
Direct and Indirect E�ects

Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024
judea@cs.ucla.edu

In Proceedings of the Seventeenth Conference on Uncer-

tainy in Arti�cial Intelligence, San Francisco, CA: Morgan

Kaufmann, 411{20, 2001.

Abstract

The direct e�ect of one event on another can
be de�ned and measured by holding constant
all intermediate variables between the two.
Indirect e�ects present conceptual and prac-
tical di�culties (in nonlinear models), be-
cause they cannot be isolated by holding cer-
tain variables constant. This paper presents
a new way of de�ning the e�ect transmit-
ted through a restricted set of paths, without
controlling variables on the remaining paths.
This permits the assessment of a more nat-
ural type of direct and indirect e�ects, one
that is applicable in both linear and nonlinear
models and that has broader policy-related
interpretations. The paper establishes con-
ditions under which such assessments can
be estimated consistently from experimen-
tal and nonexperimental data, and thus ex-
tends path-analytic techniques to nonlinear
and nonparametric models.

1 INTRODUCTION

The distinction between total, direct, and indirect ef-
fects is deeply entrenched in causal conversations, and
attains practical importance in many applications, in-
cluding policy decisions, legal de�nitions and health
care analysis. Structural equation modeling (SEM)
(Goldberger 1972), which provides a methodology of
de�ning and estimating such e�ects, has been re-
stricted to linear analysis, and no comparable method-
ology has been devised to extend these capabilities
to models involving nonlinear dependencies,1 as those
commonly used in AI applications (Hagenaars 1993, p.
17).

1A notable exception is the counterfactual analysis of
Robins and Greenland (1992) which is applicable to non-
linear models, but does not incorporate path-analytic tech-
niques.
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The causal relationship that is easiest to interpret,
de�ne and estimate is the total e�ect. Written as
P (Yx = y), the total e�ect measures the probability
that response variable Y would take on the value y
when X is set to x by external intervention.2 This
probability function is what we normally assess in a
controlled experiment in which X is randomized and
in which the distribution of Y is estimated for each
level x of X .

In many cases, however, this quantity does not ade-
quately represent the target of investigation and at-
tention is focused instead on the direct e�ect of X on
Y . The term \direct e�ect" is meant to quantify an
inuence that is not mediated by other variables in
the model or, more accurately, the sensitivity of Y to
changes in X while all other factors in the analysis are
held �xed. Naturally, holding those factors �xed would
sever all causal paths from X to Y with the exception
of the direct link X ! Y , which is not intercepted by
any intermediaries.

Indirect e�ects cannot be de�ned in this manner, be-
cause it is impossible to hold a set of variables constant
in such a way that the e�ect ofX on Y measured under
those conditions would circumvent the direct pathway,
if such exists. Thus, the de�nition of indirect e�ects
has remained incomplete, and, save for asserting in-
equality between direct and total e�ects, the very con-
cept of \indirect e�ect" was deemed void of operational
meaning (Pearl 2000, p. 165).

This paper shows that it is possible to give an op-
erational meaning to both direct and indirect e�ects
without �xing variables in the model, thus extending
the applicability of these concepts to nonlinear and
nonparametric models. The proposed generalization
is based on a more subtle interpretation of \e�ects",

2The substripted notation Yx is borrowed from the
potential-outcome framework of Rubin (1974). Pearl
(2000) used, interchangeably, Px(y); P (yjdo(x)); P (yjx̂),
and P (yx), and showed their equivalence to probabilities of
subjunctive conditionals: P ((X = x) 2! (Y = y)) (Lewis
1973).



here called \descriptive" (see Section 2.2), which con-
cerns the action of causal forces under natural, rather
than experimental conditions, and provides answers to
a broader class of policy-related questions. This inter-
pretation yields the standard path-coe�cients in linear
models, but leads to di�erent formal de�nitions and
di�erent estimation procedures of direct and indirect
e�ects in nonlinear models.

Following a conceptual discussion of the descriptive
and prescriptive interpretations (Section 2.2), Section
2.3 illustrates their distinct roles in decision-making
contexts, while Section 2.4 discusses the descriptive
basis and policy implications of indirect e�ects. Sec-
tions 3.2 and 3.3 provide, respectively, mathematical
formulation of the prescriptive and descriptive inter-
pretations of direct e�ects, while Section 3.4 estab-
lishes conditions under which the descriptive (or \nat-
ural") interpretation can be estimated consistently
from either experimental or nonexperimental data.
Sections 3.5 and 3.6 extend the formulation and iden-
ti�cation analysis to indirect e�ects. In Section 3.7, we
generalize the notion of indirect e�ect to path-speci�c
e�ects, that is, e�ects transmitted through any speci-
�ed set of paths in the model.

