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Abstract. This paper provides a conceptual introduction to causal inference, aimed to assist health services

researchers benefit from recent advances in this area. The paper stresses the paradigmatic shifts that must be

undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis

is placed on the assumptions that underlie all causal inferences, the languages used in formulating those

assumptions, and the conditional nature of causal claims inferred from nonexperimental studies. These emphases

are illustrated through a brief survey of recent results, including the control of confounding, corrections for

noncompliance, and a symbiosis between counterfactual and graphical methods of analysis.
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1. Introduction

The research questions that motivate most studies in the health sciences are causal in

nature. For example, what is the efficacy of a given drug in a given population? What

fraction of deaths from given disease could have been avoided by a given treatment or

policy? What was the cause of death of a given individual, in a specific incident? Not

surprisingly, the central target of such studies is the elucidation of cause-effect relation-

ships among variables of interests, for example, treatments, exposures, preconditions, and

outcomes. Good statisticians have always known that the elucidation of causal relation-

ships from observational studies must be shaped by knowledge (or assumptions) about

how the data were generated; such assumptions are crucial to causal inference. This paper

introduces useful language and tools for clarifying such assumptions and for analyzing

empirical data in light of these assumptions.

In order to express causal assumptions mathematically, certain extensions are required

in the standard mathematical language of statistics, and these extensions are not generally

emphasized in the mainstream literature and education. As a result, large segments of the

health research community find it hard to appreciate and benefit from the many theoretical

results that causal analysis has produced in the past two decades. These include advances

in graphical models (Pearl, 1988; Lauritzen, 1996; Cowell et al., 1999), counterfactual or

‘‘potential outcome’’ analysis (Rosenbaum and Rubin, 1983; Robins, 1986; Manski, 1995;

Angrist et al., 1996; Greenland et al., 1999b), structural equation models (Heckman and



Smith, 1998), and a more recent formulation, which unifies these approaches under a

single interpretation (Pearl, 1995a, 2000).

This paper aims at making these advances more accessible to the general research

community.1 To this end, Section 2 begins by illuminating two conceptual barriers that

impede the transition from statistical to causal analysis: (i) coping with untested assump-

tions and (ii) acquiring new mathematical notation. Crossing these barriers, Section 3.1

then introduces the fundamentals of causal modeling from a perspective that is relatively

new to the health research literature. It is based on structural equation models (SEM),

which have been used extensively in economics and the social sciences (Goldberger, 1972;

Duncan, 1975; Joreskog and Sorbon, 1978), even though the causal content of these

models has been obscured significantly since their inception (Muthen, 1987; Chou and

Bentler, 1995) (see [Freedman, 1987] for critique and [Pearl, 2000, Chapter 5] for

historical perspective). Section 3.2 uses these modeling fundamentals to develop simple

mathematical tools for estimating causal effects and for the control of confounding. These

tools permit investigators to communicate causal assumptions formally using diagrams,

then inspect the diagram and

1. Decide whether the assumptions made are sufficient for obtaining consistent estimates

of the target quantity;

2. Derive (if the answer to item 1 is affirmative) a closed-form expression for the target

quantity in terms of distributions of observed quantities; and

3. Suggest (if the answer to item 1 is negative) a set of observations and experiments that,

if performed, would render a consistent estimate feasible.

Section 4 relates these tools to procedures that are used in the potential outcome approach.

Finally, Section 4.3, offers a symbiosis that exploits the best features of the two

approaches—structural models and potential outcome.

2. From Associational to Causal Analysis: Distinctions and Barriers

2.1. The Basic Distinction: Coping with Change

The aim of standard statistical analysis, typified by regression and other estimation

techniques, is to infer parameters of a distribution from samples drawn of that distribution.

With the help of such parameters, one can infer associations among variables, estimate the

likelihood of past and future events, as well as update the likelihood of events in light of

new evidence or new measurements. These tasks are managed well by standard statistical

analysis so long as experimental conditions remain the same. Causal analysis goes one step

further; its aim is to infer aspects of the data generation process. With the help of such

aspects, one can deduce not only the likelihood of events under static conditions, but also

the dynamics of events under changing conditions. This capability includes predicting the

effects of interventions (e.g., treatments or policy decisions) and spontaneous changes

(e.g., epidemics or natural disasters), identifying causes of reported events, and assessing
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responsibility and attribution (e.g., whether event x was necessary (or sufficient) for the

occurrence of event y).

This distinction implies that causal and associational concepts do not mix. Associations

characterize static conditions, while causal analysis deals with changing conditions. There

is nothing in the joint distribution of symptoms and diseases to tell us that curing the former

would or would not cure the latter. More generally, there is nothing in a distribution function

to tell us how that distribution would differ if external conditions were to change—say from

observational to experimental setup—because the laws of probability theory do not dictate

how one property of a distribution ought to change when another property is modified.2

Drawing analogy to visual perception, the information contained in a probability

function is analogous to a geometrical description of a three-dimensional object; it is

sufficient for predicting how that object will be viewed from any angle outside the object,

but it is insufficient for predicting how the object will be deformed if manipulated and

squeezed by external forces. The additional information needed for making such predic-

tions (e.g., the object’s resilience or elasticity) is analogous to the information that causal

assumptions provide in various forms—graphs, structural equations, or plain English. The

role of this information is to identify those aspects of the world that remain invariant when

external conditions change, say due to treatments or policy decisions.

These considerations imply that the slogan ‘‘correlation does not imply causation’’ can

be translated into a useful principle: one cannot substantiate causal claims from associa-

tions alone, even at the population level—behind every causal conclusion there must lie

some causal assumption that is not testable in observational studies. Nancy Cartwright

(1989) expressed this principle as ‘‘no causes in, no causes out,’’ meaning we cannot

convert statistical knowledge into causal knowledge.

2.2. Formulating the Basic Distinction

A useful demarcation line that makes the distinction between associational and causal

concepts unambiguous and easy to apply, can be formulated as follows. An associational

concept is any relationship that can be defined in terms of a joint distribution (be it personal

or frequency-based) of observed variables, and a causal concept is any relationship that

cannot be defined from the distribution alone. Examples of associational concepts are:

correlation, regression, dependence, conditional independence, likelihood, collapsibility,

risk ratio, odd ratio, marginalization, conditionalization, ‘‘controlling for,’’ and so on.3

Examples of causal concepts are: randomization, influence, effect, confounding, ‘‘holding

constant,’’ disturbance, spurious correlation, instrumental variables, intervention, explana-

tion, attribution, and so on. The purpose of this demarcation line is not to exclude these

causal concepts from the province of statistical analysis4 but, rather, to make it easy for

investigators to trace the assumptions that are needed for substantiating various types of

scientific claims. Every claim invoking causal concepts must be traced to some premises that

invoke such concepts; it cannot be derived or inferred from statistical associations alone.
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2.3. Ramifications of the Basic Distinction

This principle has far reaching consequences that are not generally recognized in the

standard health research literature. Many researchers, for example, are convinced that

confounding is solidly founded in standard, frequentist statistics, and that it can be given

an associational definition saying (roughly): ‘‘U is a potential confounder for examining

the effect of treatment X on outcome Y when both U and X and U and Y are not

independent.’’ That this definition and all its many variants must fail, is obvious from basic

considerations:

1. Confounding deals with the discrepancy between an association measured in an

observational study and an association that would prevail under ideal experimental

conditions.

2. Associations prevailing under experimental conditions are causal quantities because

they cannot be inferred from the joint distribution alone. Therefore, confounding is a

causal concept; its definition cannot be based on statistical associations alone, since

these can be derived from the joint distribution.

Indeed, one can construct simple examples showing that the associational criterion is

neither necessary nor sufficient, that is, some confounders may not be associated with X

nor with Y and some non-confounders may be associated with both X and Y (Pearl, 2000,

pp. 185–186; see also Section 3.1).5 This further implies that confounding bias cannot be

detected or corrected by statistical methods alone, not even by the most sophisticated

techniques that purport to ‘‘control for confounders,’’ such as stepwise selection (Klein-

baum et al., 1998) or collapsibility-based methods (Grayson, 1987). One must make some

assumptions regarding causal relationships in the problem, in particular about how the

potential ‘‘confounders’’ affect other covariates in the problem, before an adjustment can

safely correct for confounding bias. It follows that the rich epidemiological literature on

the control of confounding must be predicated upon some tacit causal assumptions and,

since causal vocabulary has generally been avoided in much of that literature (e.g.,

[Bishop, 1971; Whittemore, 1978; Grayson, 1987; Hauck et al., 1991; Becher, 1992]),6

major efforts would be required to assess the relevance of this impressive literature to the

modern conception of confounding as effect bias (Greenland et al., 1999b).7

Another ramification of the sharp distinction between associational and causal concepts is

that any mathematical approach to causal analysis must acquire new notation for expressing

causal assumptions and causal claims. The vocabulary of probability calculus, with its

powerful operators of conditionalization and marginalization, is insufficient for expressing

causal information. To illustrate, the syntax of probability calculus does not permit us to

express the simple fact that ‘‘symptoms do not cause diseases,’’ let alone draw mathematical

conclusions from such facts. All we can say is that two events are dependent—meaning that

if we find one, we can expect to encounter the other, but we cannot distinguish statistical

dependence, quantified by the conditional probability P(disease j symptom) from causal

dependence, for which we have no expression in standard probability calculus.8 Scientists

seeking to express causal relationships must therefore supplement the language of prob-
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ability with a vocabulary for causality, one in which the symbolic representation for the

relation ‘‘symptoms cause disease’’ is distinct from the symbolic representation of

‘‘symptoms are associated with disease.’’ Only after achieving such a distinction can we

label the former sentence ‘‘false,’’ and the latter ‘‘true,’’ so as to properly incorporate causal

information in the design and interpretation of statistical studies.

