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A New Identification Condition for
Recursive Models With Correlated Errors
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Computer Science Department
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This article establishes a new criterion for the identification of recursive linear mod-
els in which some errors are correlated. We show that identification is ensured as long
as error correlation does not exist between a cause and its direct effect; no restrictions
are imposed on errors associated with indirect causes.

Before structural equation models (SEM) can be estimated and evaluated against
data, a researcher must make sure that the parameters of the estimated model are
identified, namely, that they can be determined uniquely from the population
covariance matrix. The importance of testing identification prior to data analysis is
summarized succinctly by Rigdon (1995):

To avoid devoting research resources toward a hopeless cause (and to avoid ignoring
productive research avenues out of an unfounded fear of underidentification), re-
searchers need a way to quickly evaluate a model's identification status before data
are collected. Furthermore, because models are often altered in the course of research
(Joreskog, 1993), researchers need a technique that helps them understand the impact
of potential structural changes on the identification status of the model, (p. 359)

It is well known that, in recursive path models with correlated errors, the identi-
fication problem is unsolved. In other words, we are not in possession of a neces-
sary and sufficient criterion for deciding whether the parameters in such a model
can be computed from the population covariance matrix of the observed variables.
Certain restricted classes of models are nevertheless known to be identifiable, and
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these are often assumed by researchers as a matter of convenience or convention
(Duncan, 1975; Kang & Seneta, 1980; Wright, I960).

1

McDonald (1997) characterizes a hierarchy of three such classes: (a)
uncorrelated errors, (b) correlated errors restricted to exogenous variables, and (c)
correlated errors restricted to pairs of causally unordered variables (i.e., variables
that are not connected by uni-directed paths). The structural equations in all three
classes are regressional (i.e., the error term in each equation is uncorrelated with
the explanatory variables of that same equation), hence the parameters can be esti-
mated uniquely using ordinary least squares (OLS) techniques.

2

Although more powerful algebraic and graphical methods have been developed
for testing whether a specific parameter or a specific equation in a model is identi-
fiable (see Bekker, Merckens, & Wansbeek, 1994; Fisher, 1966; Geraci, 1983;
Pearl, 1998,2000a; Spirtes, Richardson, Meek, Scheines, & Glymour, 1998), such
methods are often too complicated for investigators to apply in the pre-analytic
phase of model construction. Additionally, those specialized methods are limited
in scope. The rank and order criteria (Fisher, 1966), for example, which are typical
of the algebraic variety, do not exploit restrictions on the error covariances (if such
are available). The rank criterion further requires a precise estimate of the
covariance matrix before identifiability can be decided. Identification methods
based on block recursive models (Fisher, 1966; Rigdon, 1995), for another exam-
ple, insist on uncorrelated errors between any pair of ordered blocks. The
"back-door" and "single-door" criteria, which are typical of the graphical variety
(Pearl, 2000a, pp. 150-152), are applicable only in sparse models, that is, models
rich in conditional independencies (e.g., zero partial correlations). The same holds
for criteria based on instrumental variables (IV; Bowden & Turkington, 1984),
since these require search for variables (called instruments) that are uncorrelated
with the error terms in specific equations (see Relations to Instrumental Variables).

This article adds a new criterion to our repertoire of sufficient identification
conditions, and thus uncovers a new class of identifiable models that, unlike the
regressional hierarchy of McDonald (1997), permits errors associated with caus-
ally ordered variables (or blocks of variables) to be correlated and, unlike the IV
method, does not rely on finding instruments. We show that identification is en-
sured as long as correlated errors are restricted to pairs of variables that are not di-
rectly linked (i.e., do not stand in direct causal relationship); no restrictions need be
imposed on errors associated with indirectly linked variables. We shall call this
class of models "bow-free," since their associated path diagrams are free of any

'Rigdon (1995) reports that, out of 108 models scanned in the applied SEM literature, 81 (75%) as-
sumed that errors were uncorrelated.