2 CONCEPTUAL ANALYSIS

2.1 Direct versus Total E�ects

A classical example of the ubiquity of direct e�ects
(Hesslow 1976) tells the story of a birth-control pill
that is suspect of producing thrombosis in women and,
at the same time, has a negative indirect e�ect on
thrombosis by reducing the rate of pregnancies (preg-
nancy is known to encourage thrombosis). In this ex-
ample, interest is focused on the direct e�ect of the
pill because it represents a stable biological relation-
ship that, unlike the total e�ect, is invariant to mar-
ital status and other factors that may a�ect women's
chances of getting pregnant or of sustaining pregnancy.
This invariance makes the direct e�ect transportable
across cultural and sociological boundaries and, hence,
a more useful quantity in scienti�c explanation and
policy analysis.

Another class of examples involves legal disputes over
race or sex discrimination in hiring. Here, neither the
e�ect of sex or race on applicants' quali�cation nor
the e�ect of quali�cation on hiring are targets of lit-
igation. Rather, defendants must prove that sex and
race do not directly inuence hiring decisions, what-
ever indirect e�ects they might have on hiring by way
of applicant quali�cation. This is made quite explicit
in the following court ruling:

\The central question in any employment-
discrimination case is whether the employer
would have taken the same action had the
employee been of a di�erent race (age, sex,
religion, national origin etc.) and everything
else had been the same." (Carson versus
Bethlehem Steel Corp., 70 FEP Cases 921,
7th Cir. (1996), Quoted in Gastwirth 1997.)

Taking this criterion as a guideline, the direct e�ect
of X on Y (in our case X=gender Y=hiring) can
roughly be de�ned as the response of Y to change in
X (say from X = x� to X = x) while keeping all
other accessible variables at their initial value, namely,
the value they would have attained under X = x�.3

This doubly-hypothetical criterion will be given pre-
cise mathematical formulation in Section 3, using the
language and semantics of structural counterfactuals
(Pearl 2000; chapter 7).

As a third example, one that illustrates the policy-
making rami�cations of direct and total e�ects, con-
sider a drug treatment that has a side e�ect {
headache. Patients who su�er from headache tend to
take aspirin which, in turn may have its own e�ect on
the disease or, may strengthen (or weaken) the impact
of the drug on the disease. To determine how bene-
�cial the drug is to the population as a whole, under
existing patterns of aspirin usage, the total e�ect of
the drug is the target of analysis, and the di�erence
P (Yx = y) � P (Yx� = y) may serve to assist the de-
cision, with x and x� being any two treatment levels.
However, to decide whether aspirin should be encour-
aged or discouraged during the treatment, the direct
e�ect of the drug on the disease, both with aspirin and
without aspirin, should be the target of investigation.
The appropriate expression for analysis would then be
the di�erence P (Yxz = y) � P (Yx�z = y), where z
stands for any speci�ed level of aspirin intake.

In linear systems, direct e�ects are fully speci�ed by
the corresponding path coe�cients, and are indepen-
dent of the values at which we hold the the interme-
diate variables (Z in our examples). In nonlinear sys-
tems, those values would, in general, modify the e�ect
of X on Y and thus should be chosen carefully to rep-
resent the target policy under analysis. This lead to a
basic distinction between two types of conceptualiza-
tions: prescriptive and descriptive.

3Robins and Greenland (1992) have adapted essentially
the same criterion (phrased di�erently) for their interpre-
tation of \direct e�ect" in epidemiology.



2.2 Descriptive versus prescriptive
interpretation

We will illustrate this distinction using the treatment-
aspirin example described in the last section. In the
prescriptive conceptualization, we ask whether a spe-
ci�c untreated patient would improve if treated, while
holding the aspirin intake �xed at some predetermined
level, say Z = z. In the descriptive conceptualization,
we ask again whether the untreated patient would im-
prove if treated, but now we hold the aspirin intake
�xed at whatever level the patient currently consumes
under no-treatment condition. The di�erence between
these two conceptualizations lies in whether we wish to
account for the natural relationship between the direct
and the mediating cause (that is, between treatment
and aspirin) or to modify that relationship to match
policy objectives. We call the e�ect computed from
the descriptive perspective the natural e�ect, and the
one computed from the prescriptive perspective the
controlled e�ect.

Consider a patient who takes aspirin if and only if
treated, and for whom the treatment is e�ective only
when aspirin is present. For such a person, the treat-
ment is deemed to have no natural direct e�ect (on
recovery), because, by keeping the aspirin at the cur-
rent, pre-treatment level of zero, we ensure that the
treatment e�ect would be nulli�ed. The controlled di-
rect e�ect, however, is nonzero for this person, because
the e�cacy of the treatment would surface when we
�x the aspirin intake at non-zero level. Note that the
descriptive formulation requires knowledge of the in-
dividual natural behavior|in our example, whether
the untreated patient actually uses aspirin|while the
prescriptive formulation requires no such knowledge.

