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Abstract

This paper provides a conceptual introduction to causal inference, aimed to
assist researchers benefit from recent advances in this area. The paper stresses
the paradigmatic shifts that must be undertaken in moving from traditional
statistical analysis to causal analysis of multivariate data. Special emphasis
is placed on the assumptions that underly all causal inferences, the languages
used in formulating those assumptions, and the conditional nature of causal
claims inferred from nonexperimental studies. These emphases are illustrated
through a brief survey of recent results, including the control of confounding,
and a symbiosis between counterfactual and graphical methods of analysis.
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1 Introduction

The research questions that motivate most studies in statistics-based sciences are
causal in nature. For example, what is the efficacy of a given drug in a given popula-
tion? what fraction of crimes could have been avoided by a given educational policy?
what was the cause of death of a given individual, in a specific incident. Not surpris-
ingly, the central target of such studies is the elucidation of cause-effect relationships
among variables of interests, for example, treatments, exposures, preconditions and
outcomes. Yet until very recently, the dominant methodology has been based almost
exclusively on statistical analysis which, traditionally, has excluded causal vocab-
ulary both from its mathematical language and from its mainstream educational
program. As a result, large segments of the research community find it extremely
hard to appreciate and benefit from the many theoretical results that causal analy-
sis has produced the past two decades. These include advances in graphical models
[Pearl, 1988; Lauritzen, 1996], counterfactual or “potential outcome” analysis [Ru-
bin and Rosenbaum, 1983; Robins, 1986; Manski, 1995; Greenland et al., 1999b],
structural equation models [Heckman and Smith, 1998], and a more recent formu-
lation, which unifies these approaches under a single interpretation [Pearl, 1995a,
2000].

This paper aims at making these advances more accessible to the general re-
search community by illuminating certain conceptual problems that I have found

* Articles covering this and related topics can be found at (www.cs.ucla.edu/~judea/). This
research was supported in parts by grants from NSF, ONR (MURI) and AFOSR.



to be major barriers in the transition from statistical to causal analysis.! To this
end, I will introduce the fundamentals of causal modeling from a perspective that
is relatively new to the statistical literature. It is based on structural equation mod-
els (SEM), which have been used extensively in economics and the social sciences
[Goldberger, 1972; Duncan, 1975], even though the causal content of these models
has been obscured significantly since their inception (see [Pearl, 2000, Chapter 5]
for historical perspective). I will use these modeling fundamentals to develop simple
mathematical tools for the estimation of causal effects and the control of confound-
ing, and relate these tools to procedures that are used in the potential outcome
approach. Finally, I will offer a symbiosis that exploits the best features of the two
approaches—structural models and potential outcome.

2 From Statistical to Causal Analysis: Distinc-
tions and Barriers

2.1 The basic distinction: coping with change

The aim of standard statistical analysis, typified by regression and other estimation
techniques, is to infer parameters of a distribution from samples drawn of that
population. With the help of such parameters, one can infer associations among
variables, estimate the likelihood of past and future events, as well as update the
likelihood of events in light of new evidence or new measurements. These tasks are
managed well by statistical analysis so long as experimental conditions remain the
same. Causal analysis goes one step further; its aim is to infer aspects of the data
generation process. With the help of such aspects, one can deduce not only the
likelihood of events under static conditions, but also the dynamics of events under
changing conditions. This capability includes predicting the effects of interventions
(e.g., treatments or policy decisions) and spontaneous changes (e.g., epidemics or
natural disasters), identifying causes of reported events, and assessing responsibility
and attribution (e.g., whether event x was necessary (or sufficient) for the occurrence
of event y).

This distinction implies that causal and statistical concepts do not mix. Statis-
tics deals static conditions, while causal analysis deals with changing conditions.
There is nothing in the joint distribution of symptoms and diseases to tell us that
curing the former would not cure the latter. More generally, there is nothing in a
distribution function that would tell us how that distribution would differ if external
conditions were to change—say from observational to experimental setup — because
the laws of probability theory do not dictate how one property of a distribution
ought to change when another property is modified.?

Drawing analogy to visual perception, the information contained in a probability
function is analogous to a geometrical description of a three-dimensional object; it
is sufficient for predicting how that object will be viewed from any angle outside
the object, but it is insufficient for predicting how the object will be deformed if
manipulated and squeezed by external forces. The additional information needed for
making such predictions (e.g., the object’s resilience or elasticity) is analogous to the

IExcellent introductory expositions can also be found in [Kaufman and Kaufman, 2001] and
[Robins, 2001].

2Even the theory of stochastic processes, which provides probabilistic characterization of cer-
tain dynamic phenomena, assumes a fixed density function over time-indexed variables. There is
nothing in such a function to tell us how it would be altered if external conditions were to change;
for example, restricting a variable to a certain value, or forcing one variable to track another.



information that causal assumptions provide in various forms—graphs, structural
equations or plain English. The role of this information is to identify those aspects
of the world that remain invariant when external conditions change, say due to
treatments or policy decisions.

These considerations imply that the slogan “correlation does not imply cau-
sation” can be translated into a useful principle: one cannot substantiate causal
claims from associations alone, even at the population level—behind every causal
conclusion there must lie some causal assumption that is not testable in obser-
vational studies. Nancy Cartwright [1989] expressed this principle as “no causes
in, no causes out”, meaning we cannot convert statistical knowledge into causal
knowledge.