Pollen (1989) lumped the first two conditions under the rubric "Recursive Rule" (p. 104). We use
the term recursive to denote acyclic systems of equations (i.e., without reciprocal causation or feedback
loops) with unrestricted error covariances.
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FIGURE 1 (a) A "bow-pattern"; (b) a bow-free model.

"bow pattern" (Pearl, 2000a)—a curved arc embracing a single arrow, as in Figure
la—which typically represent unmeasured common cause of a dependent and an
explanatory variable in the same equation.3

A simple example of a bow-free model is shown in Figure Ib. It represents the
equations

Yi=ei (1)
Yz = aYi + ez
Yz = pY2 + <?3

with cov(e\, ez) = cov(e3, ei) = 0, and cov(ei, ei) ̂  0. The correlation between e\
and 03 renders the third equation nonregressional (since ei, is correlated with Yz),
yet P is nevertheless identifiable, as can be verified by simple algebraic or graphi-
cal methods (Pearl, 2000a, pp. 155-156). For example, we can regard Yz as (condi-
tional) instrumental variable, since, conditioned on Y\,Yi is uncorrelated with 63
(see Relations to Instrumental Variables).

A more elaborate bow-free model is shown in Figure 2.
Here, all errors are assumed to be correlated, except those corresponding to the

five direct arrows, that is,Vi -> Yz, Y\ -> Y^ Yz -> ¥4, Vs -> Ys, Y^ -> Ys. Again, the
equation for variable Ys is nonregressional, but, as we shall see, all parameters in
this model are identifiable. Remarkably, the identifiability of this model is not rec-
ognized by available graphical methods (see Pearl, 1998, 2000a, pp. 149-154;
Spirtes et al., 1998).

The bow-free condition thus extends existing identification criteria to a large
class of models in which some omitted factors affect two or more variables, as
long as the affected variables are not directly linked. Such models are quite com-

^cDonald called the bow-free condition "Direct Precedence Assumption" (R. P. McDonald, per-
sonal communication, November 15, 1993), as distinct of the "Precedence Assumption" discussed in
McDonald (1997). Kenny, Kashy, and Bolger (1998) have in fact conjectured that such condition would
ensure identification in both recursive and nonrecursive models. They stated, "Although there is no
known proof of this condition, there is no known exception."
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FIGURE 2 Bow-free model with five variables.

mon,
4
 and can be recognized by simple inspection of the diagram (or the equa-

tions) without invoking algebraic operations or searches for conditional instru-
mental variables. The new condition can therefore serve as an effective,
pre-analytic means of ascertaining the identifiability of candidate structural
models under construction.

LINEAR RECURSIVE MODELS

A linear model for a set of random variables Y = {Y\,..., Yn ] is defined by a set of
equations of the form

y/
=
E

C
^+^•• j=^-'i

and a matrix Y of variance/covariance for error-terms e/.
5

The equations and the pairs of error-terms (e,, ej) with nonzero correlation de-
fine the "structure" of the model. The model structure can be represented by a di-
rected graph, called path diagram, in which the set of nodes is defined by the vari-
ables Y\,..., Yn, and there is a directed edge from Y, to Yj if the coefficient of Y, in

*A\l recursive models illustrated in Kenny (1979) and Bollen (1989) are bow-free.
5
The set of Y variables for which all cs are zero are commonly called exogenous (or predetermined)

and are often distinguished notationally (e.g., in Bollen, 1989, p. 81, exogenous variables are denoted
Xi,..., Xq); such distinction is not needed for our analysis. Additionally, unlike some of the economet-
ric and SEM literature, we will not require that the exogenous variables be uncorrelated with the equa-
tion disturbances of all endogenous variables. Such requirements are rarely justified in
nonexperimental studies, even when the exogenous variables represent policy decisions (see Pearl,
2000a, p. 136).
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the equation for Yj is distinct from zero. Additionally, if error-terms e, and ej have
nonzero correlation, we add a (dashed) bidirected edge between Y| and Yj.

