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Abstract

This paper concerns the assessment of direct causal effects
from a combination of: (i) non-experimental data, and (ii)
qualitative domain knowledge. Domain knowledge is en-
coded in the form of a directed acyclic graph (DAG), in which
all interactions are assumed linear, and some variables are
presumed to be unobserved. The paper establishes a suffi-
cient criterion for the identifiability of all causal effects in
such models as well as a procedure for estimating the causal
effects from the observed covariance matrix.

Introduction
This paper explores the feasibility of inferring linear cause-
effect relationships from various combinations of data and
theoretical assumptions. The assumptions considered will
be represented in the form of an acyclic causal diagram
which contains both arrows and bi-directed arcs (Pearl 1995;
2000). The arrows represent the potential existence of direct
causal relationships between the corresponding variables,
and the bi-directed arcs represent spurious correlations due
to unmeasured common causes. All interactions among vari-
ables are assumed to be linear. Our task will be to decide
whether the assumptions represented in the diagram are suf-
ficient for assessing the strength of causal effects from non-
experimental data and, if sufficiency is proven, to express
the target causal effect in terms of estimable quantities.

This decision problem has been tackled in the past half
century, primarily by econometricians and social scientists,
under the rubric ”The Identification Problem” (Fisher 1966)
– it is still unsolved. Certain restricted classes of models
are nevertheless known to be identifiable, and these are of-
ten assumed by social scientists as a matter of convenience
or convention [Wright, 1960; Duncan, 1975]. McDonald
[1997] characterizes a hierarchy of three such classes: (1)
no bidirected arcs, (2) bidirected arcs restricted to root vari-
ables, and (3) bidirected arcs restricted to variables that are
not connected through directed paths. The structural equa-
tions in all three classes are regressional, and the parameters
can therefore be estimated uniquely using OLS techniques
(Bollen [1989, pp.104]).
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Figure 1: (a) a ”bow-pattern”, and (b) a bow-free model

Recently, (Brito & Pearl 2002) have shown that the iden-
tification of the entire model is ensured if variables stand-
ing in direct causal relationship (i.e., variables connected by
arrows in the diagram) do not have correlated errors; no re-
strictions need to be imposed on errors associated with in-
direct causes. This class of models was called “bow-free”,
since their associated causal diagrams are free of any “bow
pattern” (Pearl 2000) (see Figure 1).

In this work, we provide a new sufficient graphical cri-
terion for the identification of general linear models. The
distinctive characteristic of our criterion is the fact that it
does not rely on the conditional independences implied by
the model. As a consequence, it can be successfully applied
to prove the identification of models with few conditional
independences, while most existing methods would fail.

The remainder of the paper is organized as follows. We
begin with a brief introduction to linear models and the
identification problem, and review some useful definitions.
Then, we describe our approach and define the fundamen-
tal concept of Auxiliary Variable. Next, we give a complete
characterization of the Auxiliary variables and present a suf-
ficient graphical criterion for identification. Finally, we pro-
vide an algorithm to find a suitable set of auxiliary variables
in the model.

Linear Models and Identification
An equation Y = �X + e encodes two distinct assump-
tions: (1) the possible existence of (direct) causal influence
of X on Y ; and, (2) the absence of causal influence on Y of
any variable that does not appear on the right-hand side of
the equation. The parameter � quantifies the (direct) causal
effect of X on Y . That is, the equation claims that a unit
increase in X would result in � units increase of Y . The
variable e is called an ”error” or ”disturbance”; it represents
unobserved background factors that the modeler decides to
keep unexplained.

A linear model for a set of random variables Y =
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Figure 2: A simple linear model and its causal diagram

fY1; : : : ; Yng is defined by a set of equations of the form

Yj =
X
i

cjiYi + ej ; j = 1; : : : ; n (1)

where the error terms ej are assumed to have normal distri-
bution with zero mean, and variance/covariance matrix 	,
[	ij ] = Cov(ei; ej).