2.2 Formulating the basic distinction

A useful demarcation line that makes the distinction between statistical and causal
concepts unambiguous and easy to apply, can be formulated as follows. A statis-
tical concept is any concept that can be defined in terms of a distribution (be it
personal or frequency-based) of observed variables, and a causal concept is any con-
cept concerning changes in variables that cannot be defined from the distribution
alone. Examples of statistical concepts are: mean, variance, correlation, regres-
sion, dependence, conditional independence, association, likelihood, collapsibility,
risk ratio, odd ratio, marginalization, conditionalization, “controlling for,” and so
on.? Examples of causal concepts are: randomization, influence, effect, confounding,
“holding constant,” disturbance, spurious correlation, instrumental variables, inter-
vention, explanation, attribution, and so on. The purpose of this demarcation line
is not to exclude these causal concepts from the province of statistical analysis* but,
rather, to make it easy for investigators to trace the assumptions that are needed
for substantiating various types of scientific claims. Every claim invoking causal
concepts must be traced to some premises that invoke such concepts; it cannot be
derived or inferred from statistical claims alone.

2.3 Ramifications of the basic distinction

This principle has consequences that are not generally recognized in the standard
literature. Many researchers, for example, are convinced that confounding is solidly
founded in standard, frequentist statistics, and that it can be given an associational
definition saying (roughly): “U is a potential confounder for examining the effect
of treatment X on outcome Y when both U and X and U and Y are not indepen-
dent.” That this definition and all its many variants must fail, is obvious from basic
considerations:

1. Confounding deals with a discrepancy between some proposed measure of
association and an association that would prevail under ideal experimental
conditions.

2. Associations prevailing under experimental conditions are causal quantities
because they cannot be inferred from the joint distribution alone. Therefore,

3The term ‘risk ratio’ and ‘risk factors’ have been used ambivalently in the literature; some
authors insist on a risk factor having causal influence on the outcome, and some embrace factors
that are merely associated with the outcome.

4The term “causal vs. association” distinction would perhaps be more inviting to statisticians,
though the concepts of “mean” and “variance” do not involve association



confounding is a causal concept; its definition cannot be based on statistical
associations alone, since these can be derived from the joint distribution.

Indeed, one can construct simple examples showing that the associational criterion
is neither necessary nor sufficient, that is, some confounders may not be associ-
ated with X nor with Y and some non-confounders may be associated with both
X and Y [Pearl, 2000, pp. 185-186; see also Section 3.2].> This further implies
that confounding bias cannot be corrected by statistical methods alone, not even
by the most sophisticated techniques that purport to “control for confounders”,
such as stepwise selection [Kleinbaum et al., 1998] or collapsibility-based methods
[Grayson, 1987]. One must make some assumptions regarding causal relationships
in the problem, in particular about how the potential “confounders” tie to other
covariates in the problem, before an adjustment can safely correct for confounding
bias. It follows that the rich epidemiological literature on the control of confounding
must be predicated upon some tacit causal assumptions and, since causal vocabu-
lary has generally been avoided in much of that literature, 8 major efforts would be
required to assess the relevance of this rich literature to the modern conception of
confounding as effect bias [Greenland et al., 1999].”

Another ramification of the sharp distinction between statistical and causal con-
cepts is that any mathematical approach to causal analysis must acquire new no-
tation for expressing causal assumptions and causal claims. The vocabulary of
probability calculus, with its powerful operators of conditionalization and marginal-
ization, is simply insufficient for expressing causal information. To illustrate, the
syntax of probability calculus does not permit us to express the simple fact that
“symptoms do not cause diseases”, let alone draw mathematical conclusions from
such facts. All we can say is that two events are dependent—meaning that if we
find one, we can expect to encounter the other, but we cannot distinguish sta-
tistical dependence, quantified by the conditional probability P(disease|symptom)
from causal dependence, for which we have no expression in standard probability
calculus.® Scientists seeking to express causal relationships must therefore supple-
ment the language of probability with a vocabulary for causality, one in which the
symbolic representation for the relation “symptoms cause disease” is distinct from
the symbolic representation of “symptoms are associated with disease.” Only af-
ter achieving such a distinction can we label the former sentence “false,” and the
latter “true”, so as to properly incorporate causal information in the design and
interpretation of statistical studies.

The preceding two requirements: (1) to commence causal analysis with
untested,” judgmentally based assumptions, and (2) to extend the syntax of prob-
ability calculus, constitute, in my experience, the two main obstacles to the accep-
tance of causal analysis among statisticians and among professionals with traditional

5Similar arguments apply to the concepts of “randomization” and “instrumental variables”
which are commonly thought to have statistical definitions. Our demarcation line implies that
they don’t, and this implication guides us toward explicating the causal assumptions upon which
these concepts are founded (see Section 3.3).

6Notable exception is the analysis of Greenland and Robins [1986].

7Although the confounding literature has permitted one causal assumption to contaminate its
vocabulary—that the adjusted confounder must not be “affected by the treatment” [Cox, 1958]—
this condition alone is insufficient for determining which variables need be adjusted for [Pearl, 2000,
pp. 182-9].

8 Attempts to define causal dependence by adding temporal information and conditioning on
the entire past (e.g., [Suppes, 1970]) violate the statistical requirement of limiting the analysis
to “observed variables”, and encounter other insurmountable difficulties (see Eells [1991], Pearl
[2000], pp. 249-257).

9By “untested” I mean untested using frequency data in nonexperimental studies.



training in statistics. We shall now explore in more detail the nature of these two
barriers, and why they have been so tough to cross.

2.4 The barriers of causal assumptions and causal notation

All statistical studies are based on some untested assumptions. For examples, we
often assume that variables are multivariate normal, that the density function has
certain smoothness properties, or that a certain parameter falls in a given range.
The question thus arises why causal assumptions, say, that symptoms do not cause
disease or that treatment does not change gender, invite mistrust and resistance
among statisticians.

