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Abstract

We propose a new definition ofactual causes,
usingstructural equations to model counterfac-
tuals. We show that the definition yields a plausi-
ble and elegant account of causation that handles
well examples which have caused problems for
other definitions and resolves major difficulties
in the traditional account.

1 Introduction

What does it mean that an eventA actually causes event
B? This is a question that goes beyond mere philosophical
speculation. As Good [1993] argues persuasively, in many
legal settings, what needs to be established (for determin-
ing responsibility) is not a counterfactual kind of causation,
but “cause in fact.” A typical example considers two fires
advancing toward a house. If fireA burned the house be-
fore fireB, we (and many juries nationwide) would con-
sider fireA “the actual cause” for the damage, even sup-
posing the house would have definitely burned down by
fire B, if it were not forA. Actual causation is also im-
portant in artificial intelligence applications. Whenever we
undertake toexplain a set of events that unfold in a specific
scenario, the explanation produced must acknowledge the
actual cause of those events. The automatic generation of
adequate explanations, a task essential in planning, diag-
nosis and natural language processing, therefore requires a
formal analysis of the concept of actual cause.

Giving a precise and useful definition of actual causality is
notoriously difficult. The philosophical literature has been
struggling with this notion since the days of Hume [1739].
(See [Sosa and Tooley 1993], [Hall 1998], and [Pearl 2000]
for some recent discussions.) To borrow just one example
from Hall [1998], suppose a bolt lightning hits a tree and
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starts a forest fire. It seems reasonable to say that the light-
ning bolt is a cause of the fire. (Indeed, the description “the
lightning bolt . . . starts a forest fire” can be viewed as say-
ing this.) But what about the oxygen in the air and the fact
that the wood was dry? Presumably, if there has not been
oxygen or the wood was wet there would not have been a
fire. Carrying this perhaps to the point of absurdity, what
about the Big Bang? This problem is relatively easy to deal
with, but there are a host of other, far more subtle, difficul-
ties that have been raised over the years.

Here we give a definition of actual causality based on the
language ofstructural equations; in a companion paper
([Halpern and Pearl 2001]; see also the full paper [Halpern
and Pearl 2000]), we give a definition of(causal) explana-
tion using the definition of causality. The use of structural
equations as a model for causal relationships is standard in
the social sciences, and seems to go back to the work of Se-
wall Wright in the 1920s (see [Goldberger 1972] for a dis-
cussion); the framework we use here is due to Pearl [1995],
and is further developed in [Galles and Pearl 1997; Halpern
2000; Pearl 2000]. While it is hard to argue that our defi-
nition (or any other definition, for that matter) is the “right
definition”, we show that it deals well with the difficulties
that have plagued other approaches in the past, especially
those exemplified by the rather extensive compendium of
Hall [1998].

There has been extensive discussion about causality in the
literature, particularly in the philosophy literature. To keep
this paper to manageable length, we spend only minimal
time describing other approaches and comparing ours to
them. We refer the reader to [Hall 1998; Pearl 2000; Sosa
and Tooley 1993; Spirtes, Glymour, and Scheines 1993]
for details and criticism of the probabilistic and logical ap-
proaches to causality in the philosophy literature. (We do
try to point out where our definition does better than per-
haps the best known approach, due to Lewis [1986, 2000]
in the course of discussing the examples.)

There has also been work in the AI literature on causality.
Perhaps the closest to this are papers by Pearl and his col-
leagues that use the structural-model approach. The def-



inition of causality in this paper was inspired by an ear-
lier paper of Pearl’s [1998] that defined actual causality in
terms of a construction called acausal beam. The causal
beam definition was later modified somewhat (see [Pearl
2000, Chapter 10]), largely due to the results of this paper.
The definition given here is more transparent and handles a
number of cases better (see Example 4.4).