The models considered in this work are assumed to be recursive, that is, Cy = 0
f o r j 2 i. The structural parameters of the model, denoted by 9, are the coefficients
Cy, and the values of the nonzero entries of the error covariance matrix Vy = £(e,
ej). We will also assume that all the Y variables are measured without errors, that
the V variables are standardized, and that all error-terms are unmeasured.

Fixing the model structure and assigning values to the parameters 9, the model
determines a unique covariance matrix E over the observed variables {Y\,..., Yn},
given by (see Bollen, 1989, p. 85)

£(9)=(/-0-ltF(/-0-l (2)

where C is the matrix of structural coefficients, [C]y = Cy.
Conversely, given the structure of a model, one may attempt to solve for C in

terms of the observed covariance £. This is not always possible. In some cases, no
parameterization of the model could be compatible with a given S. In other cases,
as in Figure la, the structure of the model may permit several distinct solutions for
the parameters. In these cases, the model is called nonidentifiable. Ova task is to
find conditions on the model structure that would guarantee a unique solution for
the parameters if such a solution exists. Additionally, since the conditions we seek
involve the structure of the model alone, not a particular numerical value of the pa-
rameters of 9, we will insist on having a unique solution for almost all values of 9,
allowing for some pathological exceptions as formulated below.

A convenient way of relating parameter identification to the structure of the
model is to write Equation 2 for each term <7y of E using Wright's (1960) method of
path coefficients. Wright's method consists of equating the (standardized)
covariance Oy with the sum of products of path coefficients and error covariances
along the unblocked paths connecting Y, and Yj (examples are given in Example).
Whenever the resulting equations give a unique solution to some path coefficient
Cy, independently of the (unobserved) residual correlations, that coefficient is said
to be identifiable.

In this article we establish a sufficient condition for the identification of all
structural parameters.

IDENTIFICATION OF BOW-FREE MODELS

We claim, in almost every case, given the structure of a recursive linear bow-free
model, and a covariance matrix S that is compatible with the model, all structural
parameters can be determined uniquely. This claim is formalized in the statement
of Theorem 1.
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Theorem 1
Let Afbe a bow-free model, and let 0 be the set of parameters of At, that is, 0 = {V,
C} such that Vy = 0 whenever [C]y ̂ 0. Then, for almost all 9, we have

Z(9) = Z(9') implies 9=6'

In other words, if two sets of parameters, 9 and 9', give rise to the same covariance
Z, then 9 and 9' must be identical, except when 9 resides in a set of zero Lebesgue
measure.

Before proving the theorem, some definitions and preliminary results are re-
quired.

Definition 1
Apath in a graph is a sequence of edges (directed or bidirected) such that each edge
starts in the node ending the preceding edge. A directed path is a path composed only
by directed edges, all oriented in the same direction. We say that node X is an ances-
tor of node F if there is a directed path from X to Y. A path is said to be blocked if there
is a node Z and a pair of consecutive edges in the path such that both edges are ori-
ented toward Z (e.g.,...—» Z <—...). In this case, Z is called a collider.

For example, the path Yi —> ¥4 <-> Yz —> ¥5 in Figure 2 is blocked, because Y^ is a
collider. The path Y\ —> Y^ —> Ys, on the other hand, is a directed path from Yi to Ys,
and it is unblocked.

Definition 2
The depth of a node in a directed acyclic graph (DAG) is the length (in number of
edges) of the longest directed path between the node and any of its ancestors.
Nodes with no ancestors have a depth of zero.

For example, in Figure 2 nodes Y\ and Yz have a depth of zero, Yj, and Y^ have a
depth of one, and Ys has a depth of two.

Lemma 1
Let X,Y be nodes in the path diagram of a recursive model, such that depth(X) >
depth(Y). Then, every path between X and Vthat includes a node Z with depth(Z) S
depth(X) must be blocked by a collider.

Proof

Consider a path p between X and Y and node Z satisfying the conditions above. We
observe that Z cannot be an ancestor of either X or Y, otherwise we would have
depth(Z) < depth(X) or depth(Z) < depth(Y).
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FIGURE 3 Simple linear model.