The preceding two requirements: (1) to commence causal analysis with untested,9

theoretically or judgmentally based assumptions, and (2) to extend the syntax of

probability calculus, constitute, in my experience, the two main obstacles to the acceptance

of causal analysis among statisticians and among professionals with traditional training in

statistics. We shall now explore in more detail the nature of these two barriers, and why

they have been so tough to cross.

2.4. The Barrier of Untested Assumptions

There are three fundamental differences between associational and causal assumptions.

First, associational assumptions, even untested, are testable in principle, given sufficiently

large sample and sufficiently fine measurements. Causal assumptions, in contrast, cannot

be verified even in principle, unless one resorts to experimental control. This difference is

especially accentuated in Bayesian analysis. Though the priors that Bayesians commonly

assign to statistical parameters are untested quantities, the sensitivity to these priors tends

to diminish with increasing sample size. In contrast, sensitivity to priors of causal

parameters, say those measuring the effect of smoking on lung cancer, remains non-

zero regardless of sample size.

Second, associational assumptions can be expressed in the familiar language of

probability calculus, and thus assume an aura of scholarship and scientific respectability.

Causal assumptions, as we have seen before, are deprived of that honor, and thus become

immediate suspect of informal, anecdotal or metaphysical thinking. Again, this difference

becomes illuminated among Bayesians, who are accustomed to accepting untested,

judgmental assumptions, and should therefore invite causal assumptions with open

arms—they don’t. A Bayesian is prepared to accept an expert’s judgment, however

esoteric and untestable, so long as the judgment is presented as a probability expression.

Bayesians turn apprehensive when that same judgment is cast in plain causal English, as in

‘‘treatment does not change gender.’’ A typical example can be seen in Lindley and

Novick’s (1981) treatment of confounding, in the context of Simpson’s paradox (see [Pearl,

2000; pp. 174–182] for details).

The third resistance to causal (vis-à-vis associational) assumptions stems from their

intimidating clarity. Assumptions about abstract properties of density functions or about

conditional independencies among variables are, cognitively speaking, rather opaque,

hence they tend to be forgiven, rather than debated. In contrast, assumptions about how

variables cause one another are shockingly transparent, and tend therefore to invite counter-

arguments and counter-hypotheses. Ironically, it is the latter feature that often deters

researchers from articulating assumptions in causal vocabulary. A co-reviewer on a paper I

have read recently offered the following objection to the method exemplified by the author:
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‘‘A thoughtful and knowledgeable epidemiologist could write down two or more

equally plausible models that leads to different conclusions regarding confounding.’’

Indeed, since the bulk of scientific knowledge is organized in causal schema, scientists are

incredibly creative in constructing competing alternatives to any causal hypothesis,

however plausible. Statistical hypotheses in contrast, having been several levels removed

from our store of knowledge, are relatively protected from such challenges, and offer

therefore a safer ride toward the conclusion.

It is important to emphasize, therefore, that causal analysis does not deal with defending

modeling assumptions, in much the same way that differential calculus does not deal with

defending the physical validity of a differential equation that a physicist chooses to use. In

fact no analysis void of experimental data can possibly defend causal assumptions. Instead,

causal analysis deals with the conclusions that logically follow from the combination of data

and a given set of assumptions, just in case one is prepared to accept the latter. Thus, all causal

inferences are necessarily conditional, and the most one can demand from such analysis is:

1. That the premises be amenable to mathematical analysis.

2. That the premises be articulated in a meaningful and unambiguous language for one to

judge their plausibility or inevitability.

The structural equation language introduced in Section 3 will be shown to have these

two features.

2.5. The Barrier of New Notation

The need to adopt a new notation, foreign to the province of probability theory, has been

traumatic to most persons trained in statistics; partly because the adaptation of a new

language is difficult in general, and partly because statisticians—this author included—

have been accustomed to assuming that all phenomena, processes, thoughts, and modes of

inference can be captured in the powerful language of probability theory.

How does one recognize causal expressions in the statistical literature? Those versed in

the potential-outcome notation (Neyman, 1923; Rubin, 1974; Holland, 1988), can

recognize such expressions through the subscripts that are attached to counterfactual

events and counterfactual variables, e.g., YxðuÞ or Zxy: (Some authors use parenthetical

expressions, e.g., Y ðx; uÞ or Zðx; yÞ:) The expression YxðuÞ; for example, stands for the

value that outcome Y would take in individual u, had treatment X been at level x. If u is

chosen at random, Yx is a random variable, and one can talk about the probability that Yx

would attain a value y in the population, written PðYx ¼ yÞ: Alternatively, Pearl (1995a)

and Kaufman and Kaufman (2001) used expressions of the form PðY ¼ yjsetðX ¼ xÞÞ or

PðY ¼ yjdoðX ¼ xÞÞ to denote the probability (or frequency) that event ðY ¼ yÞ would

occur if treatment condition X ¼ x were enforced uniformly over the population.10 Still a

third notation that distinguishes causal expressions is provided by graphical models, where

the arrows convey causal directionality.11
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However, in the bulk of the quantitative health science literature, causal claims rarely

appear in the mathematics. They surface only in the verbal interpretation that investigators

occasionally attach to certain associations, and in the verbal description with which

investigators justify assumptions. For example, the assumption that a covariate is not

affected by a treatment, a necessary assumption for the control of confounding (Cox,

1958), is expressed in plain English, not in a mathematical expression.

The absence of notational distinction between causal and statistical relationships at first

seemed harmless, because investigators were able to keep such distinctions implicitly in

their heads, and managed to confine the mathematics to conventional, conditional

probability expressions (Breslow and Day, 1980; Miettinen and Cook, 1981). However,

as problem complexity grew, the notational inadequacy of probability calculus began to

surface, and intense controversies ensued in the 1980–90’s between writers using

conventional statistical notation and the few who endeavored to enrich probability calculus

with causal vocabulary. Robins (1986, 1987), for example, showed that conventional

methods of estimating survival distributions under time-dependent treatments, (e.g.,

time-dependent Cox regression) may be biased. Greenland and Robins (1986) showed

(using counterfactual analysis) that conventional definitions that equated confounding to

noncollapsibility would generally lead to biased effect estimates. Holland and Rubin (1988)

came to similar conclusions. Using diagrams for guidance, Weinberg (1993) noted that

epidemiologists who follow established practices and informal criteria often adjust for the

wrong set of covariates. Likewise, Robins and Greenland (1992) proved that the then

prevailing practice of estimating direct effects by controlling intermediate variables can

lead to biased estimates. Again, using counterfactual notation, Robins and Greenland

(1989) and Greenland (1999) showed that conventional criteria for deciding legal

responsibility (for exposure-induced damages), which were based on risk ratio instead

of probability of causation, can be severely biased relative to judicial standards. Thus, the

notational inadequacy of standard statistics, which was first tolerated and glossed over,

took a heavy toll before explicit causal notation brought it to light.

Remarkably, despite this record of success, the mathematics of causal analysis has

remained enigmatic to most rank and file researchers, and its potentials still lay grossly

underutilized in the health sciences. The reason for this, I am firmly convinced, can be

traced to the unfriendly and ad-hoc notation in which causal analysis has been presented to

the research community. The next section provides a conceptualization that overcomes

these mental barriers; it offers both a friendly mathematical machinery for cause-effect

analysis and a formal foundation for counterfactual analysis.

