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Abstract

This paper establishes a new criterion for the identi�cation of recursive linear models

in which some errors are correlated. We show that identi�cation is ensured as long as

error correlation does not exist between a cause and its direct e�ect; no restrictions are

imposed on errors associated with indirect causes.

1 Introduction

Before structural equation models (SEM) can be estimated and evaluated against data,
the researcher must make sure that the parameters of the estimated model are identified,
namely, that they can be determined uniquely from the population covariance matrix. The
importance of testing identi�cation prior to data analysis is summarized succinctly by Rigdon
(1995):

\To avoid devoting research resources toward a hopeless cause (and to avoid
ignoring productive research avenues out of an unfounded fear of underidenti�ca-
tion), researchers need a way to quickly evaluate a model's identi�cation status
before data are collected. Furthermore, because models are often altered in the
course of research [Joreskog, 1993], researchers need a technique that helps them
understand the impact of potential structural changes on the identi�cation status
of the model."

It is well known that, in recursive path models with correlated errors, the identi�cation
problem is unsolved. In other words, we are not in possession of a necessary and su�cient
criterion for deciding whether the parameters in such a model can be computed from the
population covariance matrix of the observed variables. Certain restricted classes of models
are nevertheless known to be identi�able, and these are often assumed by researchers as a
matter of convenience or convention [Wright, 1960; Duncan, 1975; Kang and Seneta, 1980].1

McDonald [1997] characterizes a hierarchy of three such classes: (1) uncorrelated errors, (2)
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correlated errors restricted to exogenous variables, and (3) correlated errors restricted to
pairs of causally unordered variables (i.e., variables that are not connected by uni-directed
paths.). The structural equations in all three classes are regressional (i.e., the error term in
each equation is uncorrelated with the explanatory variables of that same equation) hence
the parameters can be estimated uniquely using OLS techniques.2

Although more powerful algebraic and graphical methods have been developed for testing
whether a speci�c parameter, or a speci�c equation in a model is identi�able (see [Fisher,
1966; Geraci, 1983; Bekker et al., 1994; Pearl, 1998, 2000a; Spirtes et al., 1998]), such meth-
ods are often too complicated for investigators to apply in the pre-analytic phase of model
construction. Additionally, those specialized methods are limited in scope. The rank and
order criteria [Fisher, 1966], for example, which are typical of the algebraic variety, do not
exploit restrictions on the error covariances (if such are available). The rank criterion further
requires precise estimate of the covariance matrix before identi�ability can be decided. Iden-
ti�cation methods based on block recursive models [Fisher, 1966; Rigdon, 1995], for another
example, insist on uncorrelated errors between any pair of ordered blocks. The \back-door"
and \single-door" criteria, which are typical of the graphical variety [Pearl, 2000a, pp. 150{2],
are applicable only in sparse models, that is, models rich in conditional independencies (e.g.,
zero partial correlations). The same holds for criteria based on instrumental variables (IV)
(Bowden and Turkington, 1984), since these require search for variables (called instruments)
that are uncorrelated with the error terms in speci�c equations (see Section 5).

This paper adds a new criterion to our repertoire of su�cient identi�cation conditions,
and thus uncovers a new class of identi�able models which, unlike the regressional hierarchy
of McDonald [1997], permits errors associated with causally ordered variables (or blocks of
variables) to be correlated and, unlike the IV method, does not rely on �nding instruments.
We show that identi�cation is ensured as long as correlated errors are restricted to pairs
of variables that are not directly linked (i.e., do not stand in direct causal relationship); no
restrictions need be imposed on errors associated with indirectly linked variables. We shall
call this class of models \bow-free", since their associated path diagrams are free of any
\bow pattern" [Pearl, 2000a]|a curved arc embracing a single arrow, as in Fig. 1(a)|which
typically represent unmeasured common cause of a dependent and an explanatory variable
in the same equation.3

[Figure 1 about here.]