Tian and Pearl [2000] give results on calculating the prob-
ability thatA is anecessary cause ofB—that is, the proba-
bility thatB would not have occurred ifA had not occurred.
Necessary causality is related to but different from actual
causality, as the definitions should make clear. Other work
(for example, [Heckerman and Shachter 1995]) focuses on
when a random variableX is the cause of a random vari-
ableY ; by way of contrast, we focus on when anevent such
asX = x causes an event such asY = y. As we shall see,
many of the subtleties that arise when dealing with events
simply disappear if we look at causality at the level of ran-
dom variables. Finally, there is also a great deal of work
in AI on formal action theory (see, for example, [Lin 1995;
Sandewall 1994]), which is concerned with the proper way
of incorporating causal relationships into a knowledge base
so as to guide actions. The focus of our work is quite differ-
ent; we are concerned with extracting the actual causality
relation from such a knowledge base, coupled with a spe-
cific scenario.

2 Causal Models: A Review

We briefly review the basic definitions of causal models,
as defined in terms of structural equations, and the syntax
and semantics of a language for reasoning about causality.
See [Galles and Pearl 1997; Halpern 2000; Pearl 2000] for
more details, motivation, and intuition.

Causal Models: The basic picture here is that the world
is described by random variables, some of which may have
a causal influence on others. This influence is modeled by
a set ofstructural equations, where each equation repre-
sents a distinct mechanism (or law) in the world, one that
may be modified (by external actions) without altering the
others. In practice, it seems useful to split the random vari-
ables into two sets, theexogenous variables, whose values
are determined by factors outside the model, and theen-
dogenous variables. It is these endogenous variables whose
values are described by the structural equations.

More formally, asignature S is a tuple(U ;V ;Rg, where
U is a finite set of exogenous variables,V is a finite
set of endogenous variables, andR associates with ev-
ery variableY 2 U [ V a nonempty setR(Y ) of possi-
ble values forY (that is, the set of values over whichY
ranges). A causal model (or structural model) over signa-
tureS is a tupleM = (S;F), whereF associates with
each variableX 2 V a function denotedFX such that

FX : (�U2UR(U)) � (�Y 2V�fXgR(Y )) ! R(X). FX
tells us the value ofX given the values of all the other vari-
ables inU [ V .

Example 2.1:Suppose that we want to reason about a for-
est fire that could be caused by either lightning or a match
lit by an arsonist. Then the causal model would have the
following endogenous variables (and perhaps others):

� F for fire (F = 1 if there is one,F = 0 otherwise)

� L for lightning (L = 1 if lightning occurred,L = 0
otherwise)

� ML for match lit (ML = 1 if the match was lit and
ML = 0 otherwise).

The setU of exogenous variables includes things we need
to assume so as to render all relationships deterministic
(such as whether the wood is dry, there is enough oxygen in
the air, etc.). If~u is a setting of the exogenous variables that
makes a forest fire possible (i.e., the wood is sufficiently
dry, there is oxygen in the air, and so on) then, for example,
FF (~u; L;ML) is such thatF = 1 if L = 1 or ML = 1.

Given a causal modelM = (S;F), a (possibly empty)
vector ~X of variables inV , and vectors~x and~u of val-
ues for the variables in~X andU , we can define a new
causal model denotedM ~X ~x over the signatureS ~X =

(U ;V � ~X;RjV� ~X). Intuitively, this is the causal model

that results when the variables in~X are set to~x by some
external action that affects only the variables in~X; we do
not model the action or its causes explicitly. Formally,
M ~X ~x = (S ~X ;F

~X ~x), whereF ~X ~x
Y is obtained from

FY by setting the values of the variables in~X to ~x.

It may seem strange that we are trying to understand causal-
ity using causal models, which clearly already encode
causal relationships. Our reasoning is not circular. Our
aim is not to reduce causation to noncausal concepts, but to
interpret questions about causes of specific events in fully
specified scenarios in terms of generic causal knowledge
such as what we obtain from the equations of physics. The
causal models encode background knowledge about the
tendency of certain event types to cause other event types
(such as the fact that lightning can cause forest fires). We
use the models to determine the causes and explanations
of single events, such as whether it was arson that caused
the fire of June 10, 2000, given what is known or assumed
about that particular fire.

We can describe (some salient features of) a causal model
M using acausal network. This is a graph with nodes cor-
responding to the random variables inV and an edge from
a node labeledX to one labeledY if FY depends on the
value ofX . Intuitively, variables can have a causal effect
only on their descendants in the causal network; ifY is not



a descendant ofX , then a change in the value ofX has no
affect on the value ofY . In this paper, we restrict attention
to what are calledrecursive (or acyclic) equations; these
are ones that can be described with a causal network that
is a dag. It should be clear that ifM is a recursive causal
model, then there is always a unique solution to the equa-
tions inM ~X ~x, given a setting~u for the variables inU (we
call such a setting~u acontext).