This di�erence becomes a major stumbling block when
it comes to estimating average direct e�ects in a pop-
ulation of individuals. At the population level, the
prescriptive formulation is pragmatic; we wish to pre-
dict the di�erence in recovery rates between treated
and untreated patients when a prescribed dose of as-
pirin is administered to all patients in the population|
the actual consumption of aspirin under uncontrolled
conditions need not concern us. In contrast, the de-
scriptive formulation is attributional; we ask whether
an observed improvement in recovery rates (again, be-
tween treated and untreated patients) is attributable
to the treatment itself, as opposed to preferential use
of aspirin among treated patients. To properly distin-
guish between these two contributions, we therefore
need to measure the improvement in recovery rates
while making each patient take the same level of as-
pirin that he/she took before treatment. However, as
Robins and Greenland (1992) pointed out, such con-
trol over individual behavior would require testing the

same group of patients twice (i.e., under treatment and
no treatment conditions), and cannot be administered
in experiments with two di�erent groups, however ran-
domized. (There is no way to determine what level
of aspirin an untreated patient would take if treated,
unless we actually treat that patient and, then, this
patient could no longer be eligible for the untreated
group.) Since repeatable tests on the same individu-
als are rarely feasible, the descriptive measure of the
direct e�ect is not generally estimable from standard
experimental studies. In Section 3.4 we will analyze
what additional assumptions are required for consis-
tently estimating this measure, the average natural di-
rect e�ect, from either experimental or observational
studies.

2.3 Policy implications of the Descriptive
interpretation

Why would anyone be interested in assessing the aver-
age natural direct e�ect? Assume that the drug manu-
facturer is considering ways of eliminating the adverse
side-e�ect of the drug, in our case, the headache. A
natural question to ask is whether the drug would still
retain its e�ectiveness in the population of interest.
The controlled direct e�ect would not give us the an-
swer to this question, because it refers to a speci�c
aspirin level, taken uniformly by all individuals. Our
target population is one where aspirin intake varies
from individual to individual, depending on other fac-
tors beside drug-induced headache, factors which may
also cause the e�ectiveness of the drug to vary from
individual to individual. Therefore, the parameter we
need to assess is the average natural direct e�ect, as
described in the Subsection 2.2.

This example demonstrates that the descriptive inter-
pretation of direct e�ects is not purely \descriptive";
it carries a de�nite operational implications, and an-
swers policy-related questions of practical signi�cance.
Moreover, note that the policy question considered in
this example cannot be represented in the standard
syntax of do(x) operators|it does not involve �xing
any of the variables in the model but, rather, modify-
ing the causal paths in the model. Even if \headache"
were a genuine variable in our model, the elimination
of drug-induced headache is not equivalent to setting
\headache" to zero, since a person might get headache
for reason other than the drug. Instead, the policy op-
tion involves the de-activation of the causal path from
\drug" to \headache".

In general, the average natural direct e�ect would be
of interest in evaluating policy options of a more re-
�ned variety, ones that involve, not merely �xing the
levels of the variables in the model, but also deter-
mining how these levels would inuence one another.



Typical examples of such options involve choosing the
manner (e.g., instrument, or timing) in which a given
decision is implemented, or choosing the agents that
should be informed about the decision. A �rm of-
ten needs to assess, for example, whether it would
be worthwhile to conceal a certain decision from a
competitor. This amounts, again, to evaluating the
natural direct e�ect of the decision in question, un-
mediated by the competitor's reaction. Theoretically,
such policy options could conceivably be represented
as (values of) variables in a more re�ned model, for
example one where the concept \the e�ect of treat-
ment on headache" would be given a variable name,
and where the manufacturer decision to eliminate side-
e�ects would be represented by �xing this hypothetical
variable to zero. The analysis of this paper shows that
such unnatural modeling techniques can be avoided,
and that important nonstandard policy questions can
be handled by standard models, where variables stands
for directly measurable quantities.