A simple example of a bow-free model is shown in Fig. 1(b). It represents the equations

Y1 = e1

Y2 = �Y1 + e2

Y3 = �Y2 + e3 (1)

with cov(e1; e2) = cov(e3; e2) = 0, and cov(e1; e3) 6= 0. The correlation between e1 and
e3 renders the third equation non regressional (since e3 is correlated with Y2), yet � is
nevertheless identi�able, as can be veri�ed by simple algebraic or graphical methods (Pearl
[2000a, p. 155{6]). For example, we can regard Y2 as (conditional) instrumental variable,
since, conditioned on Y1; Y2 is uncorrelated with e3 (see Section 5).

A more elaborate bow-free model is shown in Fig. 2.

2



[Figure 2 about here.]

Here, all errors are assumed to be correlated, except those corresponding to the �ve
direct arrows, i.e., Y1 ! Y3, Y1 ! Y4, Y2 ! Y4, Y3 ! Y5, Y4 ! Y5. Again, the equation
for variable Y5 is non-regressional, but, as we shall see, all parameters in this model are
identi�able. Remarkably, the identi�ability of this model is not recognized by available
graphical methods (see Pearl [1998; 2000a, pp. 149{154] and Spirtes et al., 1998).

The bow-free condition thus extends existing identi�cation criteria to a large class of
models in which some omitted factors a�ect two or more variables, as long as the a�ected
variables are not directly linked. Such models are quite common,4 and can be recognized by
simple inspection of the diagram (or the equations) without invoking algebraic operations
or searches for conditional instrumental variables. The new condition can therefore serve
as an e�ective, pre-analytic means of ascertaining the identi�ability of candidate structural
models under construction.

2 Linear Recursive Models

A linear model for a set of random variables Y = fY1; : : : ; Yng is de�ned by a set of equations
of the form

Yj =
X
i

cjiYi + ej ; j = 1; : : : ; n

and a matrix 	 of variance/covariance for error-terms ej.
5

The equations and the pairs of error-terms (ei; ej) with non-zero correlation de�ne the
structure of the model. The model structure can be represented by a directed graph, called
path diagram, in which the set of nodes is de�ned by the variables Y1; : : : ; Yn, and there is a
directed edge from Yi to Yj if the coe�cient of Yi in the equation for Yj is distinct from zero.
Additionally, if error-terms ei and ej have non-zero correlation, we add a (dashed) bidirected
edge between Yi and Yj.

The models considered in this work are assumed to be recursive, that is, cij = 0 for j � i.
The structural parameters of the model, denoted by �, are the coe�cients cij, and the values
of the non-zero entries of the error covariance matrix 	ij = E(eiej). We will also assume
that all the Y variables are measured without errors, that the Y variables are standardized,
and that all error-terms are unmeasured.

Fixing the model structure and assigning values to the parameters �, the model deter-
mines a unique covariance matrix � over the observed variables fY1; : : : ; Yng, given by (see
[Bollen, 1989, p. 85])

�(�) = (I � C)�1	(I � C)�1 (2)

where C is the matrix of structural coe�cients, [C]ij = cij.
Conversely, given the structure of a model, one may attempt to solve for C in terms of the

observed covariance �. This is not always possible. In some cases, no parameterization of
the model could be compatible with a given �. In other cases, as in Fig. 1(a), the structure of
the model may permit several distinct solutions for the parameters. In these cases, the model
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is called nonidenti�able. Our task is to �nd conditions on the model structure that would
guarantee a unique solution for the parameters if such a solution exists. Additionally, since
the conditions we seek involve the structure of the model alone, not a particular numerical
values of the parameters �, we will insist on having a unique solution for \almost all" values
of �, allowing for some pathological exceptions, as formulated below.