Ironically, the answer is primarily notational. Statistical assumptions can be
expressed in the familiar language of probability calculus, and thus assume an aura
of scholarship and scientific respectability. Causal assumptions, as we have seen
before, are deprived of that honor, and thus become immediate suspect of infor-
mal, anecdotal or metaphysical thinking. Statisticians, especially Bayesians, are
prepared to accept an expert’s judgment, however untestable, so long as the judg-
ment is presented as a probability expression. Statisticians turn apprehensive when
that same judgment is cast in plain causal English (see Pearl [2000, pp. 177-180]
for examples.)

How does one recognize causal expressions in the statistical literature? Those
versed in the potential-outcome notation [Neyman, 1923; Rubin, 1974; Holland,
1988], can recognize such expressions through the subscripts that are attached to
counterfactual events and counterfactual variables, e.g. Y;(u) or Z,. (Some au-
thors use parenthetical expressions, e.g. Y (z,u) or Z(z,y).) The expression Y, (u),
for example, stands for the value that outcome Y would take in individual u, had
treatment X been at level x. If u is chosen at random, Y}, is a random variable, and
one can talk about the probability that Y, would attain a value y in the population,
written P(Y, = y). Alternatively, Pearl [1995a] and Kaufman and Kaufman [2001]
used expressions of the form P(Y = y|set(X = z)) or P(Y = y|do(X = z)) to
denote the probability (or frequency) that event (Y = y) would occur if treatment
condition X = z were enforced uniformly over the population.!® Still a third no-
tation that distinguishes causal expressions is provided by graphical models, where
the arrows convey causal directionality.'!

However, in the bulk of the quantitative statistical literature, causal claims rarely
appear in the mathematics. They surface only in the verbal interpretation that in-
vestigators occasionally attach to certain associations, and in the verbal description
with which investigators justify assumptions. For example, the assumption that
a covariate is not affected by a treatment, a necessary assumption for the control
of confounding [Cox, 1958], is expressed in plain English, not in a mathematical
equation.

The absence of notational distinction between causal and statistical relationships
at first seemed harmless, because investigators were able to keep such distinctions
implicitly in their heads, and managed to confine the mathematics to conventional,
conditional probability expressions [Breslow and Day, 1980; Miettinen and Cook,

10Clearly, P(Y = y|do(X = z)) is equivalent to P(Y; = y), which is what we normally assess in
a controlled experiment, with X randomized, in which the distribution of Y is estimated for each
level z of X.

' These notational clues should be useful to readers confronting various definitions of concepts
such as confounding, randomization or instrumental variables; any definition that is cast in stan-
dard probability expressions, void of graphs, counterfactual subscripts or do(x) operators, can
safely be discarded as inadequate.



1981]. However, as problem complexity grew, the notational inadequacy of standard
statistics, which was first tolerated and glossed over, took a heavy toll before explicit
causal notation brought it to light.

Remarkably, despite this history, causal analysis has remained enigmatic to most
rank and file researchers, and its potentials still lay grossly underutilized in statis-
tical research. The reason for this, I am firmly convinced, can be traced to the
cumbersome counterfactual notation in which causal analysis has been presented to
the research community. The difficulties that have hindered wider acceptance of this
presentation include: its reliance on esoteric, hypothetical and seemingly “counter
factual” relationships among events [Dawid, 2000], its estrangement from common
understanding of cause-effect relationships, the absence of compact mathematical
models for representing counterfactual relationships, and the elaborate judgmental
effort that is required both for formulating assumptions and for justifying deriva-
tional steps in this notation. The next section provides a conceptualization that
alleviates these difficulties; it offers both a mathematical approach to causal effect
analysis and a formal foundation for counterfactual analysis.

3 The Language of Diagrams and Structural Equa-
tions

3.1 Linear structural equation models

How can one express mathematically the common understanding that symptoms
do not cause diseases? The earliest attempt to formulate such relationship math-
ematically was made in the 1920’s by the geneticist Sewall Wright [1921]. Wright
used a combination of equations and graphs to communicate causal relationships.
For example, if X stands for a disease variable and Y stands for a certain symptom
of the disease, Wright would write a linear equation:'?

y=p0z+u (1)

where z stand for the level (or severity) of the disease, y stands for the level (or
severity) of the symptom, and w stands for all factors, other than the disease in
question, that could possibly affect Y. In interpreting this equation one should
think of a physical process whereby Nature examines the values of x and u and,
accordingly, assigns variable Y the value y = Bz + u.

Equation (1) still does not properly express the causal relationship implied by
this assignment process, because equations are symmetrical objects; if we re-write
(1) as

2= (y—u)/8 (2)

it might be misinterpreted to mean that the symptom influences the disease, against
the understanding that no such influence exists. To prevent such misinterpretations,
Wright augmented the equation with a diagram, later called “path diagram,” in
which arrows are drawn from (perceived) causes to their (perceived) effects, and
the absence of an arrow encodes the absence of direct causal influence between the
corresponding variables. Thus, in our example, the complete model of a symptom
and a disease would be written as in Fig. 1: The diagram encodes the possible

I2Linear relations are used for illustration purposes only; they do not represent typical disease-
symptom relations but illustrate the historical development of path analysis. Additionally, we will
use standardized variables, that is, zero mean and unit variance.



existence of (direct) causal influence of X on Y, and the absence of causal influence
of Y on X, while the equations encode the quantitative relationships among the
variables involved, to be determined from the data. The parameter 3 in the equation
is called a “path coefficient” and it quantifies the (direct) causal effect of X on Y;
given the numerical value of 3, the equation claims that a unit increase in X would
result in 3 units increase of Y. The variables V and U are called “exogenous,” (also
“disturbances” or “errors”) they represent background factors, often unobserved,
that influence but are not influenced by the other variables (called “endogenous”)
in the model. Variable V', for example, represents factors that contribute to the
disease X, which may or may not be correlated with U (the factors that influence
the symptom Y'). If correlation is presumed possible, it is customary to connect the
two variables, U and V, by a dashed double arrow, as shown in Fig. 1(b).