2.4 Descriptive interpretation of indirect
e�ects

The descriptive conception of direct e�ects can eas-
ily be transported to the formulation of indirect ef-
fects; oddly, the prescriptive formulation is not trans-
portable. Returning to our treatment-aspirin exam-
ple, if we wish to assess the natural indirect e�ect of
treatment on recovery for a speci�c patient, we with-
hold treatment and ask, instead, whether that patient
would recover if given as much aspirin as he/she would
have taken if he/she had been under treatment. In this
way, we insure that whatever changes occur in the pa-
tient's condition are due to treatment-induced aspirin
consumption and not to the treatment itself. Similarly,
at the population level, the natural indirect e�ect of
the treatment is interpreted as the improvement in re-
covery rates if we were to withhold treatment from all
patients but, instead, let each patient take the same
level of aspirin that he/she would have taken under
treatment. As in the descriptive formulation of di-
rect e�ects, this hypothetical quantity involves nested
counterfactuals and will be identi�able only under spe-
cial circumstances.

The prescriptive formulation has no parallel in indi-
rect e�ects, for reasons discussed in the introduction
section; there is no way of preventing the direct e�ect
from operating by holding certain variables constant.
We will see that, in linear systems, the descriptive and
prescriptive formulations of direct e�ects lead, indeed,
to the same expression in terms of path coe�cients.
The corresponding linear expression for indirect ef-
fects, computed as the di�erence between the total
and direct e�ects, coincides with the descriptive for-

mulation but �nds no prescriptive interpretation.

The operational implications of indirect e�ects, like
those of natural direct e�ect, concern nonstandard pol-
icy options. Although it is impossible, by controlling
variables, to block a direct path (i.e., a single edge),
if such exists, it is nevertheless possible to block such
a path by more re�ned policy options, ones that de-
activate the direct path through the manner in which
an action is taken or through the mode by which a
variable level is achieved. In the hiring discrimination
example, if we make it illegal to question applicants
about their gender, (and if no other indication of gen-
der are available to the hiring agent), then any residual
sex preferences (in hiring) would be attributable to the
indirect e�ect of sex on hiring. A policy maker might
well be interested in predicting the magnitude of such
preferences from data obtained prior to implementing
the no-questioning policy, and the average indirect ef-
fect would then provide the sought for prediction. A
similar re�nement applies in the �rm-competitor ex-
ample of the preceding subsection. A �rm might wish
to assess, for example, the economical impact of blu�-
ing a competitor into believing that a certain deci-
sion has been taken by the �rm, and this could be
implemented by (secretly) instructing certain agents
to ignore the decision. In both cases, our model may
not be su�ciently detailed to represents such policy
options in the form of variable �xing (e.g., the agents
may not be represented as intermediate nodes between
the decision and its e�ect) and the task amounts then
to evaluating the average natural indirect e�ects in a
coarse-grain model, where a direct link exists between
the decision and its outcome.

3 FORMAL ANALYSIS

3.1 Notation

Throughout our analysis we will let X be the control
variable (whose e�ect we seek to assess), and let Y be
the response variable. We will let Z stand for the set of
all intermediate variables between X and Y which, in
the simplest case considered, would be a single variable
as in Figure 1(a). Most of our results will still be
valid if we let Z stand for any set of such variables, in
particular, the set of Y 's parents excluding X .

We will use the counterfactual notation Yx(u) to de-
note the value that Y would attain in unit (or situa-
tion) U = u under the control regime do(X = x). See
Pearl (2000, Chapter 7) for formal semantics of these
counterfactual utterances. Many concepts associated
with direct and indirect e�ect require comparison to a
reference value of X , that is, a value relative to which
we measure changes. We will designate this reference



value by x�.

3.2 Controlled Direct E�ects (review)

De�nition 1 (Controlled unit-level direct-e�ect;
qualitative)

A variable X is said to have a controlled direct e�ect
on variable Y in model M and situation U = u if
there exists a setting Z = z of the other variables in
the model and two values of X; x� and x, such that

Yx�z(u) 6= Yxz(u) (1)

In words, the value of Y under X = x� di�ers from its
value under X = x when we keep all other variables Z
�xed at z. If condition (1) is satis�ed for some z, we
say that the transition event X = x has a controlled
direct-e�ect on Y , keeping the reference point X = x�

implicit.

Clearly, con�ning Z to the parents of Y (excluding X)
leaves the de�nition unaltered.

De�nition 2 (Controlled unit-level direct-e�ect;
quantitative)
Given a causal model M with causal graph G, the
controlled direct e�ect of X = x on Y in unit U = u
and setting Z = z is given by

CDEz(x; x
�;Y; u) = Yxz(u)� Yx�z(u) (2)

where Z stands for all parents of Y (in G) excluding
X.

Alternatively, the ratio Yxz(u)=Yx�z(u), the propor-
tional di�erence (Yxz(u) � Yx�z(u))=Yx�z(u), or some
other suitable relationship might be used to quantify
the magnitude of the direct e�ect; the di�erence is
by far the most common measure, and will be used
throughout this paper.