Now, consider the subpath o f p between Z and Y. If this subpath has the form
Z —> ... V, then it must contain a collider, since it cannot be a directed path from
Z to Y. Similarly, if the subpath of p between X and Z has the form X ... <- Z,
then it must contain a collider.

In all the remaining cases Z is a collider blocking the path.

Definition 3
For each node Y, the set of incoming edges to Y, denoted /(V), is defined as the un-
ion of (a) the set of all directed edges oriented toward Y, and (b) the set of all
bidirected edges between Y and a node X, such that depth(X) < depth(Y).

Lemma 2
Let Y be a variable at depth k of a bow-free model. Assume that the parameter of
every edge connecting variables at depth smaller than k is identifiable. Then, the
parameter of each edge in I(Y) is identifiable almost everywhere.

Proof
Let X = [Xi,..., Xm] be the set of variables at depth smaller than k that are con-
nected to V by some directed or undirected edge. The bow-free property of the
model implies a one-to-one correspondence between the variables in X and the el-
ements of/(V). Thus, we can write/(Y)= {(Xi,V), ...,(Xm, Y)}. For example, in the
model illustrated in Figure 3, we have X = {Xi, Xz} and I(Y) = {(Xi -> Y), (Xz <->
Y)}.

Applying Wright's (1960) method to each pair (X,, Y), X, e X, we obtain the fol-
lowing equations:

^,.Y= ^, T(pi), i=l,...,
paths pi

m (3)
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where the term T(pi) is the product of the parameters of the edges along the path pi,
and the summation is over all unblocked paths between X, and Y.

For i = 1,..., m, we denote the parameter of edge (X,, Y) by ^.i. Then, we can re-
write the set of equations as

m

°^,y ^y^^v^j 7=1

m
OXmY =/^mj-^-j

J=l

where the terms in dy correspond to unblocked paths between X, and Y including
edge (X,, Y).

In the model of Figure 3, the only unblocked path between Xi and Y consists of
the edge Xi -» Y, since the path Xi —> X2 <-> Y is blocked by the collider X-z. Also,
we have two unblocked paths between Xz and Y: X-z <— Xi —> Y, and X-z <-> Y. Thus,
equations (3) for this model read

Oxi,y = ̂.i
OX2,r =021^.1+^2

Nonlinear terms (i.e., ^/X,) are excluded from these equations because each un-
blocked path from X, to Y contains exactly one element of I(Y). Moreover, it fol-
lows from Lemma 1 and the assumptions of the lemma, that every factor in ay is an
identifiable parameter. This yields a linear system of m equations (one for each X,)
and m unknown, Xi,..., \m, that we can write in matrix notation as E = A • A.

Writing in matrix form the system of equations for the model in Figure 3, we
obtain

Oxi,y
^xiY

1 0
d21 1

•Xi
^•2

The parameters Ai-s are identifiable if the system of linear equations has unique
solution, and this is the case if and only ifDet(A) ̂ 0.

We now observe some special properties of matrix A. First, note that, in
bow-free models, the only unblocked path between X, and Y including edge (X,, Y)
consists precisely of such edge. Hence, an = 1, i = 1,..., m. On the other hand, for i
^j, entry ay is obtained by considering unblocked paths between X; and Y which in-
clude edge (Xj, Y). Since X, ^ Xy, any such path must have at least two edges.
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Hence, ay is either zero (if no such path exists) or a polynomial in the parameters of
the model with no constant term.

Thus, the general form of matrix A is

A==

1 an ... aim
021 1 ... azm

a-mi ami ••• 1

From the definition of determinant, we can write

Det(A) = 1 + T

where term T is either zero or a polynomial in the parameters of the model with no
constant term. Thus, Det(A) only vanishes on the set of zeros of the polynomial 1 +
T. And, from Okamoto (1973), we can further conclude that this set has a Lebesgue
measure of zero.

