so, then
return true.

2. For every (single) variable assignment V=v in ’

such that V X, V=I(k) for k >= treedepth:
3. For every full instantiation of V’s parents such

that F () = v:

4. (’ \ v) .
5. If is internally consistent, then return true

if IPTreeWalk(, k) returns true
6. Return false.

u

u

w
w w u

w

w

p
p

w w
w

w

µ

¬ È

xw

2

2

2

V

¹

¹

p

Figure 4: Pseudocode for the IP Algorithm

nodes corresponding to interventions of the form �H�>	 �
such that 	 � 5� 	 , Lem. 7 follows as a simple corollary.

Although it is not the case that � � generates every in-
tervention + � such that � - �:�$ ��5� 	 , we can nevertheless
characterize the interventions that it produces.

Lemma 8 � �$�:�#� � �+� � � 	 �
finds only interventions + �

subject to the following two conditions:
(a) * � contains a node on every path from a root node to �
in the endogenous causal network of �
(b) If * � K � �D%

contains a node on every path from variable�
to � , then

��56 * � .
Proof sketch The proof is a straightforward induction on
the depth of the � � search tree.

Lemma 9 � �$�:�#� � �+� � � 	 �
finds every intervention + �

such that �.- � �# �	5� 	 , subject to conditions (a) and (b) of
Lem. 8.

Proof sketch For node � in the � � search tree, define
+L� � �

as the intervention that � represents. Define * � � �
as the set of endogenous variables fixed by +L� � �

. Let + �
be an intervention satisfying the conditions of the lemma.

Let �$� � �
be the following proposition: “At depth � of the

� � search tree, there exists a node � such that for all
� 6

� �&��� � C ��� � � � : % , we have: (i)
� 56 * ��� � 56 * � � �

,
(ii)

� 6 * ��� ��6 * � � �
, (iii) � � 6 * � � � ��� - � �$ �=6

+L� � �
.” �$��� �

can be proven by induction on � . From this
result, the lemma immediately follows, since it implies that
at depth � � : of the � � search tree, � � will find a node �
such that +L� � � ��+ � .

From these lemmas, we can prove the correctness of � � .

Theorem 10 � � returns as output “ � 3F	 ” iff �(3F	 .

Proof From Lem. 7, it is clear that � � returns “ � 3 	 ”
only if � 3 	 , since � � only finds interventions that satisfy
AC2(a), then checks to see if they satisfy AC2(b) and (c).

Now suppose that � 3 	 . Then there is some intervention� � + that satisfies AC2. Now consider the set of root nodes

G � � � 4 C � 4 56 * , � � % %
in the endogenous causal net-

work. Create a new intervention � � +
	 , where 	0� GJ�$ �
.

Notice that since G are root nodes, G��$ � � G � � - �# �
, thus

this new intervention must also satisfy AC2. Now consider
any node
 6 * , O for which every path from
 to �
contains some node in * K �
 %

. Notice that the value of� is therefore independent of the value of
 , and hence we
can remove
 from our intervention and this new interven-
tion will still satisfy AC2. Thus we can always create a new
intervention that satisfies AC2 and also satisfies the two con-
ditions specified in Lem. 8. Hence by Lem. 9, � � will find
this intervention, and return “ � 3 	 ”.

The running time of this algorithm will vary substantially,
depending on the topology and quantification of the causal
network, but we can say with certainty that in the worst-case,
� � generates no more nodes than the brute-force search tree
of the previous section.

Theorem 11 The search tree generated by � � contains no
duplicate nodes, i.e. no two nodes that represent the same
intervention.

Proof sketch Proof by contradiction. Assume that there are
two distinct nodes
 and � in the � � search tree that repre-
sent the same intervention. Let � be the common ancestor
of
 and � , and let and

�
be the children of � on the path

to
 and � , respectively. Then it can be shown that and�
must differ on the value of at least one variable set in their

respective interventions, and that this difference propagates
down to
 and � . Hence
 and � must represent different
interventions.