As we shall see, there are many nontrivial decisions to be
made when choosing the structural model. The exogenous
variables to some extent encode the background situation,
that which we wish to take for granted. Other implicit back-
ground assumptions are encoded in the structural equations
themselves. Suppose that we are trying to decide whether
a lightning bolt or a match was the cause of the forest fire,
and we want to take for granted that there is sufficient oxy-
gen in the air and the wood is dry. We could model the dry-
ness of the wood by an exogenous variableD with values
0 (the wood is wet) and 1 (the wood is dry). By makingD
exogenous, its value is assumed to be given and out of the
control of the modeler. We could also take the amount of
oxygen as an exogenous variable (for example, there could
be a variableO with two values—0, for insufficient oxygen,
and 1, for sufficient oxygen); alternatively, we could choose
not to model oxygen explicitly at all. For example, suppose
we have, as before, a random variableML for match lit, and
another variableWB for wood burning, with values 0 (it’s
not) and 1 (it is). The structural equationFWB would de-
scribe the dependence ofWB on D and ML. By setting
FWB(1; 1) = 1, we are saying that the wood will burn if
the match is lit and the wood is dry. Thus, the equation is
implicitly modeling our assumption that there is sufficient
oxygen for the wood to burn. If we were to explicitly model
the amount of oxygen in the air (which certainly might be
relevant if we were analyzing fires on Mount Everest), then
FWB would also take values ofO as an argument.

Besides encoding some of our implicit assumptions, the
structural equations can be viewed as encoding the causal
mechanisms at work. Changing the underlying causal
mechanism can affect what counts as a cause. Section 4
provides several examples of the importance of the choice
of random variables and the choice of causal mechanism.
It is not always straightforward to decide what the “right”
causal model is in a given situation, nor is it always obvi-
ous which of two causal models is “better” in some sense.
These may be difficult decisions and often lie at the heart
of determining actual causality in the real world. Neverthe-
less, we believe that the tools we provide here should help
in making principled decisions about those choices.

Syntax and Semantics: To make the definition of actual
causality precise, it is helpful to have a logic with a formal
syntax. Given a signatureS = (U ;V ;R), a formula of the
formX = x, for X 2 V andx 2 R(X), is called aprim-

itive event. A basic causal formula (over S) is one of the
form [Y1  y1; : : : ; Yk  yk]' where' is a Boolean
combination of primitive events,Y1; : : : ; Yk; X are vari-
ables inV , with Y1; : : : ; Yk are distinct,x 2 R(X), and
yi 2 R(Yi). Such a formula is abbreviated as[~Y  ~y]'.
The special case wherek = 0 is abbreviated as'. Intu-
itively, [Y1  y1; : : : ; Yk  yk]' says that' holds in
the counterfactual world that would arise ifYi is set toyi,
i = 1; : : : ; k. A causal formula is a Boolean combination
of basic causal formulas.

A causal formula is true or false in a causal model, given
a context. We write(M;~u) j=  if  is true in causal
modelM given context~u. (M;~u) j= [~Y  ~y](X = x)
if the variableX has valuex in the (unique, since we are
dealing with recursive models) solution to the equations in
M~Y ~y in context~u (that is, the unique vector of values
for the exogenous variables that simultaneously satisfies all

equationsF
~Y ~y
Z , Z 2 V � ~Y , with the variables inU set

to ~u). (M;~u) j= [~Y  ~y]' for an arbitrary Boolean com-
bination' of formulas of the form~X = ~x is defined simi-
larly. We extend the definition to arbitrary causal formulas,
i.e., Boolean combinations of basic causal formulas, in the
standard way.

Note that the structural equations are deterministic. We can
make sense out of probabilistic counterfactual statements,
even conditional ones (the probability thatX would be 3
if Y1 were 2, given thatY is in fact 1) in this framework
(see [Balke and Pearl 1994]), by putting a probability on
the set of possible contexts. This is not necessary for our
discussion of causality, although it plays a more significant
role in the discussion of explanation.