Proof of Theorem 1
We argue by induction on the depth of the variables. At step k, we show that all the
parameters associated with edges connecting variables at depth smaller than or
equal to k are identifiable.

Let Y be a variable at depth k.
If k = 0, then Y is a root and I(Y) is empty. To show that the parameter of a

bidirected edge connecting two roots Y and V is identifiable, we note that the only
unblocked path between Yand Y is precisely given by edge (Y Y). In this case, ac-
cording to Wright's (1960) method, the parameter of edge (Y V) is identifiable and
given by the correlation coefficient between Y and Y.

Now, assume that the parameter of every edge connecting two variables at depth
smaller than k is identifiable. Then, by Lemma 2, the parameters of edges in /(Y)
are identifiable.

Once we know that the parameters of edges in /(Y) are identifiable, for every
variable Y at depth k, we can easily show that the parameter of a bidirected edge
connecting two variables at depth k is identifiable (see Example). This follows by
writing the corresponding Wright's equation and noting that every unblocked path
between two such variables is either the desired bidirected edge itself, or a path la-
beled with identifiable parameters.

Since the model has a finite number of variables, and for each variable Y the pa-
rameters of edges in I(Y) are all identifiable except in a set of Lebesgue measure
zero, the statement of the theorem holds.
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Ai;,;A2£=

1 Ol2

021 1

031 032

041 042

051 052

Ol3 Ol4 Ol5

023 024 025

1 034 035

043 1 045

053 054 1

FIGURE 4 A bow-free model illustrating the proof of Theorem 1.

EXAMPLE

Assume we are given the model structure and the matrix S shown in Figure 4.
Since the structure of the model is bow-free, Theorem 1 ensures that all model pa-
rameters are identifiable. In the following, we show how to find expressions for the
model's parameters, starting from the roots of the graph (corresponding to the ex-
ogenous variables Y\ and ¥2) and proceeding in increasing depths.

Wright's (1960) equation for the pair (7i, Y-i) gives

012 =/

Next, we consider variable ¥3. Wright's equations for pairs (7i, ¥3) and (¥2, ¥3)
read

{;
Ol3 = Cl3

023=g+Cl3/

from which we obtain two additional parameters: 013 = On aadg= 023 - On • 013.
Now, we consider variable ¥4. Wright's equations for pairs (7i, 74), (¥2, ¥4), and

(73,74) read

Ol4 =£•14+^24
024 =yCl4+C24
034 = h +gC24 +C13C14 +C13./C24

Solving for 024, CM, and h, we obtain
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024 — /Ol4 024 — 014 • Ol2 Ol4 — /024 Ol4 — C?24 • <?12
t^^————-;——=———:——-;———; Cl4=—————————-———————————

I-/2

/I = (734 — C24023 — C0l3

l-O^ I-/2 1-^2

023 • 024 + Ol3 • Ol4 — Ol2 • Ol4 • 023 — Ol2 • Ol3 • 024
=034-1———————————————————————————————————————

1-^2

Note that the edge (¥3, ¥4) connects two variables of equal depth and the corre-
sponding parameter, h, is not needed for the computation of 024,014. h is obtained
immediately from the corresponding equation for 034, once we solve for 024,014.

Finally, we consider variable Y5. Wright's equations for pairs (Yi, ¥5), (Yz, ¥5),
(V3, Ys), and (¥4, Ys) read

Ol5 = 'kl +Cl3^,3 +^4<7l4
<J25 = A,30'23 + C24^4 + ̂ .2

035 = Cl3^,l + A.3 + ̂ 4034
045 = Cl4^,l + ̂ .3<734 + ̂ .4 + C24^-2

which need to be solved for the four depth-3 parameters: ,̂1, A.2, ^-3, ^4.
To illustrate Theorem 1, we write these equations in matrix form:

1 0 Cl3 (7l4

0 1 023 C24

C31 0 1 CT34

C41 C42 C?43 1

^

^2

^3

^4

CTl5

025

035

<?45

and we see that matrix A indeed has only 1 's on the main diagonal. Furthermore,
the determinant of A is given by

det[A] = 1 + c^ - c?3 - c^ - (̂  + (4)
Ci3(T34(ci4 +CTl4)—Cl4<Tl4 +C24023(C?34 —Cl3<Tl4)

Thus, the system has unique solution except on the zeros of the polynomial in
Equation 4. Solving for the parameters ~k\, ^,2, 'kz, and ^4, we obtain

, ^ (l-C^)(a45-Cuai5 - 024025 )-^(g35 -C13CT15)

(1 - C^Xl - C0l4 - CJ4) - /l(CT34 - Cl3<Tl4)

035 — C13015 ^ 034 — C13014 . gl5—Cl3g35 014 — Cl3<734, "35—t-13'-'15 ^ "34 —1-13'->14 ^ "IS —t-13"35 i U14—1-13"^=~r~i—-A4- 1 ,.2—' ̂ = i ^—-^—i—r"
i—Cl3 i—cl3 1—C13 1—C13

A.2 = <?25 — -———:- • (035 — Cl30l5) — ̂ 4 • C24 — -———T- • (C?34 — Cl3C?14)
| _ />A | | _ /»Z1 C,3 ( ^ 1 C,3 J

= 025 — ^-30'23 — ^-4C24
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RELATIONS TO INSTRUMENTAL VARIABLES (IV)

Current conditions ofidentifiability, both algebraic and graphical, are based primar-
ily on IVs (Bowden & Turkington, 1984), the graphical representation of which are
described in (Pearl, 2000a, pp. 150-154). These conditions are applicable to models
containing bow-patterns, as is illustrated in the following simple example:

W=ei
X=aW+e2
Y=cX+e3

with cov(e\,ez) = cov(e\,ez) = 0. The potential correlation between ei and 03 in-
duces a bow-pattern in the corresponding diagram, as shown in Figure 5a. Never-
theless, the fact that cov(W, €3) = 0 permits us to identify parameter c from Wright's
equations:

yielding

<Swx=a
CSwY

=
 cic

c = OWY/OWX

More generally, whenever a variable Wean be found which is correlated with X
but is uncorrelated with the error (e) in the equation

Y=cX+e

that variable is called an instrument for c, for it permits the identification of c, us-
ing Equation 5. If the equation for V contains several explanatory variables, then W
need be uncorrelated with e and with each of those explanatory variables (exclud-
ing X).

The graphical criterion for recognizing an instrument is based on replacing the
condition cov(W, e) = 0 with its graphical analogue; namely, all paths between W
and Y should be blocked in the subgraph Gc formed by deleting the link labeled by

.———
fl
 ..

x c
 '\

 a
 > .^ '\

W X Y W X Y

(a) (b)

FIGURE 5 (a) A model identified by using Was instrumental variable for c. (b) The subgraph
Gc used for classifying W as an instrumental variable: All paths between W and Y are blocked in
Gr.
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c (Pearl, 2000a, p. 150). For example, the subgraph Gp corresponding to Figure 5a
is shown in Figure 5b; in this subgraph, all paths between W and Y are indeed
blocked, since X is a collider.

An important generalization of the IV method is offered through the use of con-
ditional IVs. A conditional IV is a variable Wthat may be correlated with the equa-
tion error-term but the two become uncorrelated when we condition on some set Z
of observed variables (also called covariates). When such a set is found, parameter
c is identified and (paralleling Equation 5) is given by

OHYZ ic.^c = ——— (6)
Owxz

For example, there exists no variable that is uncorrelated with ez in Equation 1
(Figure Ib). However, variable Yz acts as a conditional instrumental variable
(relative to P), since, conditional on Yi, Yi is uncorrelated with ez. In this case,
substituting c = P, W = Y-i, X = Yi, Y = Yy, Z = Yi in Equation 6, we obtain P =
°Wz-Y\ = 023 • 1 because Oy^.yi = 022 • 1 = 1 .