Since the tree generated by � � contains no duplicate
nodes, � � generates asympototically no more nodes than the
brute-force search tree, since that tree contains nodes repre-
senting every possible intervention, and the � � search tree
contains only a subset of possible interventions (note that
in addition, � � generates a certain number of inconsistent
nodes, then immediately throws them away; this adds only a
constant amount of work per node, and thus does not impact
asymptotic running time). We can characterize the worst-
case number of nodes that � � will generate in terms of the
size of the subset of interventions that it generates. Define

as the subset of interventions + � such that � - � �# � 5� 	 and
+ � satisfies the conditions specified in Lem. 8. Then from
Lem. 8, � � generates C
=C nodes in the worst-case.

For each node, we need to check that AC2(b) holds, which
as we have seen, is polynomial in the number of nodes �
in the causal network. We also need to examine every ta-
ble entry for the variable we are eliminating, in order to
generate the children of the node. This takes �1� �

� �
time,

where � is the maximum size of the domain of the net-
work variables and � is the maximum number of parents
per node. We will assume that the number of parents per
node is bounded by a constant, as is the maximum size of
the domain of the network variables. Hence �

�
becomes a

constant. Once again supposing that checking AC2(c) takes
�1� � �

time, we can say that the worst-case asymptotic run-
ning time of � � is �1� �

�
� � � C
=C � � �1��� � � C
=C � Borrowing

from the results we derived in the previous section, we can

say that �1� ��� � C
=C � � �1��� � � � � � : � � �
. It is not clear

how much tighter a bound �1��� � � C
=C � is, compared with
�1� ��� � � � � : � � �

. Experimental results, however, suggest
that the difference is quite significant.

Checking AC2(c)
Once we find an intervention + that satisfies AC2(a) and
AC2(b), we then face the challenge of checking whether
AC2(c) is also satisfied by + . To do this, we need to search
through the space of possible 8 . For each 8 , we need to
check that �	� -76 �F	 , where 9 � 8=�# �

.
For a particular 8 , it is not difficult to check this. We

merely need to compute the value of � under an interven-
tion, which can be done in polynomial time. The problem is
that if 8 > represents the set of variables that are candidates
for inclusion in 8 , then there are �

� �����
possible 8 .

Thus, one critical issue is to limit the size of 8 > , the can-
didate set for 8 . Unfortunately, the definition itself specifies
that 8 > contains every variable in the causal world that is
not

�
, � , or a member of * . Fortunately, we can do better.

Theorem 12 Define � 3 � 	 similarly to � 3 	 , except with
AC2(c) replaced by the following:

AC2(c)
�
: �����	� �$ � � 	 , for all 8D 8 > such that 9 �

8=�# �
and 8 > � � �H6�9LK � � , * � C � appears on

one or more directed paths from
�

to � in the causal
network of � that do not contain a member of * %

.

Then �(3 � 	 iff � 3 	 .

Proof Suppose � 3 � 	 . Then there exists some intervention� � + that satisfies the modified version of AC2. Consider the
set 8�
M��� 9LK � � �M%R, * �"�:K 8 > . For all � 6 8�
 , either *
intercepts all paths from � to � in the endogenous causal
network of � , or * intercepts all paths from

�
to � (oth-

erwise � 6 8 >). Thus define 8 A� as ��� 6 8�
�C * inter-
cepts all paths from

�
to � %

, and 8 	 as 8
 K 8 A� . Create
a new intervention � � + 8 A�� � - �# �

. We want to show that this
new intervention satisfies the original version of AC2.

Since by Prop. 1(b) � � � - ������ ��� ��� � �$ � � ��� � - �$ � 5�
	 , clearly AC2(a) is satisfied. Using Prop. 1(a) and
(b), � � - ������ � � ��� � �$ � � � � - � ���� � ��� � �$ � � ���=- �$ � �
	 , so AC2(b) is also satisfied. Finally, take any
8 � 9 K � � �M%D, * , 8 A� �:�

. � � - ������ � � ��� � � ��� � �$ � �
� � - ������ � � ��� � � � ��� � �# �

, where 8 � is 8 with all members of

8 � removed (by Prop. 1(a), since * intercepts all paths
from these variables to �). Furthermore, using Prop. 1(a)
and (b), � �=- ���	�� � � ��� � � � ��� � �# � � � �=- � ���� � ��� � � � ��� � �$ � �
� � - � � ��� � �# � � 	 , so AC2(c) is satisfied.