De�nition 3 (Average controlled direct e�ect)
Given a probabilistic causal model hM;P (u)i, the con-
trolled direct e�ect of event X = x on Y is de�ned
as:

CDEz(x; x
�;Y ) = E(Yxz � Yx�z) (3)

where the expectation is taken over u.

The distribution P (Yxz = y) can be estimated consis-
tently from experimental studies in which both X and
Z are randomized. In nonexperimental studies, the
identi�cation of this distribution requires that certain
\no-confounding" assumptions hold true in the pop-
ulation tested. Graphical criteria encapsulating these
assumptions are described in Pearl (2000, Sections 4.3
and 4.4).

3.3 Natural Direct E�ects: Formulation

De�nition 4 (Unit-level natural direct e�ect;
qualitative)
An event X = x is said to have a natural direct e�ect
on variable Y in situation U = u if the following
inequality holds

Yx�(u) 6= Yx;Zx�(u)(u) (4)

In words, the value of Y under X = x� di�ers from its
value under X = x even when we keep Z at the same
value (Zx�(u)) that Z attains under X = x�.

We can easily extend this de�nition from events to
variables by de�ningX as having a natural direct e�ect
on Y (in model M and situation U = u) if there exist
two values, x� and x, that satisfy (4). Note that this
de�nition no longer requires that we specify a value z
for Z; that value is determined naturally by the model,
once we specify x; x�, and u. Note also that condition
(4) is a direct literal translation of the court criterion of
sex discrimination in hiring (Section 2.1) with X = x�

being a male, X = x a female, Y = 1 a decision to
hire, and Z the set of all other attributes of individual
u.

If one is interested in the magnitude of the natural
direct e�ect, one can take the di�erence

Yx;Zx�(u)(u)� Yx�(u) (5)

and designate it by the symbol NDE(x; x�;Y; u)
(acronym for Natural Direct E�ect). If we are further
interested in assessing the average of this di�erence in
a population of units, we have:

De�nition 5 (Average natural direct e�ect)
The average natural direct e�ect of event X = x on
a response variable Y , denoted NDE(x; x�;Y ), is de-
�ned as

NDE(x; x�;Y ) = E(Yx;Zx� )�E(Yx�) (6)

Applied to the sex discrimination example of Section
2.1, (with x� = male; x = female; y = hiring; z =
quali�cations) Eq. (6) measures the expected change
in male hiring, E(Yx�), if employers were instructed to
treat males' applications as though they were females'.

3.4 Natural Direct E�ects: Identi�cation

As noted in Section 2, we cannot generally evaluate
the average natural direct-e�ect from empirical data.
Formally, this means that Eq. (6) is not reducible to
expressions of the form

P (Yx = y) or P (Yxz = y);



the former governs the causal e�ect of X on Y (ob-
tained by randomizing X) and the latter governs the
causal e�ect of X and Z on Y (obtained by random-
izing both X and Z).

We now present conditions under which such reduction
is nevertheless feasible.

Theorem 1 (Experimental identi�cation)
If there exists a set W of covariates, nondescendants
of X or Z, such that

Yxz??Zx� jW for all z and x (7)

(read: Yxz is conditionally independent of Zx� , given
W ), then the average natural direct-e�ect is experi-
mentally identi�able, and it is given by

NDE(x; x�;Y )

=
X

w;z

[E(Yxzjw) �E(Yx�zjw)]P (Zx� = zjw)P (w)

(8)

Proof
The �rst term in (6) can be written

E(Yx;Zx� )

=
X

w

X

z

E(YxzjZx� = z;W = w)

P (Zx� = zjW = w)P (W = w) (9)

Using (7), we obtain:

E(Yx;Zx� )

=
X

w

X

z

E(Yxz = yjW = w)

P (Zx� = zjW = w)P (W = w) (10)

Each factor in (10) is identi�able; E(Yxz = yjW = w),
by randomizing X and Z for each value of W , and
P (Zx� = zjW = w) by randomizing X for each value
of W . This proves the assertion in the theorem. Sub-
stituting (10) into (6) and using the law of composition
E(Yx�) = E(Yx�Zx� ) (Pearl 2000, p. 229) gives (8), and
completes the proof of Theorem 1. 2

The conditional independence relation in Eq. (7) can
easily be veri�ed from the causal graph associated with
the model. Using a graphical interpretation of coun-
terfactuals (Pearl 2000, p. 214-5), this relation reads:

(Y??ZjW )GXZ (11)

In words,W d-separates Y from Z in the graph formed
by deleting all (solid) arrows emanating from X and
Z.