3. The Language of Diagrams and Structural Equations

3.1. Linear Structural Equation Models

How can one express mathematically the common understanding that symptoms do not

cause diseases? The earliest attempt to formulate such relationship mathematically was

made in the 1920’s by the geneticist Sewall Wright (1921). Wright used a combination of
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equations and graphs to communicate causal relationships. For example, if X stands for a

disease variable and Y stands for a certain symptom of the disease, Wright would write a

linear equation:12

y ¼ bxþ u ð1Þ

where x stand for the level (or severity) of the disease, y stands for the level (or severity) of

the symptom, and u stands for all factors, other than the disease in question, that could

possibly affect Y. In interpreting this equation one should think of a physical process

whereby Nature examines the values of x and u and, accordingly, assigns variable Y the

value y ¼ bxþ u:
Equation (1) still does not properly express the causal relationship implied by this

assignment process, because equations are symmetrical objects; if we re-write (1) as

x ¼ ðy� uÞ=b ð2Þ

it might be misinterpreted to mean that the symptom influences the disease, against the

understanding that no such influence exists. To prevent such misinterpretations, Wright

augmented the equation with a diagram, later called ‘‘path diagram,’’ in which arrows are

drawn from (perceived) causes to their (perceived) effects, and the absence of an arrow

encodes the absence of direct causal influence between the corresponding variables. Thus,

in our example, the complete model of a symptom and a disease would be written as in

Figure 1: The diagram encodes the possible existence of (direct) causal influence of X on Y,

and the absence of causal influence of Y on X, while the equations encode the quantitative

relationships among the variables involved, to be determined from the data. The parameter

b in the equation is called a ‘‘path coefficient’’ and it quantifies the (direct) causal effect of

X on Y; given the numerical value of b, the equation claims that a unit increase in X would

result in b units increase of Y. The variables V and U are called ‘‘exogenous’’; they

represent observed or unobserved background factors that the modeler decides to keep

unexplained, that is, factors that influence but are not influenced by the other variables

(called ‘‘endogenous’’) in the model. Unobserved exogenous variables are sometimes

called ‘‘disturbances’’ or ‘‘errors’’, they represent factors omitted from the model but

judged to be relevant for explaining the behavior of variables in the model. Variable V, for

Figure 1. A simple structural equation model, and its associated diagrams. Unobserved exogenous variables are

connected by dashed arrows.

196 PEARL



example, represents factors that contribute to the disease X, which may or may not be

correlated with U (the factors that influence the symptom Y ). If correlation is presumed

possible, it is customary to connect the two variables, U and V, by a dashed double arrow,

as shown in Figure 1(b).

In reading path diagrams, it is common to use kinship relations such as parent, child,

ancestor, and descendent, the interpretation of which is usually self evident. For example,

an arrow X ! Y designates X as a parent of Y and Y as a child of X. By convention, only

observed variables qualify as ‘‘parents’’, thus, in Figure 1(a), only X qualifies as a parent of

Y, since U is unobserved (as indicated by the dashed arrow). Likewise, the ancestors

(respectively, descendants) of a given node, Y, are those variables that can be traced from Y

going against (respectively, along) the solid arrows in the diagram. A ‘‘path’’ is any

consecutive sequence of edges, solid or dashed. For example, there are two paths between

X and Y in Figure 1(b), one consisting of the direct arrow X ! Y while the other tracing

the nodes X, V, U and Y.

Wright’s major contribution to causal analysis, aside from introducing the language of

path diagrams, has been the development of graphical rules for writing down the

covariance of any pair of observed variables in terms of path coefficients and of

covariances among the error terms. In our simple example, one can immediately write

the relations

CovðX ; Y Þ ¼ b ð3Þ

for Figure 1(a), and

CovðX ; Y Þ ¼ bþ CovðU ;V Þ ð4Þ

for Figure 1(b) (These can be derived of course from the equations, but, for large models,

algebraic methods tend to obscure the origin of the derived quantities). Under certain

conditions, (e.g., if Cov(U, V )¼ 0), such relationships may allow one to solve for the path

coefficients in term of observed covariance terms only, and this amounts to inferring the

magnitude of (direct) causal effects from observed, nonexperimental associations, assum-

ing of course that one is prepared to defend the causal assumptions encoded in the

diagram.

It is important to note that, in path diagrams, causal assumptions are encoded not in the

links but, rather, in the missing links. An arrow merely indicates the possibility of causal

connection, the strength of which remains to be determined (from data); a missing arrow

makes a definite commitment to a zero-strength connection. In Figure 1(a), for example,

the assumptions that permits us to identify the direct effect b is encoded by the missing

double arrow between V and U, indicating CovðU ;V Þ ¼ 0; together with the missing arrow

from Y to X. Had any of these two links been added to the diagram, we would not have

been able to identify the direct effect b. Such additions would amount to relaxing the

assumption CovðU ;V Þ ¼ 0; or the assumption that Y does not effect X, respectively. Note

also that both assumptions are causal, not associational, since none can be determined

from the joint density of the observed variables, X and Y; the association between the
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unobserved terms, U and V, can only be uncovered in an experimental setting; or (in more

intricate models, as in Figure 5) from other causal assumptions.

Although each causal assumption in isolation cannot be tested, the sum total of all

causal assumptions in a model often has testable implications. The chain model of Figure

2(a), for example, encodes seven causal assumptions, each corresponding to a missing

arrow or a missing double-arrow between a pair of variables. None of those assumptions is

testable in isolation, yet the totality of all those assumptions implies that Z is unassociated

with Y in every stratum of X. Such testable implications can be read off the diagrams using

a graphical criterion known as d-separation (see [Pearl 2000, pp. 16–19]), and these

constitute the only opening through which the assumptions embodied in structural

equation models can confront the scrutiny of nonexperimental data. In other words,

every conceivable statistical test capable of invalidating the model is entailed by those

implications.

3.2. From Linear to Nonparametric Models

Structural equation modeling (SEM) has been the main vehicle for effect analysis in

economics and the behavioral and social sciences (Goldberger, 1972; Duncan, 1975;

Bollen, 1989). However, the bulk of SEM methodology was developed for linear analysis

and, until recently, no comparable methodology has been devised to extend its capabilities

to models involving dichotomous variables or nonlinear dependencies. A central require-

ment for any such extension is to detach the notion of ‘‘effect’’ from its algebraic

representation as a coefficient in an equation, and redefine ‘‘effect’’ as a general capacity to

transmit changes among variables. Such an extension, based on simulating hypothetical

interventions in the model, is presented in Pearl (1995a, 2000) and has led to new ways of

defining and estimating causal effects in nonlinear and nonparametric models (that is,

models in which the functional form of the equations is unknown).

The central idea is to exploit the invariant characteristics of structural equations without

committing to a specific functional form. For example, the non-parametric interpretation of

the diagram of Figure 2(a) corresponds to a set of three functions, each corresponding to

one of observed variables:

z ¼ fZðwÞ

x ¼ fX ðz; vÞ

y ¼ fY ðx; uÞ

ð5Þ

where W, V and U are assumed to be jointly independent but, otherwise, arbitrarily

distributed. Each of these functions represents a causal process (or mechanism) that

determines the value of the left variable (output) from those on the right variables (inputs).

The absence of a variable on the right of an equations encodes the assumption that it has no

direct effect on the left variable. For example, the absence of variable Z from the arguments

of fY indicates that variations in Z will leave Y unchanged, as long as variables U, and X
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remain constant. A system of such functions are said to be structural if they are assumed to

be autonomous, that is, each function is invariant to possible changes in the form of the

other functions (Simon, 1953; Koopmans, 1953).

3.2.1. Representing Interventions

This feature of invariance permits us to use structural equations as a basis for modeling

causal effects and counterfactuals. This is done through a mathematical operator called

do(x) which simulates physical interventions by deleting certain functions from the model,

replacing them by a constant X ¼ x; while keeping the rest of the model unchanged. For

example, to emulate an intervention do(x0) that holds X constant (at X ¼ x0) in model M

of Figure 2(a), we replace the equation for x in Eq. (5) with x ¼ x0; and obtain a new

model, Mx0
;

z ¼ fZðwÞ

x ¼ x0

y ¼ fY ðx; uÞ

ð6Þ

the graphical description of which is shown in Figure 2(b).

The joint distribution associated with the modified model, denoted Pðz; yjdoðx0ÞÞ

describes the post-intervention distribution of variables Y and Z (also called ‘‘controlled’’

or ‘‘experimental’’ distribution), to be distinguished from the pre-intervention distribution,

P(x, y, z), associated with the original model of Eq. (5). For example, if X represents a

treatment variable, Y a response variable, and Z some covariate that affects the amount of

of treatment received, then the distribution Pðz; yjdoðx0ÞÞ gives the proportion of indivi-

duals that would attain response level Y¼ y and covariate level Z¼ z under the

hypothetical treatment X ¼ x0 that is administered uniformly to the population.

From this distribution, one is able to assess treatment efficacy by comparing aspects of

this distribution at different levels of x0. A common measure of treatment efficacy is the

average difference

EðY jdoðx00ÞÞ � EðY jdoðx0ÞÞ ð7Þ

Figure 2. (a) The diagram associated with the structural model of Eq. (5). (b) The diagram associated with the

modified model of Eq. (6), representing the intervention doðX ¼ x0Þ:
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where x00 and x0 are two levels (or types) of treatment selected for comparison. Another

measure is the ratio

EðY jdoðx00ÞÞ=EðY jdoðx0ÞÞ: ð8Þ

The variance VarðY jdoðx0ÞÞ; or any other distributional parameter, can also serve as a basis

for comparison; all these measures can be obtained from the controlled distribution

function PðY ¼ yjdoðxÞÞ ¼
P

z Pðz; yjdoðxÞÞ which was called ‘‘causal effect’’ in Pearl

(1995a, 2000) (see footnote 10). The central question in the analysis of causal effects is the

question of identification: Can the controlled (post-intervention) distribution,

PðY ¼ yjdoðxÞÞ; be estimated from data governed by the pre-intervention distribution,

P(z, x, y)? This is the problem of identification which has received considerable attention

by causal analysts.