A convenient way of relating parameter identi�cation to the structure of the model is
to write Eq. (2) for each term �ij of � using Wright's method of path coe�cients (Wright,
1960). Wright's method consists of equating the (standardized) covariance �ij with the sum
of products of path coe�cients and error covariances along the unblocked paths connecting
Yi and Yj (examples are given in Section 4). Whenever the resulting equations give a unique
solution to some path coe�cient cij, independently of the (unobserved) residual correlations,
that coe�cient is said to be identi�able.

In this paper we establish a su�cient condition for the identi�cation of all structural
parameters.

3 Identi�cation of Bow-free Models

We claim that, in almost every case, given the structure of a recursive linear bow-free model,
and a covariance matrix � that is compatible with the model, all structural parameters can
be determined uniquely. This claim is formalized in the statement of Theorem 1,

Theorem 1 Let M be a bow-free model, and let � be the set of parameters of M , that is,
� = f	; Cg such that 	ij = 0 whenever [C]ij 6= 0. Then, for almost all �, we have:

�(�) = �(�0) implies � = �0:

In other words, if two sets of parameters, � and �0, give rise to the same covariance �, then
� and �0 must be identical, except when � resides in a set of zero Lebesgue measure.

Before proving the theorem, some de�nitions and preliminary results are required.

De�nition 1 A path in a graph is a sequence of edges (directed or bidirected) such that each
edge starts in the node ending the preceding edge. A directed path is a path composed only
by directed edges, all oriented in the same direction. We say that node X is an ancestor of
node Y if there is a directed path from X to Y . A path is said to be blocked if there is a
node Z and a pair of consecutive edges in the path such that both edges are oriented toward
Z (e.g.,: : :! Z  : : :). In this case, Z is called a collider.

For example, the path Y1 ! Y4 $ Y3 ! Y5 in Fig. 2 is blocked, because Y4 is a collider.
The path Y1 ! Y4 ! Y5, on the other hand, is a directed path from Y1 to Y5, and it is
unblocked.

De�nition 2 De�ne the depth of a node in a DAG as the length (in number of edges) of
the longest directed path between the node and any of its ancestors. Nodes with no ancestors
have depth 0.
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For example, in Fig. 2 nodes Y1 and Y2 have a depth zero, Y3 and Y4 have depth 1, and
Y5 has depth 2.

Lemma 1 Let X; Y be nodes in the path diagram of a recursive model, such that depth(X)
� depth(Y). Then, every path between X and Y which includes a node Z with depth(Z) �
depth(X) must be blocked by a collider.

Proof:

Consider a path p between X and Y and node Z satisfying the conditions above. We observe
that Z cannot be an ancestor of eitherX or Y , otherwise we would have depth(Z) < depth(X)
or depth(Z) < depth(Y ).

Now, consider the subpath of p between Z and Y . If this subpath has the form Z ! : : : Y ,
then it must contain a collider, since it cannot be a directed path from Z to Y . Similarly, if
the subpath of p between X and Z has the form X : : : Z, then it must contain a collider.

In all the remaining cases Z is a collider blocking the path. 2

De�nition 3 For each node Y , de�ne the set of incoming edges to Y , denoted I(Y ), as the
union of:

(i) the set of all directed edges oriented toward Y ;

(ii) the set of all bidirected edges between Y and a node X, such that depth(X) < depth(Y ).

Lemma 2 Let Y be a variable at depth k of a bow-free model. Assume that the parameter of
every edge connecting variables at depth smaller than k is identi�able. Then, the parameter
of each edge in I(Y ) is identi�able almost everywhere.

Proof:

Let X = fX1; : : : ; Xmg be the set of variables variables at depth smaller than k which are
connected to Y by some directed or undirected edge. The bow-free property of the model
implies a one-to-one correspondence between the variables in X and the elements of I(Y ).
Thus, we can write I(Y ) = f(X1; Y ); : : : ; (Xm; Y )g. For example, in the model illustrated
in Fig. 3, we have X = fX1; X2g and I(Y ) = f(X1 ! Y ); (X2 $ Y )g.