The equations and the pairs of error-terms (ei; ej) with
non-zero correlation define the structure of the model. The
model structure can be represented by a directed graph,
called causal diagram, in which the set of nodes is defined by
the variables Y1; : : : ; Yn, and there is a directed edge from
Yi to Yj if the coefficient of Yi in the equation for Yj is dis-
tinct from zero. Additionally, if error-terms ei and ej have
non-zero correlation, we add a (dashed) bidirected edge be-
tween Yi and Yj . Figure 2 shows a simple model and the
respective causal diagram.

The structural parameters of the model, denoted by �, are
the coefficients cij , and the values of the non-zero entries
of the error covariance matrix 	. The models considered in
this work are assumed to be recursive, that is, cji = 0 for
i � j.

Fixing the model structure and assigning values to the pa-
rameters �, the model determines a unique covariance ma-
trix � over the observed variables fY1; : : : ; Yng, given by
(see (Bollen 1989), page 85)

�(�) = (I � C)�1	
h
(I � C)�1

i0
(2)

where C is the matrix of coefficients cji.
Conversely, in the Identification problem, after fixing the

structure of the model, one attempts to solve for � in terms of
the observed covariance �. This is not always possible. In
some cases, no parametrization of the model could be com-
patible with a given �. In other cases, the structure of the
model may permit several distinct solutions for the parame-
ters. In these cases, the model is called nonidentifiable.

A convenient way of relating parameter identification to
the structure of the model is to write Eq.(2) for each term
�ij of � using Wright’s method of path coefficients (Wright
1960). Wright’s method consists of equating the (standard-
ized) covariance �ij with the sum of products of parameters
(or path coefficients) along unblocked paths between Yi and
Yj (examples are given later). If the resulting equations give
a unique solution to some path coefficient cij , independent
of (unobserved) error correlations, that coefficient is identi-
fiable.

Background
Definition 1 A path in a graph is a sequence of edges (di-
rected or bidirected) such that each edge starts in the node
ending the preceding edge. A directed path is a path com-
posed only by directed edges, all oriented in the same di-
rection. We say that node X is an ancestor of node Y if
there is a directed path from X to Y . A path is said to
be blocked if there is a node Z and a pair of consecutive
edges in the path such that both edges are oriented toward
Z (e.g.,: : :! Z  : : :).

Let p be a path between nodes X and Y . We say that
path p points to X (Y ) if the edge of p incident to X (Y )
is oriented toward it. Let Z be an intermediate variable of
path p. We denote the subpath of p consisting of the edges
between X and Z by p[X � Z].

Definition 2 Define the depth of a node in a DAG as the
length (in number of edges) of the longest directed path be-
tween the node and any of its ancestors. Nodes with no an-
cestors have depth 0.

Definition 3 Define the distance between two nodes X and
Y , denote by dist(X;Y ), as the length (in number of edges)
of the shortest path (blocked or unblocked) between vari-
ables X and Y , and for Y = fY1; : : : ; Ykg, we define
dist(X;Y) = minjfdist(X;Yj)g.

Lemma 1 Let X;Y be nodes in the causal diagram of a
recursive model, such that depth(X) � depth(Y). Then, ev-
ery path between X and Y which includes a node Z with
depth(Z)� depth(X) must be blocked.

Basic Approach
Our strategy for the identification problem is as follows. For
a fixed variable Y , we assume that the parameters of edges
connecting variables at depth smaller than Y are already
identified. Then, we establish graphical conditions on the
causal diagram such that the parameters of the edges incom-
ing Y are identifiable. Once we have such a criterion, it is
easy to implement an iterative procedure to verify the iden-
tifiability of the entire model by examining the variables in
increasing depths.

Fix a variable Y in the model and let depth(Y ) = k. As-
sume that the parameters of all edges connecting variables at
depth smaller than k are identified. LetX = fX1; : : : ; Xmg
1 be the set of variables at depth smaller than k which are
connected to Y by an edge.

We further divide the variables in X into subsets X, bX
and bX. A variable Xi belongs to X if it is connected to Y

only by a directed edge; Xi 2 bX if it is connected to Y only

by a bidirected edge; and Xi 2
b
X if there is a directed and

a bidirected edge between Xi and Y .
Define the following set of edges incoming Y :

Inc(Y ) = f(Xi; Y ) : Xi 2 Xg

1In the following, we will also use letters X;Z;W to refer to
variables in the model to avoid overloading the subscripts.