Hence �(3 � 	$)S� 3 	 . The converse is trivial.

Given this result, we can construct a binary search tree to
check AC2(c) in the following manner: for a given ordering
of the variables in 8 > , assign each variable to either be in-
cluded in 8 or to not be included in 8 . The leaves of such
a tree will then be the possible 8 we need to check. Hence,
we can apply a simple dfs, and whenever we hit a leaf, check
that the 8 represented by the leaf is consistent with AC2(c).

If not, then AC2(c) fails. If all leaves are consistent with
AC2(c), then AC2(c) holds.

We can define the value of this search tree as 1 if all leaves
are consistent with AC2(c), and 0 otherwise. The search tree
can be pruned, by use of the following theorem:

Theorem 13 Let � be a node of this search tree. � repre-
sents the choice of a certain subset 8=� � �

of 8 > for inclusion
in 8 . If there exists a variable

� 6 8�� such that every path
from

�
to � in the causal network is blocked by some other

variable in 8=� � �
, then the subtree rooted at this node can

be pruned from the search tree with no change to the value
of the tree.

Proof Suppose that there is some 8 such that 8=� � � �8
and such that � � - � ��� � �$ � 5� 	 . If we have variable

� 6
8=� � �

for which every path from
�

to � is blocked by some
other variable in 8 � � �

, then by Prop. 1(a), � � - � ��� � �$ � �
� �=-�� ����� �"! � ��� � �$ �

. Hence there exists a 8 � in another sub-
tree of the search tree that also violates AC2(c). Thus we can
prune the subtree rooted at � with no change to the overall
value of the tree.

This paper does not address which variable ordering
heuristics can help to maximize the impact of such pruning.

Restricted Forms
So far, we have outlined only complete strategies for han-
dling the general problem of determining � 3 	 . In this sec-
tion, we consider whether we can develop better algorithms
for restricted forms of the problem.

(Nebel 1996) states that intuitively speaking, a problem
in

� ��
suggests two sources of complexity. We have identi-

fied these sources as the search for + and the search for 8 .
In order to achieve a polynomial-time algorithm for actual
cause, we would need to eliminate both sources of complex-
ity. Unfortunately, to do so, we would likely be restricting
the problem to such an extent as to render the solution use-
less in practice. Nevertheless, we can try to eliminate one of
the sources of complexity to improve the speed of our algo-
rithm (although the algorithm will still be exponential-time).

One method of doing so takes advantage of the following
result from (Eiter & Lukasiewicz 2001):

Theorem 14 Let � be a causal world for which all vari-
ables are binary. Suppose for a given � � � � + , AC1, AC2(a),
and AC2(b) hold. Then AC2(c) holds iff � � -76(�# � � � ,
where 9 �D8=�# �

and 8 � 9 K � � , * �
.

In other words, under a binary causal world, there is no
need to search through the space of possible 8 . It is suffi-
cient to simply check the set

9 K � � �M%P, * �
. This amounts

to checking the value of � under a single intervention, which
as we have noted, takes polynomial time. Thus we can
replace our exponential-time AC2(c) check with a simple
polynomial-time check. Hence the asymptotic running time
of � � becomes �1� � � C
 C � , whereas the more general proce-
dure requires �1�#� � ���$� � � C
=C � .

Experimental Results
To test the algorithms outlined in this paper, we generated
random causal worlds through the following process:

1. We generated a random DAG over � variables by adding
an edge from variable � to variable � , � ��� with proba-
bility ��� . We also limited the number of parents allowed
per node at � .

2. We quantified the table for variable
�

by randomly choos-
ing the value of each table entry from a uniform distribu-
tion over the domain (of size
) of

�
.

Let
� �

be variable 1, and let � � � � � �$ �
. Let

�-#
be

variable � , and let � # � � # �$ �
. The query to our algorithms

was � � 3 � # . Note that
� �

is a root of the endogenous causal
network, and

�-#
is a leaf.