Clearly, searching a system of equations for a pair (W, Z) such that Wis a condi-
tional IV (conditioned on Z) may be a tedious task, because zero conditional
covariances (or zero partial correlations) are not easily recognizable in a system of
equations. Fortunately, a graphical criterion for recognizing such zero correlations
is available, which reduces the search task substantially, and renders the discovery
of conditional IVs manageable by simple inspection of the graph. The criterion is
called d-separation (Pearl, 1986), and is defined in the following.

Definition 4 (d-Separation)
A set Z of nodes is said to d-separate node X from node Y in a graph if Z blocks ev-
ery path between X and Y. A set Z of nodes is said to block a path p if either (a) p
contains at least one arrow-emitting node that is in Z, or (b) p contains at least one
collider that is outside S and has no descendant in Z.6

For example, the set Z = {Zi} blocks the path X <— W <— Zi -> Z-i -> Y, because
the arrow-emitting node Zi is in Z. However, the set Z = {23} does not block the
path X <— W <- Zi -> Z? <- Z2 -> Y, because none of the arrow-emitting nodes, W,
Zi, and Z2, are in Z, and the collider Zy is not outside Z.

Because any rf-separation condition in the graph implies OXY • z = 0 (Verma &
Pearl, 1988; Pearl 2000a, p. 142), we can define conditional instrumental vari-
ables (Pearl, 2000b).

6^The terms arrow-emitting node and collider are to be interpreted literally as illustrated by the ex-
amples given.
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Lemma 3

Let c stand for the path coefficient assigned to the arrow X -» Y in a causal graph G,
and let Z be a set of variables. A variable W is an instrument relative to c, condi-
tional on Z, if the following conditions hold:

1. Z consists of nondescendants of Y.
2. Z rf-separates W from Y in the subgraph Gc formed by removing X —> Y

from G.
3. Z does not ^-separate W from V in Gc.

Moreover, if the preceding conditions hold, c is identified and is given by Equa-
tion 6.

To illustrate, consider the model of Figure 6a. Although there exists no ̂-sepa-
ration condition in this graph, such condition does exist in the subgraph Gp formed
by deleting the arrow from Yy. to Yy (Figure 6b).

In this subgraph, Yz and Yy are rf-separated by the set Z = {Yi}. Therefore, Yz is
an instrument for p, conditioned on Z = {Y\}. By Lemma 3, this implies that p is
identified and is given by p = 023.1.

However, the method of conditional instrumental variables has its limita-
tions. Figure 4, for example, represents an identifiable model that has no in-
strumental variable for the parameters .̂3 and ^4. This can be verified using
Lemma 3 by noting in the subgraph G\z there exists no pair (W, Z) that d-sepa-
rates Y^ from Y^. Thus, the method of conditional instrumental variables is not
able to identify the bow-free model of Figure 4. Such status is easily ascer-
tained by the criterion of Theorem 1, since this model is bow-free and any
bow-free model can immediately be classified as identifiable. Note also that
criteria based on instrumental variables ensure the identifiability of one param-
eter at a time, while the criterion established in this paper ensures the
identifiability of the model as a whole.

^-°-^ . -P->. ^'——^ .
Yi Y, YS Y, Va V3

(a) (b)

FIGURE 6 (a) A model illustrating the use of conditional instrumental variables: YI is an in-
strument for p, conditional on Y} . (b) The subgraph Gp used for classifying Yz as conditional in-
strument, per Lemma 3.
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CONCLUSION AND DISCUSSION

We have shown that any linear, recursive bow-free model permits the identifica-
tion of all its parameters. In other words, a linear recursive model is identifiable
as long as the error associated with each variable is uncorrelated with the errors
associated with the direct effects of that variable; other errors may be correlated.
The proof of Theorem 1 further provides a systematic, recursive method of com-
puting each structural parameter as a function of the observed covariance matrix.
This result supplements our arsenal of identification conditions with a new crite-
rion that is widely applicable and easily discernible by unaided investigators.
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