�24 = ��1 + a��1 + �2

�34 = �1 + ��2 + a��2

Y2

Y3Y1 Y4

λ1

λ2

a

β

α

Figure 3: Wright’s equations

Note that if Xi 2
b
X, then there are two edges denoted by

(Xi; Y ) (one directed and one bidirected) and both of them

are in Inc(Y ). So, if j bXj = n, then

jInc(Y )j = jXj+ jbXj = m+ n

For each Xi 2 X, we apply Wright’s method to the pair
fXi; Y g, and obtain the following equations:

�Xi;Y =
X

paths pl

T (pl) ; i = 1; : : : ;m (3)

where term T (pl) is the product of the parameters of edges
along the path pl, and the summation is over all unblocked
paths between Xi and Y . Figure 3 shows Eq. (3) for Y4 as
the fixed variable in a simple model.

In the following, we refer to the equation obtained by ap-
plying Wright’s method to the pair fXi; Y g as the Wright’s
equation for Xi and Y .

Let �1; : : : ; �m+n, denote the parameters of the edges in
Inc(Y ). Then, Eq. (3) can be rewritten as:

�Xi;Y =

m+nX
j=1

aij � �j ; i = 1; : : : ;m (4)

where terms in coefficient aij correspond to unblocked paths
between Xi and Y including edge (Xj ; Y ).

Nonlinear terms (e.g., �j�i) do not appear in these equa-
tions, because each unblocked path from Xi to Y contains
exactly one edge from Inc(Y ). Moreover, it follows from
Lemma 1 and our assumptions, that all the factors appearing
in aij are identified parameters.

Let � denote the system of linear equations (4). The fol-
lowing result was proved in (Brito & Pearl 2002):

Theorem 1 The equations in � are linearly independent.

If bX = ;, then � has m equations for m unknowns.
Hence, theorem 1 guarantees that � has unique solution, and
so the parameters �1; : : : ; �m are identifiable

If jbXj = n > 0, then we have to find n variables pro-
viding additional independent equations to obtain the iden-
tification of parameters �i’s. This motivates the following
definition:

Definition 4 A variable Z at depth smaller than k is said to
be an Auxiliary Variable if and only if the Wright’s equation
for Z and Y is linearly independent from the equations in
�.

We restrict ourselves to variables at depth smaller than k
so that we maintain the desirable property that every factor
appearing in the coefficients of the equation is an identified
parameter.

The AV Criterion
Our definition of Auxiliary Variable is closely related to the
well-known concept of Instrumental Variable, in the sense
that both enable the identification of causal-effects. The tra-
ditional definition qualifies a variable Z as instrumental, rel-
ative to a cause X and effect Y if (Pearl 2000):

1. Z is independent of all error terms that have an influence
on Y that is not mediated by X ;

2. Z is not independent of X .

The intuition behind this definition is that all correlation
between Z and Y must be intermediated by X . If we can
find Z with these properties, then the causal effect of X on
Y , denoted by c, is identified and given by c = �ZY =�ZX .
In the following, we provide a weaker set of conditions that
completely characterize the Auxiliary variables. The condi-
tions are based on the existence of a path (or sequence of
paths) between Z and X in the path diagram, with a few
restrictions. No condition is imposed on the existence of al-
ternative paths between Z and Y which do not go through
X , except that Z cannot be connected to Y by an edge.
AV Criterion:

Variable Z satisfies the AV criterion if we can find Xi1 2b
X and Xi2 ; : : : ; Xik 2 X such that:

(i) for j = 1; : : : ; k � 1, there is an unblocked path pj
between Xij and Xij+1 pointing to both variables;

(ii) there is an unblocked path pk between Z and Xik

pointing to Xik ;
(iii) for 1 � j � k, if some Xl 2 X is an intermediate

variable of path pj , then we must have that Xl 2 bX
and subpath pj [Xl � Xij+1 ] points to Xl (or subpath
pk[Xl � Z], if j = k).