Figure 1(a) illustrates a typical graph associated with
estimating the direct e�ect of X on Y . The identify-
ing subgraph is shown in Fig. 1(b), and illustrates how
W d-separates Y from Z. The separation condition in
(11) is somewhat stronger than (7), since the former
implies the latter for every pair of values, x and x�,
of X (see (Pearl 2000, p. 214)). Likewise, condition
(7) can be relaxed in several ways. However, since
assumptions of counterfactual independencies can be
meaningfully substantiated only when cast in struc-
tural form (Pearl 2000, p. 244{5), graphical conditions
will be the target of our analysis.

U3

U1
U2

U4

U3

U1
U2

U4

(b)

Y
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W

(a)

Y
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Figure 1: (a) A causal model with latent variables
(U 's) where the natural direct e�ect can be identi�ed
in experimental studies. (b) The subgraph GXZ il-
lustrating the criterion of experimental identi�ability
(Eq. 11): W d-separates Y from Z.

The identi�cation of the natural direct e�ect from non-
experimental data requires stronger conditions. From
Eq. (8) we see that it is su�cient to identify the con-
ditional probabilities of two counterfactuals: P (Yxz =
yjW = w) and P (Zx� = zjW = w), where W is any
set of covariates that satis�es Eq. (7) (or (11)). This
yields the following criterion for identi�cation:

Theorem 2 (Nonexperimental identi�cation)
The average natural direct-e�ect NDE(x; x�;Y ) is
identi�able in nonexperimental studies if there exists a
set W of covariates, nondescendants of X or Z, such
that, for all values z and x we have:

(i) Yxz??Zx� jW

(ii) P (Yxz = yjW = w) is identi�able

(iii) P (Zx� = zjW = w) is identi�able

Moreover, if conditions (i)-(iii) are satis�ed, the nat-
ural direct e�ect is given by (8).

Explicating these identi�cation conditions in graphical
terms (using Theorem 4.41 in (Pearl 2000)) yields the
following corollary:



Corollary 1 (Graphical identi�cation criterion)
The average natural direct-e�ect NDE(x; x�;Y ) is
identi�able in nonexperimental studies if there exist
four sets of covariates, W0;W1;W2; and W3, such that

(i) (Y??ZjW0)GXZ

(ii) (Y??X jW0;W1)G
XZ

(iii) (Y??ZjX;W0;W1;W2)GZ

(iv) (Z??X jW0;W3)GX

(v) W0;W1; and W3 contain no descendant of X and
W2 contains no descendant of Z.

(Remark: GXZ denotes the graph formed by deleting

(from G) all arrows emanating from X or entering Z.)

As an example for applying these criteria, consider Fig-
ure 1(a), and assume that all variables (including the
U 's) are observable. Conditions (i)-(iv) of Corollary 1
are satis�ed if we choose:

W0 = fWg; W1 = fU1; U2g; W2 = ; and W3 = fU4g

or, alternatively,

W0 = fU2g; W1 = fU1g; W2 = ; and W3 = fU3; U4g

It is instructive to examine the form that expression
(8) takes in Markovian models, (that is, acyclic models
with independent error terms) where condition (7) is
always satis�ed with W = ;, since Yxz is independent
of all variables in the model. In Markovian models, we
also have the following three relationships:

P (Yxz = y) = P (yjx; z) (12)

since X [ Z is the set of Y 's parents,

P (Zx� = z) =
X

s

P (zjx�; s)P (s); (13)

P (Yx;Zx� = y) =
X

s

X

z

P (yjx; z)P (zjx�; s)P (s)

(14)

where S stands for the parents of Z, excluding X , or
any other set satisfying the back-door criterion (Pearl
2000, p. 79). This yields the following corollary of
Theorem 1:

Corollary 2 The average natural direct e�ect in
Markovian models is identi�able from nonexperimental
data, and it is given by

NDE(x; x�;Y )

=
X

s

X

z

[E(Y jx; z)�E(Y jx�; z)]P (zjx�; s)P (s)

(15)

where S stands for any set satisfying the back-door cri-
terion between X and Z.

Eq. (15) follows by substituting (14) into (6) and using
the identity E(Yx�) = E(Yx�Zx� ).

Z

Y

X

(b)

S
Z

S

Y

T

(a)

X

Figure 2: Simple Markovian models for which the nat-
ural direct e�ect is given by Eq. (15) (for (a)) and Eq.
(17) (for (b)).

Further insight can be gained by examining simple
Markovian models in which the e�ect of X on Z is
not confounded, that is,

P (Zx� = z) = P (zjx�) (16)

In such models, a simple version of which is illustrated
in Fig. 2(b), Eq. (13) can be replace by (16) and (15)
simpli�es to

NDE(x; x�;Y ) =
X

z

[E(Y jx; z)�E(Y jx�; z)]P (zjx�)

(17)

This expression has a simple interpretation as a
weighted average of the controlled direct e�ect
E(Y jx; z) � E(Y jx�; z), where the intermediate value
z is chosen according to its distribution under x�.