3 The Definition of Cause

With all this notation in hand, we can now give our defini-
tion of actual cause (“cause” for short). We want to make
sense out of statements of the form “eventA is an actual
cause of event' (in context~u)”. As we said earlier, the
context is the background information. While this has been
left implicit in some treatments of causality, we find it use-
ful to make it explicit. The picture here is that the context
(and the structural equations) are given. Intuitively, they
encode the background knowledge. All the relevant events
are known. The only question is picking out which of them
are the causes of' or, alternatively, testing whether a given
set of events can be considered the cause of'.

The types of events that we allow as actual causes are ones
of the formX1 = x1^: : :^Xk = xk—that is, conjunctions
of primitive events; we typically abbreviate this as~X = ~x.
The events that can be caused are arbitrary Boolean combi-
nations of primitive events.

Definition 3.1: (Actual cause)~X = ~x is anactual cause of



' in (M;~u) if the following three conditions hold:

AC1. (M;~u) j= ( ~X = ~x) ^ '. (That is, both~X = ~x and
' are true in the actual world.)

AC2. There exists a partition(~Z; ~W ) of V with ~X � ~Z

and some setting(~x0; ~w0) of the variables in( ~X; ~W )

such that if(M;~u) j= Z = z� for Z 2 ~Z, then

(a) (M;~u) j= [ ~X  ~x0; ~W  ~w0]:'. In
words, changing( ~X; ~W ) from (~x; ~w) to (~x0; ~w0)
changes' from true to false,

(b) (M;~u) j= [ ~X  ~x; ~W  ~w0; ~Z 0  ~z�]' for
all subsets~Z 0 of ~Z. In words, setting~W to ~w0

should have no effect on' as long as~X is kept
at its current value~x, even if all the variables in
an arbitrary subset of~Z are set to their original
values in the context~u.

AC3. ~X is minimal; no subset of~X satisfies conditions
AC1 and AC2. Minimality ensures that only those el-
ements of the conjunction~X = ~x that are essential for
changing' in AC2(a) are considered part of a cause;
inessential elements are pruned.

Note that we allowX = x to be a cause of itself. While we
do not find such trivial causality terribly bothersome, it can
be avoided by requiring that~X = ~x ^:' be consistent for
~X = ~x to be a cause of'.

The core of this definition lies in AC2. Informally, the
variables in~Z should be thought of as describing the “ac-
tive causal process” from~X to '. (also called “intrinsic
process” by Lewis [1986]).1 These are the variables that
mediate between~X and'. Indeed, we can define anac-
tive causal process from ~X = ~x to ' as a minimal set
~Z that satisfies AC2. AC2(a) is reminiscent of the tradi-
tional counterfactual criterion of Lewis [1986], according
to which' should be false if it were not for~X being~x.
However, AC2(a) is more permissive than the traditional
criterion; it allows the dependence of' on ~X to be tested
under special circumstances in which the variables~W are
held constant at some setting~w0. This modification of the
traditional criterion was proposed by Pearl [1998, 2000]
and was namedstructural contingency—an alteration of
the modelM that involves the breakdown of some mech-
anisms (possibly emerging from external action) but no
change in the context~u. The need to invoke such contin-
gencies will be made clear in Example 3.2.

AC2(b), which has no obvious analogue in the literature,
is an attempt to counteract the “permissiveness” of AC2(a)

1Recently, Lewis [2000] has abandoned attempts to define
“intrinsic process” formally. Pearl’s “causal beam” [Pearl 2000,
p. 318] is a special kind of active causal process, in which AC2(b)
is expected to hold (with~Z = ~z�) for all settingsw0 of W , not
necessarily the one used in (a).