We call the sequence of paths hp1; : : : ; pki an auxiliary
chain C. The variables Z;Xi1 ; : : : ; Xik are the terminal
variables of C, and any other variable appearing in some
path pj is called an intermediate variable of C.

Figure 4 shows some models in which the variable Z
satisfies the AV criterion. For example, in model (a) we
have a chain consisting of the edge Z ! X1. In model
(d), we have the chain with paths: Z ! W2 ! X2 and
X2 $ W2  W1 ! X1. Figure 5 shows some models
in which the variable Z does not satisfy the AV criterion.
In each of those models, at least one condition of the AV
criterion is not satisfied.

Theorem 2 Let Z be such that depth(Z) < depth(Y ) and
Z 62 X. Then Z is an Auxiliary Variable if and only if Z
satisfies the AV criterion.

The GAV Criterion
As mentioned in section 3, if j bXj = n, then we need n aux-
iliary variables to obtain the identification of the parameters
�i’s. Here, we provide a sufficient condition on a set of aux-
iliary variables Z = fZ1; : : : ; Zng for the system consisting
of Wright’s equations for each variable in X [ Z and Y to
be linearly independent.
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Intuitively, for each Xi 2
b
X we should have a unique

Zi 2 Z such that there is an auxiliary chain between Zi and

Xi. That is, two variables Xi; Xj 2
b
X could not share the

same auxiliary variable in Z.
However, although necessary, this is not a sufficient con-

dition. Next, we use the models in Figure 6 to illustrate the
aspects in the structure of the model that allow to obtain in-
dependent equations.

In model (a), we have the chains C1 : hZ1 ! Z2 ! X1i,
and C2 : hZ2 ! X2i, but the system of equations provided
by fX1; X2; Z1; Z2g is not linearly independent. The prob-
lem seems to be that Z2 appears in every chain between Z1
and some Xh 2

b
X.

However, this is still not complete, since in model (b) Z2
also appears in every chain between Z1 and some Xh 2

b
X,

and the equations provided by fX1; X2; X3; Z1; Z2g are
linearly independent. Moreover, in model (d), neither Z1

appears in any chain between Z2 and some Xh 2
b
X,

nor vice-versa, but a common variable W appears in ev-
ery such chains, and as a result the equations provided by
fX1; X2; Z1; Z2g are not linearly independent.

Finally, observe that the orientation of the edges in the
chains is an important issue. Note that the only difference
between models (b) and (c) is the orientation of the edge
(Z2; X1), but while the variables fX1; X2; X3; Z1; Z2g pro-
vide independent equations in model (b), this is not the case
in model (c).

The GAV criterion presented below formalizes those
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Figure 6: Models requiring 2 or more auxiliary variables
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ideas and provides a sufficient condition to obtain linearly
independent equations.
The GAV Criterion:

Let bX = fX1; : : : ; Xng, and let Z = fZ1; : : : ; Zng be a
set of auxiliary variables. Then, Z satisfies the GAV crite-
rion if and only if we can find auxiliary chains C1; : : : ; Cn,
such that

(i) Ci is a chain between Zi and Xi;
(ii) no Xj 2 X appears as a terminal variable in more

than one chain;
(iii) if pi and pj are paths of distinct chains, then they do

not have any intermediate variable in common;
(iv) if p is a path in chain Cj connecting the terminal vari-

ables Xl and Xl+1, and Zi appears as intermediate
variable in p, then both the subpath p[Zi � Xl+1] and
the last path of chain Ci must point to variable Zi.

Figure 7 shows some examples in which the variables Zi

marked in the model satisfy the GAV criterion. In model (a),
we have chains C1 : hZ1 $ X1i and C2hZ2 ! Z1 ! X2i,
which clearly satisfy conditions (i)�(iii) above. To see that
condition (iv) also holds, note that both path Z1 $ X1 and
subpath Z2 ! Z1 point to Z1. We have a similar situation
in model (b).

In model (c), we have more than one choice for the chains
C1; C2 and C3. If we take, for instance, C1 : hZ1 $ X2i,
C2 : hZ2 ! X3i and C3 : hZ3 ! Z1 ! X1i, then we see
that they satisfy all the conditions (i)� (iv).