3.5 Natural Indirect E�ects: Formulation

As we discussed in Section 2.4, the prescriptive for-
mulation of \controlled direct e�ect" has no parallel
in indirect e�ects; we therefore use the descriptive for-
mulation, and de�ne natural indirect e�ects at both
the unit and population levels. Lacking the controlled
alternative, we will drop the title \natural" from dis-
cussions of indirect e�ects, unless it serves to convey a
contrast.

De�nition 6 (Unit-level indirect e�ect; qualitative)
An event X = x is said to have an indirect e�ect on
variable Y in situation U = u if the following inequal-
ity holds

Yx�(u) 6= Yx�;Zx(u)(u) (18)



In words, the value of Y changes when we keep X �xed
at its reference level X = x� and change Z to a new
value, Zx(u), the same value that Z would attain under
X = x.

Taking the di�erence between the two sides of Eq. (18),
we can de�ne the unit level indirect e�ect as

NIE(x; x�;Y; u) = Yx�;Zx(u)(u)� Yx�(u) (19)

and proceed to de�ne its average in the population:

De�nition 7 (Average indirect e�ect)
The average indirect e�ect of event X = x on variable
Y , denoted NIE(x; x�;Y ), is de�ned as

NIE(x; x�;Y ) = E(Yx�;Zx)�E(Yx�) (20)

Comparing Eqs. (6) and (20), we see that the indirect
e�ect associated with the transition from x� to x is
closely related to the natural direct e�ect associated
with the reverse transition, from x to x�. In fact, re-
calling that the di�erence E(Yx) � E(Yx�) equals the
total e�ect of X = x on Y ,

TE(x; x�;Y ) = E(Yx)�E(Yx�) (21)

we obtain the following theorem:

Theorem 3 The total, direct and indirect e�ects obey
the following relationships

TE(x; x�;Y ) = NIE(x; x�;Y )�NDE(x�; x;Y ) (22)

TE(x; x�;Y ) = NDE(x; x�;Y )�NIE(x�; x;Y ) (23)

In words, the total e�ect (on Y ) associated with the
transition from x� to x is equal to the di�erence be-
tween the indirect e�ect associated with this transition
and the (natural) direct e�ect associated with the re-
verse transition, from x to x�.

As strange as these relationships appear, they produce
the standard, additive relation

TE(x; x�;Y ) = NIE(x; x�;Y ) +NDE(x; x�;Y )
(24)

when applied to linear models. The reason is clear; in
linear systems the e�ect of the transition from x� to x
is proportional to x� x�, hence it is always equal and
of opposite sign to the e�ect of the reverse transition.
Thus, substituting in (22) (or (23)), yields (24).

3.6 Natural Indirect E�ects: Identi�cation

Eqs. (22) and (23) show that the indirect e�ect is iden-
ti�ed whenever both the total and the (natural) direct
e�ect are identi�ed (for all x and x�). Moreover, the
identi�cation conditions and the resulting expressions
for indirect e�ects are identical to the corresponding
ones for direct e�ects (Theorems 1 and 2), save for
a simple exchange of the indices x and x�. This is
explicated in the following theorem.

Theorem 4 If there exists a setW of covariates, non-
descendants of X or Z, such that

Yx�z??ZxjW (25)

for all x and z, then the average indirect-e�ect is ex-
perimentally identi�able, and it is given by

NIE(x; x�;Y )

=
X

w;z

E(Yx�zjw)[P (Zx = zjw)� P (Zx� = zjw)]P (w)

(26)

Moreover, the average indirect e�ect is identi�ed in
nonexperimental studies whenever the following ex-
pressions are identi�ed for all z and w:

E(Yx�z jw); P (Zx = zjw) and P (Zx� = zjw);

with W satisfying Eq. (25).

In the simple Markovian model depicted in Fig. 2(b),
Eq. (26) reduces to

NIE(x; x�;Y ) =
X

z

E(Y jx�; z)[P (zjx)� P (zjx�)] (27)

Contrasting Eq. (27) with Eq. (17), we see that the ex-
pression for the indirect e�ect �xes X at the reference
value x�, and lets z vary according to its distribution
under the post-transition value of X = x. The ex-
pression for the direct e�ect �xes X at x, and lets z
vary according to its distribution under the reference
conditions X = x�.

Applied to the sex discrimination example of Section
2.1, Eq. (27) measures the expected change in male
hiring, E(Yx�), if males were trained to acquire (in
distribution) equal quali�cations (Z = z) as those of
females (X = x).