[Figure 3 about here.]

Applying Wright's method to each pair (Xi; Y ), Xi 2 X, we obtain the following equa-
tions:

�Xi;Y =
X

paths pl

T (pl) ; i = 1; : : : ; m (3)

where the term T (pl) is the product of the parameters of the edges along the path pl, and
the summation is over all unblocked paths between Xi and Y .

For i = 1; : : : ; m, we denote the parameter of edge (Xi; Y ) by �i. Then, we can rewrite
the set of equations (3) as
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�X1 ;Y =
mX
j=1

a1j � �j

: : :

�Xm;Y =
mX
j=1

amj � �j

where the terms in aij correspond to unblocked paths between Xi and Y including edge
(Xj; Y ).

Back to the model in Fig. 3, we see that the only unblocked path between X1 and Y is
composed by the edge X1 ! Y , since the path X1 ! X2 $ Y is blocked by the collider X2.
Also, we have two unblocked paths between X2 and Y : X2  X1 ! Y , and X2 $ Y . Thus,
equations (3) for this model read:

�X1;Y = �1
�X2;Y = a12�1 + �2

Nonlinear terms (i.e., �j�i) are excluded from these equations because each unblocked path
from Xi to Y contains exactly one element of I(Y ). Moreover, it follows from Lemma 1 and
the assumptions of the lemma, that every factor in aij is an identi�able parameter. This
yields a linear system of m equations (one for each Xi) and m unknown, �1; : : : ; �m, that we
can write in matrix notation as � = A � �.

Writing in matrix form the system of equations for the model in Fig. 3, we obtain:

"
�X1;Y

�X2;Y

#
=

"
1 0
a12 1

#
�

"
�1
�2

#

The parameters �i's are identi�able if the system of linear equations has unique solution,
and this is the case if and only if Det(A) 6= 0.

We now observe some special properties of matrix A. First, note that, in bow-free models,
the only unblocked path between Xi and Y including edge (Xi; Y ) consists precisely of such
edge. Hence, aii = 1; i = 1; : : : ; m. On the other hand, for i 6= j, entry aij is obtained by
considering unblocked paths between Xi and Y which include edge (Xj; Y ). Since Xi 6= Xj,
any such path must have at least two edges. Hence, aij is either 0 (if no such path exists)
or a polynomial in the parameters of the model with no constant term.

Thus, the general form of matrix A is

A =

2
66664

1 a12 : : : a1m
a21 1 : : : a2m
...

...
. . .

...
am2 am2 : : : 1

3
77775 :

From the de�nition of determinant, we can write

Det(A) = 1 + T
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where term T is either 0 or a polynomial in the parameters of the model with no constant
term. Thus, Det(A) only vanishes on the set of zeros of the polynomial 1 + T . And, from
[Okamoto, 1973], we can further conclude that this set has Lebesgue measure zero. 2

Proof of Theorem 1:

We argue by induction on the depth of the variables. At step k, we show that all the
parameters associated with edges connecting variables at depth smaller than or equal to k
are identi�able.

Let Y be a variable at depth k.
If k = 0, then Y is a root and I(Y ) is empty. To show that the parameter of a bidirected

edge connecting two roots Y and Y 0 is identi�able, we note that the only unblocked path
between Y and Y 0 is precisely given by edge (Y; Y 0). In this case, according to Wright's
method, the parameter of edge (Y; Y 0) is identi�able and given by the correlation coe�cient
between Y and Y 0.

Now, assume that the parameter of every edge connecting two variables at depth smaller
than k is identi�able. Then, by Lemma 2, the parameters of edges in I(Y ) are identi�able.

Once we have that the parameters of edges in I(Y ) are identi�able, for every variable
Y at depth k, we can easily show that the parameter of a bidirected edge connecting two
variables at depth k is identi�able (see Section 4 for an example). This follows by writing
the corresponding Wright's equation and noting that every unblocked path between two
such variables is either the desired bidirected edge itself, or a path labeled with identi�able
parameters.