Theorem 3 If a set of Auxiliary variables Z =
fZ1; : : : ; Zng satisfies the GAV criterion, then the sys-
tem consisting of Wright’s equations for each variable in
X [ Z and Y is linearly independent.

The GAV criterion may appear somewhat restrictive at
first. In fact, it is easy to find examples of sets of auxil-
iary variables which do not satisfy the GAV criterion, but
still provide independent equations. However, in all such
examples we could always find another set of auxiliary vari-
ables satisfying the GAV criterion. So, we conjecture that



the GAV criterion is also a necessary condition to obtain in-
dependent equations from auxiliary variables.

Algorithm
In more elaborate models, it may not be an easy task to check
if a set of auxiliary variables satisfies the GAV criterion. In
this section we present an algorithm to find a set of auxiliary
variables satisfying the GAV criterion, if such set exists.
The basic idea is to reduce the problem to that of solving an
instance of the maximum flow problem.

(Cormen, C.Leiserson, & Rivest 1990) define the maxi-
mum flow problem as follows. A flow network G = (V;E)
is a directed graph in which each edge (u; v) 2 E has a
non-negative capacity c(u; v) � 0. Two vertices are distin-
guished in the flow network: a source s and a sink t. A flow
in G is a real-valued function F : V � V ! R, satisfying:

� F (u; v) � c(u; v), for all u; v 2 V ;
� F (u; v) = �F (v; u), for all u; v 2 V ;
�
P

v2V F (u; v) = 0, for all u 2 V � fs; tg.

The value of a flow F is defined as jF j =
P

v2V F (s; v).
In the maximum flow problem, we have to find a flow from
s to t with maximum value.

Before describing the construction of the flow networkG,
we present an important result which allows to considerably
reduce the number of candidates to compose the set of aux-
iliary variables.

Lemma 2 If there is any set of auxiliary variables Z0 satis-
fying the GAV criterion, then we can always find another set
Z = fZ1; : : : ; Zng which also satisfies the GAV criterion,
such that:

dist(Zj ;X) � blogj
b
Xjc+ 1 ; j = 1; : : : ; n

According to Lemma 2, we only need to consider vari-

ables with distance at most blogjbXjc + 1 from X, to find a
set of auxiliary variables satisfying the GAV criterion.

Now, the set of vertices of flow network G consists of:

� a vertex Vi for each variable Xi 2 X;
� vertices VbZ and V

Z
, for each variable Z =2 X, with

depth(Z) < depth(Y ) and dist(Z;X) � blogjbXjc+ 1;
� a source vertex s, and a sink vertex t.

We have two vertices representing each variable Z =2 X
because such variables may appear in more than one auxil-
iary chain (in fact, at most two).

The set E of edges in G is defined as follows. The goal
is to have a correspondence between auxiliary chains in the
model and directed paths from s to t in the flow network G.
To obtain such correspondence, we include Vi ! Vj in E if
and only if the variables corresponding to Vi and Vj in the
model, say Xi and Xj , are connected by an edge, and such
edge can be traversed by a path in an auxiliary chain in the
direction from Xi to Xj .

Let us analyze the situation for Xi 2 X and Xj 2 bX.
Assume that Xi and Xj are represented by vertices Vi and
Vj , respectively, in G. If Xi ! Xj is the only edge between

Xi and Xj in the model, then we do not include any edge
between Vi and Vj in E, because edge Xi ! Xj cannot
appear in a path of an auxiliary chain. If edge Xj ! Xi is
present in the model, then we include edge Vj ! Vi in E
but do not include Vi ! Vj , because edge Xj ! Xi can
only be traversed from Xj to Xi in a path of an auxiliary
chain. Similarly, if edge Xi $ Xj exists in the model, then
we include edge Vi ! Vj in the model but do not include
Vj ! Vi.

In some cases, one edge in the model corresponds to two
edges in E. For example, if Xi; Xj 2 X and we have edge
Xi $ Xj in the model, then we include edges Vi ! Vj and
Vj ! Vi in E.