A fundamental theorem in causal analysis states that such identification would be

feasible whenever the model is Markovian, that is, the graph is acyclic (i.e., containing no

directed cycles) and all the error terms are jointly independent. Non-Markovian models,

such as those involving correlated errors (resulting from unmeasured confounders), permit

identification only under certain conditions, and these conditions can be determined from

the graph structure using the following basic theorem.

Theorem 1. (The Causal Markov Condition)

Any distribution generated by a Markovian model M can be factorized as:

Pðv1; v2; . . . ; vnÞ ¼
Y

i

PðvijpaiÞ ð9Þ

where V1; V2; . . . ;Vn are the endogenous variables in M, and pai are (values of) the

endogenous parents of Vi in the causal diagram associated with M.

For example, the distribution associated with the model in Figure 2(a) can be factorized

as

Pðz; y; xÞ ¼ PðzÞPðxjzÞPðyjxÞ ð10Þ

since X is the (endogenous) parent of Y, Z is the parent of X, and Z has no parents.

Corollary 1. (Truncated factorization)

For any Markovian model, the distribution generated by an intervention do(X¼ x0) on a

set X of endogenous variables is given by the truncated factorization

Pðv1; v2; . . . ; vk jdoðx0ÞÞ ¼
Y

ijVi =2X

PðvijpaiÞjx¼x0
ð11Þ
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where PðvijpaiÞ are the pre-intervention conditional probabilities.13

Corollary 1 instructs us to remove from the product of Eq. (9) all factors associated with

the intervened variables (members of set X). This follows from the fact that the post-

intervention model is Markovian as well, hence, following Theorem 1, it must generate a

distribution that is factorized according to the modified graph, yielding the truncated

product of Corollary 1. In our example of Figure 2(b), the distribution Pðz; yjdoðx0ÞÞ

associated with the modified model is given by

Pðz; yjdoðx0ÞÞ ¼ PðzÞPðyjx0Þ

where P(z) and P(yjx0) are identical to those associated with the pre-intervention

distribution of Eq. (10). As expected, the distribution of Z is not affected by the

intervention, since

Pðzjdoðx0ÞÞ ¼
X

y

Pðz; yjdoðx0ÞÞ ¼ PðzÞ
X

y

Pðyjdoðx0ÞÞ ¼ PðzÞ

while that of Y is sensitive to x0, and is given by

Pðyjdoðx0ÞÞ ¼ Pðyjx0Þ

This example demonstrates how the (causal) assumptions embedded in the model M

permit us to predict the post-intervention distribution from the pre-intervention distribu-

tion, which further permits us to estimate the causal effect of X on Y from nonexperimental

data, since Pðyjx0Þ is estimable from such data. Note that we have made no assumption

whatsoever on the form of the equations or the distribution of the error terms; it is the

structure of the graph alone that permits the derivation to go through.

3.2.2. Deriving Causal Effects

The truncated factorization formula enables us to derive causal quantities directly, without

dealing with equations or equation modification as in Eq. (6). Consider, for example, the

model shown in Figure 3, in which the error variables are kept implicit. Instead of writing

down the corresponding five nonparametric equations, we can write the join distribution

directly as

Pðx; z1; z2; z3; yÞ ¼ Pðz1ÞPðz2ÞPðz3jz1; z2ÞPðxjz1; z3ÞPðyjz2; z3; xÞ ð12Þ

where each marginal or conditional probability on the right hand side is directly

estimatable from the data. Now suppose we intervene and set variable X to x0. The

post-intervention distribution can readily be written (using the truncated factorization

formula) as

Pðz1; z2; z3; yjdoðx0ÞÞ ¼ Pðz1ÞPðz2ÞPðz3jz1; z2ÞPðyjz2; z3; x0Þ ð13Þ
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and the causal effect of X on Y can be obtained immediately by marginalizing over the Z

variables, giving

Pðyjdoðx0ÞÞ ¼
X

z1;z2;z3

Pðz1ÞPðz2ÞPðz3jz1; z2ÞPðyjz2; z3; x0Þ ð14Þ

Note that this formula corresponds precisely to what is commonly called ‘‘adjusting for Z1,

Z2, and Z3’’ and, moreover, we can write down this formula by inspection, without thinking

on whether Z1, Z2 and Z3 are confounders, whether they lie on the causal pathways, and so

on. Though such questions can be answered explicitly from the topology of the graph, they

are dealt with automatically when we write down the truncated factorization formula and

marginalize.

Note also that the truncated factorization formula is not restricted to interventions on a

single variable; it is applicable to simultaneous or sequential interventions such as those

invoked in the analysis of time varying treatment with time varying confounders (Robins,

1986). For example, if X and Z2 are both treatment variables, and Z1 and Z3 are measured

covariates, then the post-intervention distribution would be

Pðz1; z3; yjdoðxÞ; doðz2ÞÞ ¼ Pðz1ÞPðz3jz1; z2ÞPðyjz2; z3; xÞ ð15Þ

and the causal effect of the treatment sequence doðX ¼ xÞ; doðZ2 ¼ z2Þ
14 would be

PðyjdoðxÞ; doðz2ÞÞ
X
z1;z3

Pðz1ÞPðz3jz1; z2ÞPðyjz2; z3; xÞ ð16Þ

This expression coincides with Robins’ (1987) G-computation formula, which was

derived from a more complicated set of (counterfactual) assumptions. As noted by Robins,

the formula dictates an adjustment for covariates (e.g., Z3) that might be affected by

previous treatments (e.g., Z2).

Figure 3. Markovian model illustrating the derivation of the causal effect of X on Y, Eq. (14). Error terms are not

shown explicitly.
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3.2.3. Coping with Unmeasured Confounders

Things are more complicated when we face unmeasured confounders. For example, it is

not immediately clear whether the formula in Eq. (14) can be estimated if any of Z1, Z2 and

Z3 is not measured. A few algebraic steps would reveal that one can perform the

summation over Z1 (since Z1 and Z2 are independent) to obtain

Pðyjdoðx0ÞÞ ¼
X
z2;z3

Pðz2ÞPðz3jz2ÞPðyjz2; z3; x0Þ ð17Þ

which means that we need only adjust for Z2 and Z3 without ever observing Z1. But it is not

immediately clear that no algebraic manipulation can further reduce the resulting

expression, or that measurement of Z3 (unlike Z1, or Z2) is necessary in any estimation

of Pðyjdoðx0ÞÞ: Such considerations become transparent in the graphical representation, to

be discussed next.

3.2.4. Selecting Covariates for Adjustment (the Back-Door Criterion)

Consider an observational study where we wish to find the effect of X on Y, for example,

treatment on response, and assume that the factors deemed relevant to the problem are

structured as in Figure 4; some are affecting the response, some are affecting the treatment,

and some are affecting both treatment and response. Some of these factors may be

unmeasurable, such as genetic trait or life style, others are measurable, such as gender, age,

and salary level. Our problem is to select a subset of these factors for measurement and

adjustment, namely, that if we compare treated vs. untreated subjects having the same

values of the selected factors, we get the correct treatment effect in that subpopulation of

subjects. Such a set of factors is called a ‘‘sufficient set’’ or a set ‘‘appropriate for

adjustment.’’

The following criterion, named ‘‘back-door’’ in (Pearl, 1993), provides a graphical

method of selecting such a set of factors for adjustment. It states that a set S is appropriate

for adjustment if two conditions hold:

1. No element of S is a descendant of X.

2. The elements of S ‘‘block’’ all ‘‘back-door’’ paths from X to Y, namely all paths that end

with an arrow pointing to X.

In this criterion, a set S of nodes is said to block a path p if either (i) p contains at least one

arrow-emitting node that is in S, or (ii) p contains at least one collision node that is outside

S and has no descendant in S.15 For example, the set S ¼ fZ3g blocks the path

X  W1  Z1 ! Z3 ! Y ; because the arrow-emitting node Z3 is in S. However, the

set S ¼ fZ3g does not block the path X  W1  Z1 ! Z3  Z2 ! W2 ! Y ; because

none of the arrow-emitting nodes, Z1 and Z2; is in S, and the collision node Z3 is not

outside S.