A U Voo . U

X=V : : : :

y= Bx+u * Y * Y
X B Y X B Y

(@ (b)

Figure 1: A simple structural equation model, and its associated diagrams. Exoge-
nous variables (usually unobserved) are connected by dashed arrows.

Wright’s major contribution to causal analysis, aside from introducing the lan-
guage of path diagrams, has been the development of graphical rules for writing
down the covariance of any pair of observed variables in terms of path coefficients
and of covariances among the error terms. In our simple example, one can immedi-
ately write the relations

Cow(X,Y) = (3)

for Fig. 1(a), and
Cov(X,Y)=p+Cov(U,V) (4)

for Fig. 1(b) (These can be derived of course from the equations, but, for large
models, algebraic methods tend to obscure the origin of the derived quantities).
Under certain conditions, (e.g. if Cov(U, V) = 0), such relationships may allow one
to solve for the path coefficients in term of observed covariance terms only, and
this amounts to inferring the magnitude of (direct) causal effects from observed,
nonexperimental associations, assuming of course that one is prepared to defend
the causal assumptions encoded in the diagram.

It is important to note that, in path diagrams, causal assumptions are encoded
not in the links but, rather, in the missing links. An arrow merely indicates the
possibility of causal connection, the strength of which remains to be determined
(from data); a missing arrow makes a definite commitment to a zero-strength con-
nection. In Fig. 1(a), for example, the assumptions that permits us to identify the
direct effect 3 is encoded by the missing double arrow between V' and U, indicating
Cou(U,V)=0, together with the missing arrow from Y to X. Had any of these two
links been added to the diagram, we would not have been able to identify the direct
effect 8. Such additions would amount to relaxing the assumption Cov(U, V)=0, or



the assumption that Y does not effect X, respectively. Note also that both assump-
tions are causal, not statistical, since none can be determined from the joint density
of the observed variables, X and Y’; the association between the unobserved terms,
U and V, can only be uncovered in an experimental setting; or (in more intricate
models, as in the analysis of instrumental variables) from other causal assumptions.

Although each causal assumption in isolation cannot be tested, the sum total of
all causal assumptions in a model often has testable implications. The chain model
of Fig. 2(a), for example, encodes seven causal assumptions, each corresponding to a
missing arrow or a missing double-arrow between a pair of variables. None of those
assumptions is testable in isolation, yet the totality of all those assumptions implies
that Z is unassociated with Y in every stratum of X. Such testable implications
can be read off the diagrams using a graphical criterion known as d-separation (see
[Pearl 2000, pp. 16-19]) , and these constitute the only opening through which the
assumptions embodied in structural equation models can confront the scrutiny of
nonexperimental data. In other words, every conceivable statistical test capable of
falsifying the model is entailed by those implications.

w \Y; U v U
' ' ' ' . '
| | | | X 0 |
i i f ¥ N i
z X % z X Y
@ (b)

Figure 2: (a) The diagram associated with the structural model of Eq. (5). (b) The
diagram associated with the modified model of Eq. (6), representing the intervention
dO(X = .’L'[)).

3.2 From linear to nonparametric models

Structural equation modeling (SEM) has been the main vehicle for effect analysis
in economics and the behavioral and social sciences [Goldberger, 1972; Duncan,
1975]. However, the bulk of SEM methodology was developed for linear analysis
and, until recently, no comparable methodology has been devised to extend its
capabilities to models involving dichotomous variables or nonlinear dependencies.
A central requirement for any such extension is to detach the notion of “effect” from
its algebraic representation as a coefficient in an equation, and redefine “effect” as
a general capacity to transmit changes among variables. Such extension, based
on simulating hypothetical interventions in the model, is presented in Pearl [1995a,
2000] and has led to new ways of defining, and estimating causal effects in nonlinear
and nonparametric models (that is, models in which the functional form of the
equations is unknown).

The central idea is to exploit the invariant characteristics of structural equations
without committing to a specific functional form. For example, the non-parametric
interpretation of the diagram of Fig. 2(a) corresponds to a set of three functions,
each corresponding to one of observed variables:

z = fz(w)
r = fX(Zvv) (5)



Yy = fY(xvu)

where W,V and U are assumed to be jointly independent but, otherwise, arbitrarily
distributed. Each of these functions represents a causal process (or mechanism)
that determines the value of the left variable (output) from those on the right
variables (input). The absence of a variable on the right of an equations encodes
the assumption that it has no direct effect on the left variable. For example, the
absence of variable Z from the arguments of fy indicates that variations in Z will
leave Y unchanged, as long as variables U, and X remain constant. A system of
such functions are said to be structural if they are assumed to be autonomous, that
is, each function is invariant to possible changes in the form of the other functions
[Simon, 1953; Koopmans, 1953].

Representing interventions

This feature of invariance permits us to use structural equations as a basis for
modeling causal effects and counterfactuals. This is done through a mathematical
operator called do(xz) which simulates physical interventions by deleting certain
functions from the model, replacing them by a constant X = z, while keeping the
rest of the model unchanged. For example, to emulate an intervention do(x) that
holds X constant (at X = xo) in the model of Fig. 2(a), we replace the equation
for z in Eq. (5) with z = o, and obtain a new model M,,,

z = fz(w)
r = Xo (6)
Yy = fY(xvu)

the graphical description of which is shown in Fig. 2(b).