We first tested the average size of the W-projection of a
randomly generated causal world. We generated 2000 ran-
dom networks by the process described above (with � ��� ,
 � �), then pruned each with regard to � � 3 � # . The
averaged results are presented in Table 1. Such pruning can
provide dramatic results for lower values of ��� .

We then implemented three algorithms: the brute-force
algorithm, the same algorithm with the tree pruning de-
scribed by Thm. 6, and the � � algorithm. Each used
the CheckAC2c procedure with the pruning described by
Thm. 13. For the brute-force algorithm with pruning, we
used an arbitrary topological order of the causal network
variables as our variable ordering. To compare these al-
gorithms, we generated 5000 random causal worlds over
25 variables by the process described above with ��� �� :
	 � � ��� � and
 ��� . Then we computed the W-
projection of each world with respect to query � 3�	 . Fi-
nally, we ran each algorithm on the W-projections (on a Sun
Ultra 10 workstation). The results are presented in Table
2, where � is the number of variables in the W-projection
(hence �� �). We display only values of � from 2 to 18.
Clearly, � � enjoys a considerable advantage over the brute-
force approach with pruning. Observe that the average time
to generate each node seems to be larger for � � than for the
brute-force algorithms (by a factor of about 2 or 3). Still,
the savings that � � provides in terms of the total number of
generated nodes easily makes up for this cost. Moreover, the
performance of � � on binary worlds shows an even greater
contrast, with mean execution time of 40 seconds and 20000
generated nodes on 18-node W-projections.

Conclusions
In this paper, we have presented basic algorithms for deter-
mining actual cause according to the definition presented in
(Halpern & Pearl 2001). First, we presented a method of

���
Nodes in Avg nodes in

original network W-projection
.1 10 2.27

20 3.32
30 5.29

.3 10 5.14
20 13.16
30 22.76

Table 1: W-Projection Size (avg of 2000 nets)

N Brute Force BF w/ Pruning IP
Avg Avg Avg Avg Avg Avg

nodes ��� nodes ��� nodes ���
gen. (sec) gen. (sec) gen. (sec)

2 1 � 1 1 � 1 1 � 1
3 4 � 1 4 � 1 3 � 1
4 22 � 1 15 � 1 7 � 1
5 91 � 1 53 � 1 18 � 1
6 304 � 1 127 � 1 24 � 1
7 1416 � 1 484 � 1 51 � 1
8 5413 1 1253 � 1 106 � 1
9 19692 4 3963 � 1 199 � 1

10 81490 18 15283 3 406 � 1
11 - - 52142 14 851 � 1
12 - - - - 1767 1
13 - - - - 3453 2
14 - - - - 7539 5
15 - - - - 19119 16
16 - - - - 40924 38
17 - - - - 76207 81
18 - - - - 248152 272

Table 2: Algorithm Performance Comparison

reducing the problem size by projecting a causal world onto
a reduced set of (query-dependent) variables. Then, we ex-
plored two approaches to solving the problem and devised
proven methods of pruning the search space. The second
attempt, the intervention-proving approach, achieved supe-
rior experimental results. Finally, we considered the task of
deriving algorithms for restricted forms of the problem, and
showed how the � � algorithm could be adapted to run more
efficiently for binary causal worlds.

Acknowledgments
The author would like to thank Judea Pearl, Richard Korf,
and the anonymous reviewers for their helpful advice.

References
Eiter, T., and Lukasiewicz, T. 2001. Complexity results
for structure-based causality. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence 35–40.
Halpern, J., and Pearl, J. 2001. Causes and explanations: A
structural-model approach – part i: Causes. In Proceedings
of the Seventeenth Conference on Uncertainty in Artificial
Intelligence 411–420.
Hopkins, M. 2002a. A proof of the conjunctive cause con-
jecture in ‘causes and explanations: A structural-model ap-
proach’. Technical Report R–306, UCLA Cognitive Sys-
tems Laboratory.
Hopkins, M. 2002b. Strategies for determining causes of
events. Technical Report R–302–L, UCLA Cognitive Sys-
tems Laboratory.
Nebel, B. 1996. Artificial intelligence: A computational
perspective. Principles of Knowledge Representation 237–
266.
Pearl, J. 2000. Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press.