Based on this criterion we see, for example, that each of the sets fZ1; Z2; Z3g; fZ1; Z3g;
and fW2; Z3g is sufficient for adjustment, because each blocks all back-door paths between
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X and Y. The set fZ3g; however, is not sufficient for adjustment because, as explained

above, it does not block the path X  W1  Z1 ! Z3  Z2 ! W2 ! Y :
The intuition behind the back-door criterion is as follows. The back-door paths in the

diagram carry spurious associations from X to Y, while the paths directed along the arrows

from X to Y carry causative associations. Blocking the former paths (by conditioning on S)

ensures that the measured association between X and Y is purely causative, namely, it

correctly represents the target quantity: the causal effect of X on Y.

Formally, the implication of finding a sufficient set S is that, stratifying on S is

guaranteed to remove all confounding bias relative to the causal effect of X on Y. In

other words, the risk difference in each stratum of S gives the correct causal effect in that

stratum. In the binary case, for example, the risk difference in stratum s of S is given by

PðY ¼ 1jX ¼ 1; S ¼ sÞ � PðY ¼ 1jX ¼ 0; S ¼ sÞ

while the causal effect (of X on Y) at that stratum is given by

PðY ¼ 1jdoðX ¼ 1Þ; S ¼ sÞ � PðY ¼ 1jdoðX ¼ 0Þ; S ¼ sÞ:

These two expressions are guaranteed to be equal whenever S is a sufficient set, such as

fZ1; Z3g or fZ2; Z3g in Figure 4. Likewise, the average stratified risk difference, taken over

all strata,

X
s

½PðY ¼ 1jX ¼ 1; S ¼ sÞ � PðY ¼ 1jX ¼ 0; S ¼ sÞ�PðS ¼ sÞ;

gives the correct causal effect of X on Y in the entire population

PðY ¼ 1jdoðX ¼ 1ÞÞ � PðY ¼ 1jdoðX ¼ 0ÞÞ:

In general, for multivalued variables X and Y, finding a sufficient set S permits us to

write

PðY ¼ yjdoðX ¼ xÞ; S ¼ sÞ ¼ PðY ¼ yjX ¼ x; S ¼ sÞ

Figure 4. Markovian model illustrating the back-door criterion. Error terms are not shown explicitly.
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and

PðY ¼ yjdoðX ¼ xÞÞ ¼
X

s

PðY ¼ yjX ¼ x; S ¼ sÞPðS ¼ sÞ ð18Þ

Since all factors on the right hand side of the equation are estimable (e.g., by regression)

from the pre-interventional data, the causal effect can likewise be estimated from such data

without bias.

Interestingly, it can be shown that any sufficient set, S, taken as a unit, satisfies the

associational criterion that epidemiologists have been using to define ‘‘confounders’’. In

other words, S must be associated with X and, simultaneously, associated with Y, given X.

This need not hold for any specific members of S. For example, the variable Z3 in Figure 4,

though it is a member of every sufficient set and hence a confounder, can be unassociated

with both Y and X (Pearl, 2000, p. 195).

The back-door criterion allows us to write Eq. (18) directly, by selecting a sufficient set

S from the diagram, without manipulating the truncated factorization formula. The

selection criterion can be applied systematically to diagrams of any size and shape, thus

freeing analysts from judging whether ‘‘X is conditionally ignorable given S,’’ a formidable

mental task required in the potential-response framework (Rosenbaum and Rubin, 1983).

The criterion also enables the analyst to search for an optimal set of covariate—namely, a

set S that minimizes measurement cost or sampling variability (Tian et al., 1998).

3.2.5. General Control of Confounding

Adjusting for covariates is only one of many methods that permits us to estimate causal

effects in nonexperimental studies. Pearl (1995a) has presented examples in which there

exists no set of variables that is sufficient for adjustment and where the causal effect can

nevertheless be estimated consistently. The estimation, in such cases, employs multi-stage

adjustments. For example, if W3 is the only observed covariate in the model of Figure 4,

then there exists no sufficient set for adjustment (because no set of observed covariates can

block the paths from X to Y through Z3), yet PðyjdoðxÞÞ can be estimated in two steps; first

we estimate Pðw3jdoðxÞÞ ¼ Pðw3jxÞ (by virtue of the fact that there exists no back-door

path from X to W3), second we estimate Pðyjdoðw3ÞÞ (since X constitutes a sufficient set for

the effect of W3 on Y) and, finally, we combine the two effects together and obtain

PðyjdoðxÞÞ ¼
X
w3

Pðw3jdoðxÞÞPðyjdoðw3ÞÞ ð19Þ

The analysis used in the derivation and validation of such results invokes mathematical

means of transforming causal quantities, represented by expressions such as

PðY ¼ yjdoðxÞÞ; into do-free expressions derivable from Pðz; x; yÞ; since only do-free

expressions are estimable from non-experimental data. When such a transformation is

feasible, we are ensured that the causal quantity is identifiable.

General graphical methods for the identification and control of confounders, were

presented in Galles and Pearl (1995), while extensions to problems involving multiple
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interventions (e.g., time varying treatments) were developed in Pearl and Robins (1995),

Kuroki and Miyakawa (1999), and Pearl (2000, Chapters 3–4).

A recent analysis (Tian and Pearl, 2002) further shows that the key to identifiability lies

not in blocking paths between X and Y but, rather, in blocking paths between X and its

immediate successors on the pathways to Y. All existing criteria for identification are

special cases of the one defined in the following theorem:

Theorem 2. (Tian and Pearl, 2002)

A sufficient condition for identifying the causal effect PðyjdoðxÞÞ is that every path between

X and any of its children traces at least one arrow emanating from a measured variable.16

3.3. Counterfactual Analysis in Structural Models

Not all questions of causal character can be encoded in PðyjdoðxÞÞ type expressions, in

much the same way that not all causal questions can be answered from experimental

studies. For example, questions of attribution (e.g., what fraction of death cases are due to

specific exposure?) or of susceptibility (what fraction of some healthy unexposed

population would have gotten the disease had they been exposed?) cannot be answered

from experimental studies, and naturally, this kind of questions cannot be expressed in

PðyjdoðxÞÞ notation.17 To answer such questions, a probabilistic analysis of counterfactuals

is required, one dedicated to the relation ‘‘Y would be y had X been x in situation U ¼ u;’’
denoted YxðuÞ ¼ y: Remarkably, unknown to most economists and philosophers, structural

equation models provide the formal interpretation and symbolic machinery for analyzing

such counterfactual relationships.18

The key idea is to interpret the phrase ‘‘had X been x’’ as an instruction to modify the

original model and replace the equation for X by a constant x, as we have done in Eq. (6).

This replacement permits the constant x to differ from the actual value of X (namely

fxðz; vÞÞ without rendering the system of equations inconsistent, thus yielding a formal

interpretation of counterfactuals in multi-stage models, where the dependent variable in

one equation may be an independent variable in another.

To illustrate, consider again the modified model Mx0
of Eq. (6), formed by the

intervention doðX ¼ x0Þ (Fig. 2(b)). Call the solution of Y in model Mx0
the potential

response of Y to x0; and denote it by the symbol Yx0
ðu; v;wÞ: This entity can be given a

counterfactual interpretation, for it stands for the way an individual with characteristics (u,

v, w) would respond, had the treatment been x0; rather than the treatment x ¼ fX ðz; vÞ

actually received by that individual. In our example, since Y does not depend on v and w,

we can write:

Yx0
ðu; v;wÞ ¼ Yx0

ðuÞ ¼ fY ðx0; uÞ:
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Clearly, the distribution Pðu; v;wÞ induces a well defined probability on the counterfactual

event Yx0
¼ y; as well as on joint counterfactual events, such as ‘Yx0

¼ y AND Yx1
¼ y0;’

which are, in principle, unobservable if x0 6¼ x1: Thus, to answer attributional questions,

such as whether Y would be y1 if X were x1; given that in fact Y is y0 and X is x0; we need

to compute the conditional probability PðYx1
¼ y1jY ¼ y0;X ¼ x0Þ which is well defined

once we know the forms of the structural equations and the distribution of the exogenous

variables in the model. For example, assuming a linear equation for Y (as in Fig. 1),

y ¼ bxþ u;

the conditions Y ¼ y0 and X ¼ x0 yield V ¼ x0 and U ¼ y0 � bx0; and we can conclude

that, with probability one, Yx1 must take on the value: Yx1
¼ bx1 þ U ¼ bðx1 � x0Þ þ y0:

In other words, if X were x1 instead of x0; Y would increase by b times the difference

ðx1 � x0Þ; In nonlinear systems, the result would also depend on the distribution of U and,

for that reason, attributional queries are generally not identifiable in nonparametric models

(Pearl 2000, Chapter 9).

This interpretation of counterfactuals, cast as solutions to modified systems of

equations, provides the conceptual and formal link between structural equation modeling

and the Neyman-Rubin potential-outcome framework, as well as Robins and Greenland’s

extensions, which will be discussed in Section 4. It ensures us that the end results of the

two approaches will be the same; the choice is strictly a matter of convenience or insight.