The joint distribution associated with the modified model, denoted
P(z,y|do(zg)) describes the post-intervention distribution of variables Y and Z.
For example, if X represents a treatment variable, Y a response variable, and Z
some covariate that affects the amount of of treatment received, then the distribu-
tion P(z,y|do(zp)) gives the proportion of individuals that would attain response
level Y = y and covariate level Z = z under the hypothetical treatment X = xg
that is administered uniformly to the population. From this distribution, one is able
to assess treatment efficacy by comparing aspects of this distribution at different
levels of zg. A common measure of treatment efficacy is the average difference

E(Y|do(zg)) — E(Y|do(x0)) (7)

where z(, and z are two levels (or types) of treatment selected for comparison.
Another measure is the ratio

E(Y|do(xg))/ E(Y |do(x0)).- (8)

The variance Var(Y'|do(zg)), or any other distributional parameter, can also serve
as a basis for comparison; all these measures can be obtained from the controlled
distribution function P(Y = y|do(x)) =}, P(z,y|do(x)) which was called “causal
effect” in Pearl [1995a, 2000]. Thus, a central problem in the analysis of causal
effects is whether we can estimate the post-intervention distribution from data gov-
erned by the pre-intervention distribution. This is the problem of identification
which has received considerable attention by causal analysts.



A fundamental theorem in causal analysis states that, in general, such identi-
fication would be feasible whenever the model is Markovian, that is, the graph is
acyclic and all the error terms are jointly independent. Non-Markovian models,
such as those involving correlated errors (resulting from unmeasured confounders),
permit identification only under certain conditions, and these conditions can be
determined from the graph structure using the following basic theorem.

Theorem 1 (The Causal Markov Condition)
Any distribution generated by a Markovian model M can be factorized as:

P(vi,v2,...,0,) = HP(vi|pai) (9)

where V1, Va, ...,V are the endogenous variables in M, and pa; are (values of) the
endogenous parents of V; in the causal diagram associated with M.

For example, the distribution associated with the model in Fig. 2(a) can be
factorized as

P(z,y,z) = P(2) P(x|z) P(y|x) (10)

since X is the (endogenous) parent of Y, Z is the parent of X, and Z has no parents.

Corollary 1 (Truncated factorization)
For any Markovian model, the distribution generated by an intervention do(X = o)
on a set X of endogenous variables is given by the truncated factorization

P(’Ul,’l)Q, . ’Uk|d0 1‘0 H PUz|paz |z zg (11)
i VigX

where P(v;|pa;) are the pre-intervention conditional probabilities.*®

Corollary 1 instructs us to remove from the product of Eq. (9) all factors asso-
ciated with the intervened variables (members of set X). This follows from the fact
that the post-intervention model is Markovian as well, hence, following Theorem 1,
it must generate a distribution that is factorized according to the modified graph,
yielding the truncated product of Corollary 1. In our example of Fig. 2(b), the
distribution P(z,y|do(zo)) associated with the modified model is given by

P(z,y|do(zo)) = P(2)P(y|xo)

where P(z) and P(y|zo) are identical to those associated with the pre-intervention
distribution of Eq. (10). As expected, the distribution of Z is not affected by the
intervention, since

P(z|do(zo)) ZP z,y|do(zo)) ZP yldo(zg)) = P(z)

while that of Y is sensitive to xg, and is given by

P(yldo(zo)) = P(ylzo)

I3 A simple proof of the Causal Markov Theorem is given Pearl [2000, p. 30]. This theorem
was first stated in Verma and Pearl [1991], but it is implicit in the works of Kiiveri et al. [1984]
and others. Corollary 1 was named “Manipulation Theorem” in Spirtes et al. [1993], and is also
implicit in Robins’ [1987] G-computation formula. See Lauritzen [1999].
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This example demonstrates how the (causal) assumptions embedded in the model
M permit us to predict the post-intervention distribution from the pre-intervention
distribution, which further permits us to estimate the causal effect of X on Y from
nonexperimental data, since P(y|zg) is estimable from such data. Note that we have
made no assumption whatsoever on the form of the equations or the distribution of
the error terms; it is the structure of the graph alone that permits the derivation
to go through.

Deriving Causal Effects

The truncated factorization formula enables us to derive causal quantities directly,
without dealing with equations or equation modification as in Eq. (6). Consider, for
example, the model shown in Fig. 3, in which the error variables are kept implicit.

Figure 3: Markovian model illustrating the derivation of the causal effect of X on
Y, Eq. (14), and the back-door criterion. Error terms are not shown explicitly.

Instead of writing down the corresponding five nonparametric equations, we can
write the join distribution directly as

P(x,21,22,23,y) = P(21)P(22) P(23]21, 22) P(2|21, 23) P(y| 22, 23, )  (12)

where each marginal or conditional probability on the right hand side is directly
estimatable from the data. Now suppose we intervene and set variable X to xg.
The post-intervention distribution can readily be written (using the truncated fac-
torization formula) as

P(z1, 22, 23,y|ldo(xg)) = P(z1)P(22)P(23|21, 22) P(y|22, 23, To) (13)

and the causal effect of X on Y can be obtained immediately by marginalizing over
the Z variables, giving

P(yldo(zo)) = > P(z1)P(22)P(23]21, 22) P(y|22, 23, o) (14)

21,%2,%3

Note that this formula corresponds precisely to what is commonly called “adjusting
for Z1,Z> and Z3” and, moreover, we can write down this formula by inspection,
without thinking on whether Z;, Z; and Zs are confounders, whether they lie on
the causal pathways, and so on. Though such questions can be answered explicitly
from the topology of the graph, they are dealt with automatically when we write
down the truncated factorization formula and marginalize.