Since the model has a �nite number of variables, and for each variable Y the parameters
of edges in I(Y ) are all identi�able except in a set of Lebesgue measure zero, the statement
of the Theorem holds. 2

4 Example

[Figure 4 about here.]

Assume we are given the model structure and the matrix � shown in Fig. 4. Since
the structure of the model is bow-free, Theorem 1 ensures that all model parameters are
identi�able. In the following, we show how to �nd expressions for the model's parameters,
starting from the roots of the graph (corresponding to the exogenous variables Y1 and Y2)
and proceeding in increasing depths.

Wright's equation for the pair (Y1; Y2) gives

�12 = f:

Next, we consider variable Y3. Wright's equations for pairs (Y1; Y3) and (Y2; Y3) read(
�13 = c13
�23 = g + c13f

from which we obtain two additional parameters: c13 = �13 and g = �23 � �12 � �13.
Now, we consider variable Y4. Wright's equations for pairs (Y1; Y4), (Y2; Y4) and (Y3; Y4)

read
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8><
>:

�14 = c14 + fc24
�24 = fc14 + c24
�34 = h+ gc24 + c13c14 + c13fc24

:

Solving for c24, c14 and h, we obtain

c24 =
�24 � f�14
1� f 2

=
�24 � �14 � �12

1� �212
; c14 =

�14 � f�24
1� f 2

=
�14 � �24 � �12

1� �212
:

h = �34 � c24�23 � c�13
= �34 �

h
�23��24+�13��14��12��14��23��12��13��24

1��2
12

i
Note that the edge (Y3; Y4) connects two variables of equal depth and the corresponding

parameter, h, is not needed for the computation of c24, c14. h is obtained immediately from
the corresponding equation for �34, once we solve for c24, c14.

Finally, we consider variable Y5. Wright's equations for pairs (Y1; Y5), (Y2; Y5), (Y3; Y5)
and (Y4; Y5) read 8>>><

>>>:
�15 = �1 + c13�3 + �4�14
�25 = �3�23 + c24�4 + �2
�35 = c13�1 + �3 + �4�34
�45 = c14�1 + �3�34 + �4 + c24�2

which need to be solved for the four depth-3 parameters: �1; �2; �3; �4.
To illustrate Theorem 1, we write these equations in matrix form:2

6664
�15
�25
�35
�45

3
7775 =

2
6664

1 0 c13 �14
0 1 �23 c24
c13 0 1 �34
c14 c24 �34 1

3
7775 �

2
6664
�1
�2
�3
�4

3
7775

and we see that matrix A indeed has only 1's on the main diagonal. Furthermore, the
determinant of A is given by

det[A] = 1 + c213c
2
24 � c213 � c224 � �234+

c13�34(c14 + �14)� c14�14 + c24�23(�34 � c13�14):
(4)

Thus, the system has unique solution except on the zeros of the polynomial in Eq. (4).
Solving for the parameters �1; �2; �3 and �4, we obtain:

�4 =
(1�c213)(�45�c14�15�c24�25)�h(�35�c13�15)

(1�c213)(1�c�14�c
2
24)�h(�34�c13�14)

�3 =
�35�c13�15

1�c2
13

� �4 �
�34�c13�14

1�c2
13

; �1 =
�15�c13�35

1�c2
13

� �4 �
�14�c13�34

1�c2
13

�2 = �25 �
�23

1�c2
13

� (�35 � c13�15)� �4 � (c24 �
�23

1�c2
13

� (�34 � c13�14))

= �25 � �3�23 � �4c24
:
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5 Relations to Instrumental Variables

Current conditions of identi�ability, both algebraic and graphical, are based primarily on
instrumental variables (IV) [Bowden and Turkington, 1984], the graphical representation of
which are described in [Pearl, 2000a, pp. 150{154]. These conditions are applicable to models
containing bow-patterns, as is illustrated in the following simple example:

W = e1

X = aW + e2

Y = cX + e3

with cov(e1; e2) = cov(e1; e3) = 0. The potential correlation between e2 and e3 induces a
bow-pattern in the corresponding diagram, as shown in Fig. 5(a). Nevertheless,

[Figure 5 about here.]

the fact that cov(W; e3) = 0 permits us to identify parameter c from Wright's equations:

�WX = a

�WY = ac;

yielding:
c = �WY =�WX (5)

More generally, whenever a variable W can be found which is correlated with X but is
uncorrelated with the error (e) in the equation

Y = cX + e;

that variable is called an instrument for c, for it permits the identi�cation of c, using (5).
If the equation for Y contains several explanatory variables, then W need be uncorrelated
with e and with each of those explanatory variables (excluding X).

The graphical criterion for recognizing an instrument is based on replacing the condition
cov(W; e) = 0 with its graphical analogue, namely, all paths between W and Y should be
blocked in the subgraph Gc formed by deleting the link labeled by c [Pearl, 2000a, p. 150].
For example, the subgraph G� corresponding to Fig. 5(a) is shown in Fig. 5(b); in this
subgraph, all paths between W and Y are indeed blocked, since X is a collider.

An important generalization of the IV method is o�ered through the use of conditional
IV's. A conditional IV is a variable W that may be correlated with the equation error-term
but the two become uncorrelated when we condition on some set Z of observed variables
(also called \covariates"). When such a set is found, parameter c is identi�ed and (paralleling
(5)) is given by

c =
�WY �Z

�WX�Z

(6)

For example, there exists no variable that is uncorrelated with e3 in Eq. (1) (Fig. 1(b)).
However, variable Y2 acts as a conditional instrumental variable (relative to �), since, con-
ditional on Y1; Y2 is uncorrelated with e3. In this case, substituting c = �; W = Y2; X =
Y2; Y = Y3; Z = Y1 in (6), we obtain � = �Y2Y3�Y1 = �23�1 because �Y2Y2�Y1 = �22�1 = 1.
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Clearly, searching a system of equations for a pair (W;Z) such that W is a conditional
IV (conditioned on Z) may be a tedious task, because zero conditional covariances (or
zero partial correlations) are not easily recognizable in a system of equations. Fortunately,
a graphical criterion for recognizing such zero correlations is available, which reduces the
search task substantially, and renders the discovery of conditional IV's manageable by simple
inspection of the graph. The criterion is called d-separation [Pearl, 1986], and is de�ned as
follows:

De�nition 4 (d-separation)
A set Z of nodes is said to d-separate node X from node Y in a graph if Z blocks every path
between X and Y . A set Z of nodes is said to block a path p if either (i) p contains at least
one arrow-emitting node that is in Z, or (ii) p contains at least one collider that is outside
S and has no descendant in Z.6

For example, the set Z = fZ1g blocks the path X  W  Z1 ! Z2 ! Y , because
the arrow-emitting node Z1 is in Z. However, the set Z = fZ3g does not block the path
X  W  Z1 ! Z3  Z2 ! Y , because none of the arrow-emitting nodes, W;Z1, and Z2,
is in Z, and the collider Z3 is not outside Z.

Because any d-separation condition in the graph implies �XY �Z = 0 [Verma and Pearl
1988; Pearl 2000a, p. 142], we can de�ne conditional instrumental variables as follows
[Pearl, 2000b]:

Lemma 3 Let c stand for the path coe�cient assigned to the arrow X ! Y in a causal graph
G, and let Z be a set of variables. A variable W is an instrument relative to c, conditional
on Z, if the following conditions hold:

1. Z consists of nondescendants of Y ,

2. Z d-separates W from Y in the subgraph Gc formed by removing X ! Y from G.

3. Z does not d-separate W from Y in Gc.

Moreover, if the preceding conditions hold, c is identi�ed and is given by (6).