3.4. An Example: Non-compliance in Clinical Trials

3.4.1. Formulating the Assumptions

Consider the model of Figure 5(a) and Eq. (5), and assume that it represents the

experimental setup in a typical clinical trial with partial compliance. Let Z, X, Y be

observed variables, where Z represents a randomized treatment assignment, X is the

treatment actually received, and Y is the observed response. The U term represents all

factors (unobserved) that influence the way a subject responds to treatments; hence, an

arrow is drawn from U to Y. Similarly, V denotes all factors that influence the subject’s

compliance with the assignment, and W represents the random device used in deciding

assignment. The dependence between V and U allows for certain factors (e.g., socio

economic status or predisposition to disease and complications) to influence both

compliance and response. In Eq. (5), fX represents the process by which subjects select

treatment level and fY represents the process that determines the outcome Y. Clearly,

perfect compliance would amount to setting fX ðz; vÞ ¼ z while any dependence on v

represents imperfect compliance.

The graphical model of Figure 5(a) reflects two assumptions.

1. The assignment Z does not influence Y directly but rather through the actual treatment

taken, X. This type of assumption is called ‘‘exclusion’’ restriction, for it excludes a

variable (Z) from being a determining argument of the function fY :
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2. The variable Z is independent of U and V; this is ensured through the randomization of

Z, which rules out a common cause for both Z and U (as well as for Z and V).

By drawing the diagram of Figure 5(a) an investigator encodes an unambiguous

specification of these two assumptions, and permits the technical part of the analysis to

commence, under the interpretation provided by Eq. (5).

The target of causal analysis in this setting is to estimate the causal effect of the

treatment (X) on the the outcome (Y). This effect is defined as the response of the

population in hypothetical experiment in which we administer treatment at level X ¼ x0

uniformly to the entire population and let x0 take different values on hypothetical copies of

the population. Such hypothetical experiments are governed by the modified model of

Eq. (6) and the corresponding distribution Pðyjdoðx0ÞÞ: An inspection of the diagram in

Figure 5(a) reveals immediately that this distribution is not identifiable by adjusting for

confounders. The graphical criterion for such adjustment requires the existence of

observed covariates on the ‘‘back-door’’ path X  V $ U ! Y ; so as to block (by

stratification) the spurious associations created by that path. Had V (or U) been observable,

the treatment effect would have been obtained by stratification on the levels of V.

PðY ¼ yjdoðx0ÞÞ ¼
X

v

PðY ¼ yjX ¼ x0;V ¼ vÞPðV ¼ vÞ ð20Þ

thus yielding an estimable expression that requires no measurement of U and no

assumptions relative the dependence between U and V. However, since V (and U) are

assumed to be unobserved, and since no other blocking covariates exist, the investigator

can conclude that confounding bias cannot be removed by adjustment. Moreover, it can be

shown that, in the absence of additional assumptions, the treatment effect in such graphs

cannot be identified by any method whatsoever (Balka and Pearl, 1997); one must

therefore resort to approximate methods of assessment.

It is interesting to note that it is our insistence on allowing arbitrary functions in Eq. (5)

that curtails our ability to infer the treatment effect from nonexperimental data (when V and

U are unobserved). In linear systems, for example, the causal effect of X on Y is

identifiable, as can be seen by writing:19

y ¼ fY ðx; uÞ ¼ bxþ u; ð21Þ

multiplying this equation by z and taking expectations, gives

b ¼ CovðZ; Y Þ=ðCovðZ;X Þ ð22Þ

which reduces b to correlations among observed measurements. Eq. (22) is known as the

instrumental variable estimand (Bowden and Turkington, 1984).

Similarly, Angrist et al (1996) have shown that certain nonlinear restrictions of the

function fX and fY may render the causal effect identifiable.
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3.4.2. Bounding Causal Effects

When conditions for identification are not met, the best one can do is derive bounds for the

quantities of interest—namely, a range of possible values that represents our ignorance

about the data-generating process and that cannot be improved with increasing sample

size. In our example, this amounts to bounding the average difference of Eq. (7) subject to

the constraint provided by the observed distribution

Pðx; yjzÞ ¼
X
v;u

Pðx; y; v; ujzÞ

¼
X
v;u

Pðyjx; u; vÞPðxjz; vÞPðu; vÞ
ð23Þ

where the product decomposition is licensed by the conditional independencies shown

in Figure 5(a). Likewise, since the causal effect is governed by the modified model of

Figure 5(b), it can be written

Pðyjdoðx0ÞÞ � Pðyjdoðx00ÞÞ ¼
X

u

½Pðyjx0; uÞ � Pðyjx00; uÞ�PðuÞ ð24Þ

Our task is then to bound the expression in Eq. (24) given the observed probabilities

Pðy; xjzÞ as expressed in Eq. (23). This task amounts to a constrained optimization exercise

of finding the highest and lowest values of Eq. (24) subject to the equality constraint in

Eq. (23), where the maximization ranges over all possible functions Pðu; vÞ; Pðyjx; u; vÞ,

and Pðxjz; u; Þ that satisfy those constraints.

Using linear-programming techniques, Balke and Pearl (1997) have derived closed-form

solutions for these bounds20 and showed that despite the imperfection of the experiments,

the derived bounds can yield significant and sometimes accurate information on the

treatment efficacy. Chickering and Pearl (1997) further used Bayesian techniques (with

Gibbs sampling) to investigate the sharpness of these bounds as a function of sample size.

3.4.3. Testable Implications

The two assumptions embodied in the model of Figure 5(a), that Z is randomized and has

no direct effect on Y, are untestable in general (Bonet, 2001). However, if the treatment

variable may take only a finite number of values, the combination of these two

Figure 5. (a) Causal diagram representing a clinical trial with imperfect compliance. (b) A diagram representing

interventional treatment control.
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assumptions yields testable implications, and these can be used to alert investigators to

possible violations of these assumptions. The testable implications take the form of

inequalities which restrict aspects of the observed conditional distribution Pðx; yjzÞ from

exceeding certain bounds (Pearl, 1995b).

One specially convenient form that these restrictions assume is given by the inequality

max
z

X
y

max
z

Pðx; yjzÞ
h i

� 1 ð25Þ

Pearl (1995b) called this restriction an instrumental inequality, because it constitutes a

necessary condition for any variable Z to qualify as an instrument relative to the pair (X, Y).

This inequality is sharp for binary valued X, but becomes loose when the cardinality of X

increases.21

If all observed variables are binary, Eq. (25) reduces to the four inequalities

PðY ¼ 0;X ¼ 0jZ ¼ 0Þ þ PðY ¼ 1;X ¼ 0jZ ¼ 1Þ � 1

PðY ¼ 0;X ¼ 1jZ ¼ 0Þ þ PðY ¼ 1;X ¼ 1jZ ¼ 1Þ � 1

PðY ¼ 1;X ¼ 0jZ ¼ 0Þ þ PðY ¼ 0;X ¼ 0jZ ¼ 1Þ � 1

PðY ¼ 1;X ¼ 1jZ ¼ 0Þ þ PðY ¼ 0;X ¼ 1jZ ¼ 1Þ � 1

ð26Þ

We see that the instrumental inequality is violated when the controlling instrument Z

manages to produce significant changes in the response variable Y while the direct cause,

X, remains constant.

The instrumental inequality can be used in the detection of undesirable side-effects.

Violations of this inequality can be attributed to one of two possibilities: either there is a

direct causal effect of the assignment (Z) on the response (Y), unmediated by the treatment

(X), or there is a common causal factor influencing both variables. If the assignment is

carefully randomized, then the latter possibility is ruled out and any violation of the

instrumental inequality (even under conditions of imperfect compliance) can safely be

attributed to some direct influence of the assignment process on subjects’ response (e.g.,

psychological aversion to being treated). Alternatively, if one can rule out any direct effects

of Z on Y, say through effective use of a placebo, then any observed violation of the

instrumental inequality can safely be attributed to spurious dependence between Z and V,

namely, to selection bias.

The instrumental inequality (25) can be tightened appreciably if we are willing to make

additional assumptions about subjects’ behavior—for example, that increasing recom-

mended dosage Z would induce no individual to decrease the actual dosage X or,

mathematically, that for all v we have

fX ðz1; vÞ � fX ðz2; vÞ

whenever z1 � z2: In the binary case, such an assumption amounts to having no contra-

rians in the population, namely, no individual who would consistently act contrary to his or
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her assignment. Under this assumption, which Imbens and Angrist (1994) call mono-

tonicity, the inequalities in Eq. (26) can be tightened (Balke and Pearl, 1997) to give

Pðy;X ¼ 1jZ ¼ 1Þ � Pðy;X ¼ 1jZ ¼ 0Þ

Pðy;X ¼ 0jZ ¼ 0Þ � Pðy;X ¼ 0jZ ¼ 1Þ
ð27Þ

for all y 2 f0; 1g: Violation of these inequalities now means either selection bias or a direct

effect of Z on Y or the presence of contrarian subjects.