Note also that the truncated factorization formula is not restricted to interven-
tions on a single variable; it is applicable to simultaneous or sequential interventions

11



such as those invoked in the analysis of time varying treatment with time varying
confounders [Robins, 1986]. For example, if X and Z, are both treatment variables,
and Z; and Z3 are measured covariates, then the post-intervention distribution
would be

P(z1,23,y|do(x), do(22)) = P(z1)P(z3]21, 22) P(y|22, 23, ) (15)
and the causal effect of the treatment sequence do(X = x),do(Zs = z5)'* would be
P(y|do(z),do(z2)) = Z P(21)P(23|21, 22) P(yl22, 23, %) (16)

21,23

This expression coincides with Robins’ [1987] G-computation formula, which was
derived from a more complicated set of (counterfactual) assumptions. As noted by
Robins, the formula dictates an adjustment for covariates (e.g., Z3) that might be
affected by previous treatments (e.g., Zz).

Coping with unmeasured confounders

Things are a bit more complicated when we face unmeasured confounders. For ex-
ample, it is not immediately clear whether the formula in Eq. (14) can be estimated
if any of Zy, Z5 and Z3 is not measured. A few algebraic steps would reveal that one
can perform the summation over Z; (since Z; and Z, are independent) to obtain

P(y|do(x0)) = Y P(22)P(23]22) Pyl22, 23, %0) (17)

22,23

which means that we need only adjust for Z, and Zs without ever observing Z;.
But it is not immediately clear that no algebraic manipulation can further reduce
the resulting expression, or that measurement of Zs (unlike Z;, or Z5) is necessary
in any estimation of P(y|do(zo)). Such considerations become transparent in the
graphical representation, to be discussed next.

Selecting covariates for adjustment (the back-door criterion)

Consider an observational study where we wish to find the effect of X on Y, for
example, treatment on response, and assume that the factors deemed relevant to
the problem are structured as in Fig. 3; some are affecting the response, some are
affecting the treatment and some are affecting both treatment and response. Some
of these factors may be unmeasurable, such as genetic trait or life style, others
are measurable, such as gender, age, and salary level. Our problem is to select a
subset of these factors for measurement and adjustment, namely, that if we compare
subjects under the same value of those measurements and average, we get the correct
causal effect of treatment on response in the population.

The following criterion, named “back-door” in [Pearl, 1993], provides a graphical
method of selecting such a set of factors for adjustment. It states that a set S is
appropriate for adjustment if two conditions hold:

1. No element of S is a descendant of X

2. The elements of S “block” all “back-door” paths from X to Y, namely all
paths that end with an arrow pointing to X.

MFor clarity, we drop the (superfluous) subscript 0 from zo and Zay -
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In this criterion, a set S of nodes is said to block a path p if either (i) p contains at
least one arrow-emitting node that is in S, or (ii) p contains at least one collision
node that is outside S and has no descendant in S. For example, the set S = {Z3}
blocks the path X < Z; — Z3 — Y, because the arrow-emitting node Z3 is in S.
However, the set S = {Z3} does not block the path X < Z; — Z3 + Zy —» Y,
because none of the arrow-emitting nodes, Z; and Zs, is in S, and the collision node
Zs3 is not outside S.

Based on this criterion we see that the sets {Z1, Z», Z3},{Z1, Z3}, and {Z, Z3},
each qualifies for adjustment, because each blocks all back-door paths between X
and Y. The set {Z3}, however, is not sufficient for adjustment because, as explained
above, it does not block the path X <+ Z; —» Z3 « Z, —» Y.

Interestingly, it can be shown that any minimal sufficient set, S, taken as a unit,
satisfies the associational criterion that epidemiologists have been using to define
“confounders”. In other words, S must be associated with X and, simultaneously,
associated with Y, given X. This need not hold for any specific members of S. For
example, the variable Z3 in Fig. 3, though it is a member of every sufficient set and
hence a confounder, can be unassociated with both Y and X [Pearl, 2000, p. 195].

The back-door criterion allows us to write Eq. (17) directly, by inspection, with-
out manipulating the truncated factorization formula. The criterion can be tested
systematically on diagrams of any size and shape, thus freeing analysts from judging
whether “X is conditionally ignorable given Z,” a formidable mental task required
in the potential-response framework [Rosenbaum and Rubin, 1983]. The criterion
also enables the analyst to search for an optimal set of covariate—namely, a set Z
that minimizes measurement cost or sampling variability [Tian et al., 1998].

Intervention calculus

Adjusting for covariates is only one of many methods that permits us to estimate
causal effects in nonexperimental studies. Pearl [1995a] has presented examples in
which there exists no set of variables that is sufficient for adjustment and where the
causal effect can nevertheless be estimated consistently. The estimation, in such
cases, employs multi-stage nonstandard adjustments. The analysis used in these
cases invokes mathematical means of transforming causal quantities, represented
by expressions such as P(Y = y|do(z)), into do—free expressions derivable from
P(z,x,y), since only do-free expressions are estimable from non-experimental data.
When such a transformation is feasible, we say that the causal quantity is iden-
tifiable. The calculus developed for performing such transformations [Pearl, 1995]
permits the investigator to inspect the causal diagram and

1. Decide whether the assumptions embodied in the model are sufficient to obtain
consistent estimates of the target quantity;

2. Derive (if the answer to item 1 is affirmative) a closed-form expression for the
target quantity in terms of distributions of observed quantities; and

3. Suggest (if the answer to item 1 is negative) a set of observations and experi-
ments that, if performed, would render a consistent estimate feasible.