3.7 General Path-speci�c E�ects

The analysis of the last section suggests that path-
speci�c e�ects can best be understood in terms of a
path-deactivation process, where a selected set of paths,
rather than nodes, are forced to remain inactive during



the transition from X = x� to X = x. In Figure 3, for
example, if we wish to evaluate the e�ect of X on Y
transmitted by the subgraph g : X ! Z ! W ! Y ,
we cannot hold Z or W constant, for both must vary
in the process. Rather, we isolate the desired e�ect
by �xing the appropriate subset of arguments in each
equation. In other words, we replace x with x� in the
equation for W , and replace z with z�(u) = Zx�(u)
in the equation for Y . This amounts to creating a
new model, in which each structural function fi in M
is replaced with a new function of a smaller set of
arguments, since some of the arguments are replaced
by constants. The following de�nition expresses this
idea formally.

De�nition 8 (path-speci�c e�ect)
Let G be the the causal graph associated with model
M , and let g be an edge-subgraph of G containing the
paths selected for e�ect analysis. The g-speci�c e�ect
of x on Y (relative to reference x�) is de�ned as the
total e�ect of x on Y in a modi�ed model M�

g formed
as follows. Let each parent set PAi in G be partitioned
into two parts

PAi = fPAi(g); PAi(g)g (28)

where PAi(g) represents those members of PAi that
are linked to Xi in g, and PAi(g) represents the com-
plementary set, from which there is no link to Xi in g.
We replace each function fi(pai; u) with a new func-
tion f�i (pai; u; g), de�ned as

f�i (pai; u; g) = fi(pai(g); pa
�

i (g); u) (29)

where pa�i (g) stands for the values that the variables
in PAi(g) would attain (in M and u) under X = x�

(that is, pa�i (g) = PAi(g)x�). The g-speci�c e�ect of
x on Y , denoted SEg(x; x

�;Y; u)M is de�ned as

SEg(x; x
�;Y; u)M = TE(x; x�;Y; u)M�

g
: (30)

We demonstrate this construction in the model of Fig.
3 which stands for the equations:

z = fZ(x; uZ)

w = fW (z; x; uW )

y = fY (z; w; uY )

where uZ ; uW , and uY are the components of u that
enter the corresponding equations. De�ning z�(u) =
fZ(x

�; uZ), the modi�ed model M�

g reads:

z = fZ(x; uZ)

w = fW (z; x�; uW ) and

y = fY (z
�(u); w; uY ) (31)

Y

(a)

W Z

X

z  (u)*

x*

Y

(b)

W Z

X

Figure 3: The path-speci�c e�ect transmitted through
X ! Z ! W ! Y (heavy lines) in (a) is equal to
the total e�ect transmitted through the model in (b),
treating x� and z�(u) as constants. (By convention, u
is not shown in the diagram.)

and our task amounts to computing the total e�ect of
x on Y in M�

g , or

TE(x; x�;Y; u)M�

g
=

= fY (z
�(u); fW (fZ(x; uZ); x

�; uW ); uY )

�Yx�(u) (32)

It can be shown that the identi�cation conditions for
general path-speci�c e�ects are much more stringent
than those of the direct and indirect e�ects. The path-
speci�c e�ect shown in Figure 3, for example, is not
identi�ed even in Markovian models. Since direct and
indirect e�ects are special cases of path-speci�c e�ects,
the identi�cation conditions of Theorems 2 and 3 raise
the interesting question of whether a simple character-
ization exists of the class of subgraphs, g, whose path-
speci�c e�ects are identi�able in Markovian models. I
hope inquisitive readers will be able to solve this open
problem.

4 Conclusions

This paper formulates a new de�nition of path-speci�c
e�ects that is based on path switching, instead of vari-
able �xing, and that extends the interpretation and
evaluation of direct and indirect e�ects to nonlinear
models. It is shown that, in nonparametric models,
direct and indirect e�ects can be estimated consis-
tently from both experimental and nonexperimental
data, provided certain conditions hold in the causal
diagram. Markovian models always satisfy these con-
ditions. Using the new de�nition, the paper provides
an operational interpretation of indirect e�ects, the
policy signi�cance of which was deemed enigmatic in
recent literature.

On the conceptual front, the paper uncovers a class
of nonstandard policy questions that cannot be for-



mulated in the usual variable-�xing vocabulary and
that can be evaluated, nevertheless, using the notions
of direct and indirect e�ects. These policy questions
concern redirecting the ow of inuence in the system,
and generally involve the deactivation of existing in-
uences among speci�c variables. The ubiquity and
manageabiligy of such questions in causal modeling
suggest that value-assignment manipulations, which
control the outputs of the causal mechanism in the
model, are less fundamental to the notion of causation
than input-selection manipulations, which control the
signals driving those mechanisms.
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