It is also interesting to note that the analysis of noncompliance presented in this section

is valid under more general conditions than those shown in the graph of Figure 5(a). If an

arrow from Y to X is added to the graph, a cyclic graph containing the feedback loop

X ! Y ! X is obtained. Such a loop may represent, for example, patients deciding on

dosage X by continuously monitoring their response Y. Nonetheless, the structural equation

model will not change, because, under the assumption that the process is at equilibrium, y

is a unique function of x and u, and an equation of the form

x ¼ gðz; y; vÞ ð28Þ

can be replaced with

x ¼ g0ðz; v0Þ ð29Þ

such that v0 is still independent of z. The nonparametric nature of the structural equations

in Eq. (5) permits us to make such transformations without affecting the results of the

analysis. Consequently, testable implications and nonparametric bounds obtained from

the analysis of the acyclic model are still valid for the cyclic case.

4. The Language of Potential Outcomes

The primitive object of analysis in the potential-outcome framework is the unit-based

response variable, denoted YxðuÞ; read: ‘‘the value that Y would obtain in unit u, had X been

x’’ (Neyman, 1923; Rubin, 1974). In Section 3.3, we saw that this counterfactual entity has

the natural interpretation as representing the solution for Y in a modified system of

equation, where unit is interpreted a vector u of background factors that characterize an

experimental unit. Each structural equation model thus provides a compact representation

for a huge number of counterfactual claims. The potential outcome framework lacks such

compact representation. In the potential outcome framework, YxðuÞ is taken as primitive,

that is, an undefined quantity in terms of which other quantities are defined. Thus, the

structural interpretation of YxðuÞ can be regarded as the formal basis for the potential

outcome approach. In particular, this interpretation forms a connection between the opaque

English phrase ‘‘the value that Y would obtain in unit u, had X been x’’ and a mathematical

model that simulates hypothetical changes in X. The formation of the submodel Mx

explicates mathematically how the hypothetical condition ‘‘had X been x’’ could be

realized, by pointing to and replacing the equation that is violated in making X ¼ x a
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reality. The logical consequence of such hypothetical conditions can then be derived

mathematically.

4.1. Formulating Assumptions

The distinct characteristic of the potential outcome approach is that, although investigators

must think and communicate in terms of undefined, hypothetical quantities such as YxðuÞ;
the analysis itself is conducted almost entirely within the axiomatic framework of

probability theory. This is accomplished, by postulating a ‘‘super’’ probability function

on both hypothetical and real events. If U is treated as a random variable then the value of

the counterfactual YxðuÞ becomes a random variable as well, denoted as Yx: The potential-

outcome analysis proceeds by treating the observed distribution Pðx1; . . . ; xnÞ as the

marginal distribution of an augmented probability function P* defined over both observed

and counterfactual variables. Queries about causal effects (written PðyjdoðxÞÞ in the

structural analysis) are phrased as queries about the marginal distribution of the counter-

factual variable of interest, written P�ðYx ¼ yÞ: The new hypothetical entities Yx are treated

as ordinary random variables; for example, they are assumed to obey the axioms of

probability calculus, the laws of conditioning, and the axioms of conditional independence.

Moreover, these hypothetical entities are not entirely whimsy, but are assumed to be con-

nected to observed variables via consistency constraints (Robins, 1986) such as

X ¼ x) Yx ¼ Y ; ð30Þ

which states that, for every u, if the actual value of X turns out to be x, then the value that Y

would take on if X were x is equal to the actual value of Y. For example, a person who

chose treatment x and recovered, would also have recovered if given treatment x by design.

The main conceptual difference between the two approaches is that, whereas the

structural approach views the intervention do(x) as an operation that changes the distrib-

ution but keeps the variables the same, the potential-outcome approach views the variable

Y under do(x) to be a different variable, Yx; loosely connected to Y through relations

such as (30).

Pearl (2000, Chapter 7) shows, using the structural interpretation of YxðuÞ; that it is

indeed legitimate to treat counterfactuals as jointly distributed random variables in all

respects, that consistency constraints like (30) are automatically satisfied in the structural

interpretation and, moreover, that investigators need not be concerned about any additional

constraints except the following two:

Yyz ¼ y for all y and z ð31Þ

Xz ¼ x) Yxz ¼ Yz for all x and z ð32Þ

Eq. (31) ensures that the interventions doðY ¼ yÞ results in the condition Y ¼ y; regardless

of concurrent interventions, say doðZ ¼ zÞ; that are applied to variables other than Y.

Equation (32) generalizes (30) to cases where Z is held fixed, at z.
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To communicate substantive causal knowledge, the potential-outcome analyst must

express causal assumptions as constraints on P*, usually in the form of conditional

independence assertions involving counterfactual variables. For instance, in our example

of a randomized clinical trial with imperfect compliance (Fig. 5(a)), to communicate the

understanding that the treatment assignment (Z) is randomized (hence independent of both

the way subjects react to treatments and how subjects comply with the assignment), the

potential-outcome analyst would use the independence constraint Z??fXz; Yxg:
22 To

further formulate the understanding that Z does not affect Y directly, except through X,

the analyst would write a, so called, ‘‘exclusion restriction’’: Yxz ¼ Yx:

4.2. Performing Inferences

A collection of constraints of this type might sometimes be sufficient to permit a unique

solution to the query of interest; in other cases, only bounds on the solution can be

obtained. For example, if one can plausibly assume that a set Z of covariates satisfies the

conditional independence

Yx??X jZ ð33Þ

(an assumption that was termed ‘‘conditional ignorability’’ by [Rosenbaum and Rubin,

1983] then the causal effect P*ðYx ¼ yÞ can readily be evaluated to yield

P�ðYx ¼ yÞ ¼
X

z

P�ðYx ¼ yjzÞPðzÞ

¼
X

z

P�ðYx ¼ yjx; zÞPðzÞ ðusing ð33ÞÞ

¼
X

z

P�ðY ¼ yjx; zÞPðzÞ ðusing ð30ÞÞ

¼
X

z

Pðyjx; zÞPðzÞ:

ð34Þ

The last expression contains no counterfactual quantities (thus permitting us to drop the

asterisk from P*) and coincides precisely with the standard covariate-adjustment formula

Eq. (18).

We see that the assumption of conditional ignorability (33) qualifies Z as a sufficient

covariate for adjustment, and is equivalent therefore to the graphical criterion (called

‘‘back door’’ in Section 3.2) that qualifies such covariates by tracing paths in the causal

diagram.

The derivation above may explain why the potential outcome approach appeals to

mathematical statisticians; instead of constructing new vocabulary (e.g., arrows), new

operators (do(x)) and new logic for causal analysis, almost all mathematical operations in

this framework are conducted within the safe confines of probability calculus. Save for an

occasional application of rule (32) or (30), the analyst may forget that Yx stands for a
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counterfactual quantity—it is treated as any other random variable, and the entire

derivation follows the course of routine probability exercises.

However, this mathematical convenience often comes at the expense of conceptual

clarity, especially at a stage where causal assumptions need be formulated. The reader

may appreciate this aspect by attempting to judge whether the assumption of

conditional ignorability Eq. (33), the key to the derivation of Eq. (34), holds in any

familiar situation, say in the experimental setup of Figure 5(a). This assumption reads:

‘‘the value that Y would obtain had X been x, is independent of X, given Z.’’

Paraphrased in experimental metaphors, and applied to variable V, this assumption

reads: The way an individual with attributes V would react to treatment X ¼ x is

independent of the treatment actually received by that individual. Such assumptions of

conditional independence among counterfactual variables are not straightforward to

comprehend or ascertain, for they are cast in a language far removed from ordinary

understanding of cause and effect. When counterfactual variables are not viewed as

byproducts of a deeper, process-based model, it is also hard to ascertain whether all

relevant counterfactual independence judgments have been articulated, whether the

judgments articulated are redundant, or whether those judgments are self-consistent.

The need to express, defend, and manage formidable counterfactual relationships of

this type explain the slow acceptance of causal analysis among epidemiologists and

statisticians, and why economists and social scientists continue to use structural

equation models instead of the potential-outcome alternatives advocated in Holland

(1988), Angrist et al. (1996), and Sobel (1998).

On the other hand, the algebraic machinery offered by the potential-outcome

notation, once a problem is properly formalized, can be extremely powerful in refining

assumptions (Angrist et al., 1996), deriving consistent estimands (Robins, 1986),

bounding probabilities of necessary and sufficient causation (Tian and Pearl, 2000),

and combining data from experimental and nonexperimental studies (Pearl, 2000). The

next section presents a way of combining the best features of the two approaches. It is

based on encoding causal assumptions in the language of diagrams, translating these

assumptions into potential outcome notation, performing the mathematics in the

algebraic language of counterfactuals and, finally, interpreting the result in plain

causal language.

4.3. Combining Graphs and Algebra

The formulation of causal assumptions using graphs was discussed in Section 3. In this

subsection we will systematize the translation of these assumptions from graphs to

counterfactual notation.