Graphical methods of performing some of these tasks, extending emphasizing the
identification and control of confounders, are presented in Galles and Pearl [1995];
extensions to problems involving multiple interventions (e.g., time varying treat-
ments) were developed in Pearl and Robins [1995], Kuroki and Miyakawa [1999],
and Pearl [2000, Chapters 3-4].
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A recent analysis [Tian and Pearl, 2001] further shows that the key to identifi-
ability lies not in blocking paths between X and Y but, rather, in blocking paths
between X and its immediate successors on the pathways to Y. All existing criteria
for identification are special cases of the one defined in the following theorem:

Theorem 2 [Tian and Pearl, 2001]

A sufficient condition for identifying the causal effect P(y|do(z)) is that every path
between X and any of its children traces at least one arrow emanating from a mea-
sured variable.'®

3.3 Counterfactual analysis in structural models

Not all questions of causal character can be encoded in P(y|do(z)) type expres-
sions, in much the same way that not all causal questions can be answered from
experimental studies. For example, questions of attribution (e.g., what fraction of
death cases are due to specific exposure?) or of susceptibility (what fraction of
some healthy unexposed population would have gotten the disease had they been
exposed?) cannot be answered from experimental studies, and naturally, this kind
of questions cannot be expressed in P(y|do(z)) notation. To answer such questions,
a probabilistic analysis of counterfactuals is required, one dedicated to the relation
“Y would be y had X been z in situation U = u,” denoted Y, (u) = y. Remarkably,
unknown to most economists and philosophers, structural equation models provide
the formal interpretation and symbolic machinery for analyzing such counterfactual
relationships.®

The key idea is to interpret the phrase “had X been 2” as an instruction to
modify the original model and replace the equation for X by a constant z, as we
have done in Eq. (6). This modification permits the constant z to differ from the
actual value of X (namely fx(z,v)) without creating logical contradiction, and thus
enables cascaded inference in models where the antecedent of one counterfactual is
a consequence of another.

To illustrate, consider again the modified model M, of Eq. (6), formed by the
intervention do(X = z¢) (Fig. 2(b)). Call the solution of YV in model M,, the
potential response of Y to xg, and denote it by the symbol Y, (u,v,w). This entity
can be given a counterfactual interpretation, for it stands for the way an individual
with characteristics (u, v, w) would respond, had the treatment been xg, rather than
the treatment x = fx(z,v) actually received by that individual. In our example,
since Y does not depend on v and w, we can write:

Yxo(uavaw) = on(u) = fy(:l?o,u).

Clearly, the distribution P(u,v,w) induces a well defined probability on the coun-
terfactual event Y,, = y, as well as on joint counterfactual events, such as ‘Y,, =y
AND Y,, = ', which are, in principle, unobservable if z¢ # ;.

This interpretation of counterfactuals, as solutions to modified systems of equa-
tions, provides the conceptual and formal link between structural equation modeling
and the Neyman-Rubin potential-outcome framework, as well as Robins and Green-
land’s extensions, which will be discussed in Section 4.

15Before applying this criterion, one may delete from the causal graph all nodes that are not
ancestors of Y.

18Connections between structural equations and a restricted class of counterfactuals were first
recognized by Simon and Rescher [1966]. These were later generalized by Balke and Pearl [1995]
to permit counterfactual conditioning on dependent variables.
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4 The Language of Potential Outcomes

The primitive object of analysis in the potential-outcome framework is the unit-
based response variable, denoted Y,(u), read: “the value that Y would obtain
in unit u, had X been z.” In section 3 we saw that this counterfactual entity
has the natural interpretation as representing the solution for Y in a modified
system of equation, where unit is interpreted a vector u of background factors that
characterize an experimental unit. Each structural equation model thus provides a
compact representation for a huge number of counterfactual claims.The potential
outcome framework lacks such compact representation. In the potential outcome
framework, Y, (u) is not derived from a formal model but, rather, it is taken as
primitive, that is, an undefined quantity in terms of which other quantities are
defined. Thus, the structural interpretation of Y, (u) can be regarded as the formal
basis for the potential outcome approach. In particular, this interpretation forms
a connection between the opaque English phrase “the value that Y would obtain
in unit u, had X been z” and a mathematical model that governs hypothetical
changes in X. The formation of the submodel M, explicates mathematically how
the hypothetical condition “had X been z” could be realized, by pointing to and
replacing the equation that is violated in making X = =z a reality. The logical
consequence of such hypothetical conditions can then be derived mathematically.

4.1 Formulating Assumption

The distinct characteristic of the potential outcome approach is that, although in-
vestigators must think and communicate in terms of undefined, hypothetical quan-
tities such as Y, (u), the analysis itself is conducted almost entirely within the ax-
iomatic framework of probability theory. This is accomplished, by postulating a
“super” probability function on both hypothetical and real events. If U is treated
as a random variable then the value of the counterfactual Y, (u) becomes a ran-
dom variable as well, denoted as Y,. The potential-outcome analysis proceeds by
treating the observed distribution P(z1,...,%,) as the marginal distribution of an
augmented probability function P* defined over both observed and counterfactual
variables. Queries about causal effects (written P(y|do(z)) in the structural anal-
ysis) are phrased as queries about the marginal distribution of the counterfactual
variable of interest, written P*(Y, = y). The new hypothetical entities Y, are
treated as ordinary random variables; for example, they are assumed to obey the
axioms of probability calculus, the laws of conditioning, and the axioms of condi-
tional independence. Moreover, these hypothetical entities are not entirely whimsy,
but are assumed to be connected to observed variables via consistency constraints
[Robins, 1986] such as

X=z = Y, =Y, (18)

which states that, for every u, if the actual value of X turns out to be x, then the
value that Y would take on if X were x is equal to the actual value of Y. For
example, a person who chose treatment z and recovered, would also have recovered
if given treatment x by design.