For edges incident to some Z =2 X we have a more com-
plex procedure, because such variables are represented by
two vertices in G, and we have to ensure that condition (iv)
of the GAV criterion is satisfied. We omit the technical de-
tails here, and give a table with all types of edges in the
model and the corresponding edges in G in the appendix.

The following edges are also required:

� for each Xh 2
b
X, we include Vh ! t;

� for each Z =2 X, we include s! VbZ ;

Figure 9 shows an example of a model and the corre-
sponding flow network.

In order to solve the maximum flow problem on G, we as-
sign capacity 1 to every edge in E, and impose the additional
constraint of maximum flow capacity of 1 to the vertices of
G (this can be implemented by splitting each vertex into two
and connecting them by an edge with capacity 1), except for
vertices s and t.

We solve the maximum flow problem on G using the
Ford-Fulkerson method and obtain a flow F . From the inte-
grality theorem (see Cormen et al, p.603) we get that F al-
locates a non-negative integer amount of flow to each edge.
Since we assign capacity 1 to every edge, we can interpret
the solution F as a selection of directed paths p1; : : : ; pjF j,
from s to t. Moreover, it follows from the additional con-
straint that these paths do not share any common vertex other
than s and t.

Finally, note that vertex s is connected only to vertices
VbZi

, representing some Zi =2 X, and such vertices can ap-
pear only once in a directed path from s to t. Thus, each path
pi can be associated with a unique variable Zi =2 X. Hence,

if jF j = jbXj, the algorithm returns the set of variables as-
sociated with paths p1; : : : ; pjF j. Figure 8 summarizes the
steps of the algorithm.

Theorem 4 The algorithm is sound, that is, the returned set
of variables satisfies the GAV criterion.

Theorem 5 The algorithm is complete, that is, it always find
a set of variables satisfying the GAV criterion if such set
exists.

Conclusion and Discussion
In this paper we have introduced a new graphical criterion
for parameter identification in linear models. Most exist-



Algorithm:
1. Construct a flow network based on the model structure;
2. Solve the maximum flow problem on G using the Ford-
Fulkerson method to obtain a flow F .
3. If jF j = jbXj, return the set of variables associated with
paths pi. Otherwise, return the empty set.

Figure 8: Algorithm to find auxiliary variables.
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Figure 9: A model and the corresponding flow network

ing methods for this problem take advantage of the condi-
tional independence relations implied by the model. Since
our method does not make any use of this feature, it is ap-
propriate even for models which are not rich in conditional
independences.

Although our criterion can prove the identifiability of a
large class of models, it is not complete. Figure 10 shows an
example of a completely identifiable model for which our
criterion fails. Manipulating the set of Wright’s equations
for each pair of variables in this model, one can prove the
identification of every parameter.

Our criterion, fails because there is no variable at depth
smaller than depth(Y ) satisfying the conditions of an
Auxialiary variable. However, we note that variable Z
has all properties to be an auxiliary variable, except that
depth(Z) > depth(Y ). Thus, relaxing the definition of
Auxiliary Variable to include such cases could be a natural
extension of this work.

Appendix

Let Xi; Xj 2 X, Xl; Xk 2 X, Xg; Xh 2
b
X, Z;Z1; Z2 =2

X. Then, the correspondence of edges in the model and in
the flow network is given by:

X Y ZW

Figure 10: An identifiable model

Xi $ Xj : Vi ! Vj and Vj ! Vj
Xi $ Xl : Vi ! Vl
Xl ! Xi : Vl ! Vi
Xl ! Xk : Vl ! Vk
Xi $ Xh : Vi ! Vh
Xl ! Xh : Vl ! Vh
Z ! Xh : V

Z
! Vh

Z $ Xh : VbZ ! Vh
Z ! Xl : V

Z
! Vl

Z $ Xl : VbZ ! Vl
Xl ! Z : Vl ! V

Z
Z ! Xi : V

Z
! Vi

Z $ Xi : VbZ ! Vi and Vi ! V
Z

Z1 ! Z2 : V
Z1
! V

Z2
Z1 $ Z2 : VbZ1 ! V

Z2
and VbZ2 ! V

Z1

8Z =2 X : VbZ ! V
Z
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