To illustrate, consider again the model of Fig. 6(a). Although there exists no d-separation
condition in this graph, such condition does exist in the subgraph G� formed by deleting the
arrow from Y2 to Y3 (Fig. 6(b)).

[Figure 6 about here.]

In this subgraph, Y2 and Y3 are d-separated by the set Z = fY1g. Therefore, Y2 is an
instrument for �, conditioned on Z = fY1g. By Lemma 3, this implies that � is identi�ed
and is given by � = �23:1.

However, the method of conditional instrumental variables has its limitations. Fig. 4 for
example, represents an identi�able model that has no instrumental variable for the param-
eters �3 and �4. This can be veri�ed using lemma 3 by noting that, in the subgraph G�3

there exists no pair (W;Z) that d-separates Y3 from Y4. Thus, the method of conditional
instrumental variables is not able to identify the bow-free model of Fig. 4. Such status
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is easily ascertained by the criterion of Theorem 1, since this model is bow-free and any
bow-free model can immediately be classi�ed as identi�able. Note also that criteria based
on instrumental variables ensure the identi�ability of one parameter at a time, while the
criterion established in this paper ensures the identi�ability of the model as a whole.

6 Conclusion and Discussion

We have shown that any linear, recursive bow-free model permits the identi�cation of all
its parameters. In other words, a linear recursive model is identi�able as long as the error
associated with each variable is uncorrelated with the errors associated with the direct e�ects
of that variable; other errors may as well be correlated. The proof of Theorem 1 further
provides a systematic, recursive method of computing each structural parameter as a function
of the observed covariance matrix. This result supplements our arsenal of identi�cation
conditions with a new criterion that is widely applicable and easily discernible by unaided
investigators.
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Notes

1Rigdon [1995] reports that, out of 108 models scanned in the applied SEM literature, 81
(75%) assumed that errors were uncorrelated.

2Bollen [1989, pp. 104] lumped the �rst two conditions under the rubric \Recursive Rule";
we use the term \recursive" to denote acyclic systems of equations (i.e., without reciprocal
causation or feedback loops) with unrestricted error covariances.

3McDonald called the bow-free condition \Direct Precedence Assumption" (personal com-
munication, 1996), as distinct of the \Precedence Assumption" discussed in [McDonald, 1997].
Kenny et al. (1998) have in fact conjectured that such condition would ensure identi�cation
in both recursive and nonrecursive models. They stated: \Although there is no known proof
of this condition, there is no known exception."

4All recursive models illustrated in Kenny [1979] and Bollen [1989] are bow-free.

5The set of Y variables for which all c's are zero are commonly called \exogenous" (or
\predetermined") and are often distinguished notationally (e.g., in Bollen [1989, p. 81],
exogenous variables are denoted X1; : : : ; Xq); such distinction is not needed for our analysis.
Additionally, unlike some of the econometric and SEM literature, we will not require that
the exogenous variables be uncorrelated with the equation disturbances of all endogenous
variables. Such requirement is rarely justi�ed in nonexperimental studies, even when the
exogenous variables represent policy decisions (see [Pearl, 2000a, p. 136]).

6The terms \arrow-emitting node" and \collider" are to be interpreted literally as illus-
trated by the examples given.
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Figure 1: (a) a \bow-pattern," (b) a bow-free model.
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Figure 4: A bow-free model illustrating the proof of Theorem 1.
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Figure 5: (a) A model identi�ed by usingW as instrumental variable for c. (b) The subgraph
Gc used for classifyingW as an instrumental variable: all paths betweenW and Y are blocked
in Gc.
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Figure 6: (a) A model illustrating the use of conditional instrumental variables: Y2 is an in-
strument for �, conditional on Y1. (b) The subgraph G� used for classifying Y2 as conditional
instrument, per Lemma 3.
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