The main conceptual difference between the two approaches is that, whereas
the structural approach views the intervention do(x) as an operation that changes
the distribution but keeps the variables the same, the potential-outcome approach
views the variable Y under do(z) to be a different variable, Y, loosely connected
to Y through relations such as (18).
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Pearl [2000, Chapter 7] shows, using the structural interpretation of Y, (u), that
it is indeed legitimate to treat counterfactuals as jointly distributed random vari-
ables in all respects, that consistency constraints like (18) are automatically satisfied
in the structural interpretation and, moreover, that investigators need not be con-
cerned about any additional constraints except the following two:

Y, =y forallyandz (19)
X.=z2z=Y,.=Y. forall xz and z (20)

Eq. (19) ensures that the interventions do(Y = y) results in the condition Y =y,
regardless of concurrent interventions, say do(Z = z), that are applied to variables
other than Y. Equation (20) generalizes (18) to cases where Z is held fixed, at z.

To communicate substantive causal knowledge, the potential-outcome analyst
must express causal assumptions as constraints on P*, usually in the form of condi-
tional independence assertions involving counterfactual variables. For instance, in
the example of Fig. 2(a), to communicate the understanding that Z is randomized
(hence independent of both V' and U), the potential-outcome analyst would use
the independence constraint Z 1l {X,,Y,}. To further formulate the understanding
that Z does not affect Y directly, except through X, the analyst would write a, so
called, “exclusion restriction:” Y., = Y;.

4.2 Performing Inferences

A collection of constraints of this type might sometimes be sufficient to permit a
unique solution to the query of interest; in other cases, only bounds on the solution
can be obtained. For example, if one can plausibly assume that a set Z of covariates
satisfies the conditional independence

Y, LX|Z (21)

(an assumption that was termed “conditional ignorability”
by [Rosenbaum and Rubin, 1983] then the causal effect P*(Y, = y) can readily
be evaluated, using (18) and (21), to yield

S PV, = 4l)P(2)

3
&
I
NS
[

ZP*(Yz = y|:L’,Z)P(Z)

= ) P(Y =ylz,2)P(2)

> P(ylz, z)P(2). (22)

The last expression contains no counterfactual quantities (thus permitting us to
drop the asterisk from P*) and coincides precisely with the standard covariate-
adjustment formula Eq. (14).

We see that the assumption of conditional ignorability (21) qualifies Z as a suffi-
cient covariate for adjustment, and is equivalent therefore to the graphical criterion
(called “back door” in Section 3.1) that qualifies such covariates by tracing paths
in the causal diagram.

The derivation above may explain why the potential outcome approach appeals
to mathematical statisticians; instead of constructing new vocabulary (e.g.,arrows),
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new operators (do(z)) and new logic for causal analysis, almost all mathematical
operations in this framework are conducted within the safe confines of probability
calculus. Save for an occasional application of rule (20), the analyst may forget that
Y, stands for a counterfactual quantity—it is treated as any other random variable,
and the entire derivation follows the course of routine probability exercises.

However, this mathematical convenience often comes at the expense of concep-
tual clarity, especially at a stage where causal assumptions need be formulated. The
reader may appreciate this aspect by attempting to judge whether the assumption
of conditional ignorability Eq. (21), the key to the derivation of Eq. (22), holds in
any familiar situation, say in the experimental setup of Fig. 2(a). This assump-
tion reads: “the value that Y would obtain had X been z, is independent of X,
given Z”. Paraphrased in experimental metaphors, and applied to variable V', this
assumption reads: The way an individual with attributes V' would react to treat-
ment X = z is independent of the treatment actually received by that individual.
Such assumptions of conditional independence among counterfactual variables are
not straightforward to comprehend or ascertain, for they are cast in a language
far removed from ordinary understanding of cause and effect. When counterfac-
tual variables are not viewed as byproducts of a deeper, process-based model, it
is also hard to ascertain whether all relevant counterfactual independence judg-
ments have been articulated, whether the judgments articulated are redundant, or
whether those judgments are self-consistent. The thought of having to express, de-
fend, and manage formidable counterfactual relationships of this type may explain
why the potential-outcome enterprise is currently viewed with such awe and despair
among rank-and-file epidemiologists and statisticians—and why economists and so-
cial scientists continue to use structural equations instead of the potential-outcome
alternatives advocated in Holland [1988], Angrist et al. [1996], and Sobel [1998].

On the other hand, the algebraic machinery offered by the potential-outcome
notation, once a problem is properly formalized, can be extremely powerful in refin-
ing assumptions [Angrist et al., 1996], deriving consistent estimands [Robins, 1986],
bounding probabilities of necessary and sufficient causation [Tian and Pearl, 2000],
and combining data from experimental and nonexperimental studies [Pearl, 2000,
Chapter 9]. Pearl [2000, pp. 213-5, 231-4] presents a way that should help re-
searchers combine the best features of the two approaches. It is based on encoding
causal assumptions in the language of diagrams, translating these assumptions into
potential outcome notation, performing the mathematics in the algebraic language
of counterfactuals and, finally, interpreting the result in plain causal language.

5 Conclusions

Statistics is strong in devising ways of describing data and inferring distributional
parameters from sample. Causal inference require two addition ingredients: a sci-
ence friendly language for articulating causal knowledge, and a mathematical ma-
chinery for processing this knowledge, combining it with data and drawing new
causal conclusions about a phenomena. This paper introduces structural equations
models as a formal and meaningful language for formulating causal assumptions,
and for explicating many concepts used in scientific discourse. These include: ran-
domization, intervention, direct and indirect effects, confounding, counterfactuals,
attribution, and explanations [Pearl, 2000]. The algebraic component of the struc-
tural language coincides with the potential-outcome framework, and its graphical
component embraces Wright’s method of path diagrams. When unified and syn-
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thesized, the two components offer scientists a powerful methodology for empirical
research.
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