Structural equation models embody causal information in both the equations and the

probability function P(u) assigned to the error variables; the former is encoded as missing

arrows in the diagrams the latter as missing (double arrows) dashed arcs. Each parent-child

family ðPAi;XiÞ in a causal diagram G corresponds to an equation in the model M. Hence,

missing arrows encode exclusion assumptions, that is, claims that adding excluded

variables to an equation will not change the outcome of the hypothetical experiment
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described by that equation. Missing dashed arcs encode independencies among error terms

in two or more equations. For example, the absence of dashed arcs between a node Y and a

set of nodes fZ1; . . . ; Zkg implies that the corresponding background variables, Uy and

fUZ1
; . . . ;UZk

g; are independent in P(u).

These assumptions can be translated into the potential-outcome notation using two

simple rules (Pearl 1995a, p. 704); the first interprets the missing arrows in the graph, the

second, the missing dashed arcs.

1. Exclusion restrictions: For every variable Y having parents PAY and for every set of

endogenous variables S disjoint of PAY ; we have

YpaY
¼ YpaY ;s

: ð35Þ

2. Independence restrictions: If Z1; . . . ; Zk is any set of nodes not connected to Y via

dashed arcs, and let PA1; . . . ;PAk be their respective sets of parents. We have

YpaY
??fZ1 pa1

; . . . ; Zk pak
g: ð36Þ

The exclusion restrictions expresses the fact that each parent states include all direct

causes of the child variable, hence, fixing the parents of Y, determines the value of Y

uniquely, and intervention on any other set S of (endogenous) variables can no longer

affect Y. The independence restriction translates the independence between UY and

fUZ1
; . . . ;UZk

g into independence between the corresponding potential-outcome variables.

This follows from the observation that, once we set their parents, the variables in

fY ; Z1; . . . ; Zkg stand in functional relationships to the U terms in their corresponding

equations.

As an example, the model shown in Figure 5(a) displays the following parent sets:

PAz ¼ f;g;PAX ¼ fZg;PAY ¼ fX g: ð37Þ

Consequently, the exclusion restrictions translate into:

Xz ¼ Xyz

Zy ¼ Zxy ¼ Zx ¼ Z

Yx ¼ Yxz

ð38Þ

the absence of any dashed arc between Z and {Y, X} translates into the independence

restriction

Z??fYx;Xzg: ð39Þ

This is precisely the condition of randomization; Z is independent of all its non-

descendants, namely independent of U and V which are the exogenous parents of Y and

X, respectively. (Recall that the exogenous parents of any variable, say Y, may be replaced
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by the counterfactual variable YpaY
; because holding PAY constant renders Ya deterministic

function of its exogenous parent UY :)
The role of graphs is not ended with the formulation of causal assumptions. Throughout

an algebraic derivation, like the one shown in Eq. (34), the analyst may need to employ

additional assumptions that are entailed by the original exclusion and independence

assumptions, yet are not shown explicitly in their respective algebraic expressions. For

example, it is hardly straightforward to show that the assumptions of Eqs. (38)–(39) imply

the conditional independence ðYx??ZjfXz;X gÞ but do not imply the conditional indepen-

dence ðYx??ZjX Þ: These are not easily derived by algebraic means alone. Such implica-

tions can, however, easily be tested in the graph of Figure 5(a) using the graphical criterion

for conditional independence, called d-separation (See [Greenland et al., 1999a; Pearl,

2000, pp. 16–17, 213–215]). Thus, when the need arises to employ independencies in the

course of a derivation, the graph may assist the procedure by vividly displaying the

independencies that logically follow our assumptions.

5. Conclusions

Statistics is strong in devising ways of describing data and inferring distributional

parameters from sample. Causal inference require two addition ingredients: a science-

friendly language for articulating causal knowledge and a mathematical machinery for

processing that knowledge, combining it with data and drawing new causal conclusions

about a phenomena. This paper introduces nonparametric structural equations models as a

formal and meaningful language for formulating causal assumptions, and for explicating

many concepts used in scientific discourse. These include: randomization, intervention,

direct and indirect effects, confounding, counterfactuals, and attribution. The algebraic

component of the structural language coincides with the potential-outcome framework,

and its graphical component embraces Wright’s method of path diagrams. When unified

and synthesized, the two components offer health scientists a powerful methodology for

empirical research.
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Notes

1. Excellent introductory expositions can also be found in (Kaufman and Kaufman, 2001) and (Robins, 2001).

2. Even the theory of stochastic processes, which provides probabilistic characterization of certain dynamic

phenomena, assumes a fixed density function over time-indexed variables. There is nothing in such a function
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to tell us how it would be altered if external conditions were to change; for example, restricting a variable to a

certain value, or forcing one variable to track another.

3. The term ‘risk ratio’ and ‘risk factors’ have been used ambivalently in the literature; some authors insist on a

risk factor having causal influence on the outcome, and some embrace factors that are merely associated with

the outcome.

4. Pearl (2000) termed this distinction ‘‘causal vs. statistical,’’ to reflect the overwhelming emphasis on

associational concepts in the statistical literature. The term ‘‘causal vs. associational’’ is used here as an

invitation for statisticians to correct past neglects.

5. Similar arguments apply to the concepts of ‘‘randomization’’ and ‘‘instrumental variables’’ which are

commonly thought to have associational definitions. Our demarcation line implies that they don’t, and this

implication guides us toward explicating the causal assumptions upon which these concepts are founded (see

Section 3.4). Randomization, for example, is based on the assumption that the outcome of a fair coin is not

‘‘causally influenced’’ by any variable that can be measured on a macroscopic level.

6. Notable exception is the analysis of Greenland and Robins (1986).

7. Although the confounding literature has permitted one causal assumption to contaminate its vocabulary —

that the adjusted confounder must not be ‘‘affected by the treatment’’ (Cox, 1958)—this condition alone is

insufficient for determining which variables need be adjusted for (Pearl, 2000, pp. 182–189).

8. Attempts to define causal dependence by adding temporal information and conditioning on the entire past

(e.g., [Suppes, 1970]) violate the statistical requirement of limiting the analysis to ‘‘observed variables,’’ and

encounter other insurmountable difficulties (see Eells [1991], Pearl [2000], pp. 249–257).

9. By ‘‘untested’’ I mean untested using frequency data in nonexperimental studies.

10. Clearly, PðY ¼ yjdoðX ¼ xÞÞ is equivalent to PðYx ¼ yÞ; which is what we normally assess in a controlled

experiment, with X randomized, in which the distribution of Y is estimated for each level x of X.

11. These notational clues should be useful for detecting inadequate definitions of causal concepts; any definition

of confounding, randomization or instrumental variables that is cast in standard probability expressions, void

of graphs, counterfactual subscripts, or do(*) operators, can safely be discarded as inadequate.

12. Linear relations are used for illustration purposes only; they do not represent typical disease-symptom

relations but illustrate the historical development of path analysis. Additionally, we will use standardized

variables, that is, zero mean and unit variance.

13. A simple proof of the Causal Markov Theorem is given Pearl (2000, p. 30). This theorem was first stated in

Verma and Pearl (1991), but it is implicit in the works of Kiiveri et al. (1984) and others. Corollary 1 was

named ‘‘Manipulation Theorem’’ in Spirtes et al. (1993), and is also implicit in Robins’ (1987) G-

computation formula. See Lauritzen (1999).

14. For clarity, we drop the (superfluous) subscript 0 from x0 and z20
:

15. The terms ‘‘arrow-emitting node’’ and ‘‘collision node’’ are to be interpreted literally as illustrated by the

examples given.

16. Before applying this criterion, one may delete from the causal graph all nodes that are not ancestors of Y.

17. The reason for this fundamental limitation is that no death case can be tested twice, with and without

treatment. For example, if we measure equal proportions of deaths in the treatment and control groups, we

cannot tell how many death cases are actually attributable to the treatment itself; it quite possible that many of

those who died under treatment would be alive if untreated and, simultaneously, many of those who survived

with treatment would have died if not treated.

18. Connections between structural equations and a restricted class of counterfactuals were first recognized by

Simon and Rescher (1966). These were later generalized by Balke and Pearl (1995) to permit counterfactual

conditioning on dependent variables.

19. Note the b represents the incremental causal effect of X on Y, defined by

b ¼D EðY jdoðx0 þ 1ÞÞ � EðY jdoðx0ÞÞ:

Naturally, all attempts to give b statistical interpretation have ended in frustration (Whittaker, 1990; Wermuth,

1992; Wermuth and Cox, 1993).
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20. Looser bounds were derived earlier by Robins (1989) and Manski (1990).

21. The inequality is sharp in the sense that every distribution Pðx; y; zÞ satisfying Eq. (25) can be generated by

the model defined in Figure 5(a).

22. The notation Y??X jZ stands for the conditional independence relationship PðY ¼ y;X ¼ xjZ ¼ zÞ ¼

PðY ¼ yjZ ¼ zÞPðX ¼ xjZ ¼ zÞ (Dawid, 1979).
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