with regard to structural contingencies. Essentially, it en-
sures that~X alone suffices to bring about the change from
' to :'; setting ~W to ~w0 merely eliminates spurious side
effects that tend to mask the action of~X. It captures the
fact that setting~W to ~w0 does not affect the causal pro-
cess by requiring that changing~W from ~w to ~w0 has no
effect on the value of'. Moreover, although the values in
the variables~Z involved in the causal process may be per-
turbed by the change, the perturbation has no impact on the
value of'. The upshot of this requirement is that we are
not at liberty to conduct the counterfactual test of AC2(a)
under an arbitrary alteration of the model. The alteration
considered must not affect the causal process. Clearly, if
the contingencies considered are limited to “freezing” vari-
ables at their actual value, so that(M;~u) j= ~W = ~w0, then
AC2(b) is satisfied automatically. However, as the exam-
ples below show, genuine causation may sometimes be re-
vealed only through a broader class of counterfactual tests
in which variables in~W are set to values that differ from
their actual values. In [Pearl 2000], a notion ofcontrib-
utory cause is defined as well as actual cause. Roughly
speaking, if AC2(a) holds only with~W = ~w0 6= ~w, theA
is a contributory cause ofB; actual causality holds only if
~W = ~w.

We remark that, like the definition here, the causal beam
definition [Pearl 2000] tests for the existence of counterfac-
tual dependency in an auxiliary model of the world, mod-
ified by a select set of structural contingencies. However,
whereas the beam criterion selects the choice of contingen-
cies depends only on the relationship a variable and its par-
ents in the causal diagram, the current definition selects the
modifying contingencies based on the specific cause and
effect pair that is being tested. This refinement permits our
definition to avoid certain pitfalls (see Example 4.4) that
are associated with graphical criteria for actual causation.

AC3 is a minimality condition. Heckerman and Shachter
[1995] have a similar minimality requirement; there seems
to be no analogue in the standard definitions in the philos-
ophy literature. Interestingly, in all the examples we have
considered, AC3 forces the cause to be a single conjunct of
the formX = x. Eiter and Lukasiewicz [2001] and, inde-
pendently, Hopkins [2001], have recently proved that this
is in fact a consequence of our definition.

How reasonable are these requirements? In particular, is it
appropriate to invoke structural changes in the definition of
actual causation? The following example may help illus-
trate why we believe it is.

Example 3.2: Suppose that two arsonists drop lit matches
in different parts of a dry forest, and both cause trees to
start burning. Consider two scenarios. In the first, called
“disjunctive,” either match by itself suffices to burn down
the whole forest. That is, even if only one match were lit,
the forest would burn down. In the second scenario, called



“conjunctive,” both matches are necessary to burn down the
forest; if only one match were lit, the fire would die down.
We can describe the essential structure of these two scenar-
ios using a causal model with four variables:

� an exogenous variableU which determines, among
other things, the motivation and state of mind of
the arsonists. For simplicity, assume thatR(U) =
fu00; u10; u01; u11g; if U = uij , then the first arsonist
intends to start a fire iffi = 1 and the second arson-
ist intends to start a fire iffj = 1. In both scenarios
U = u11.

� endogenous variablesML1 andML2, each either 0 or
1, whereMLi = 0 if arsonisti doesn’t drop the match
andMLi = 1 if he does, fori = 1; 2.

� an endogenous variableFB for forest burns down,
with values 0 (it doesn’t) and 1 (it does).

Both scenarios have the same causal network (see Figure
1); they differ only in the equation forFB. For the dis-
junctive scenario we haveFFB(u; 1; 1) = FFB(u; 0; 1) =
FFB(u; 1; 0) = 1 and FFB(u; 0; 0) = 0 (where
u 2 R(U)); for the conjunctive scenario we have
FFB(u; 1; 1) = 1 andFFB(u; 0; 0) = FFB(u; 1; 0) =
FFB(u; 0; 1) = 0. In general, we expect that the causal
model for reasoning about forest fires would involve many
other variables; in particular, variables for other potential
causes of forest fires such lightning and unattended camp-
fires; here we focus on that part of the causal model that
involves forest fires started by arsonists. Since for causal-
ity we assume that all the relevant facts are given, we can
assume here that it is known that there were no unattended
campfires and there was no lightning, which makes it safe
to ignore that portion of the causal model. Denote byM1

andM2 the causal models associated with the disjunctive
and conjunctive scenarios, respectively. The causal net-
work for the relevant portion ofM1 andM2 is described
in Figure 1.

ML1 ML2

U

FB

Figure 1: The causal network forM1 andM2.

Despite the differences in the underlying models, it is not
hard to show that each ofML1 = 1 andML2 = 1 is a cause
of FB = 1 in both scenarios. We present the argument for
ML1 = 1 here. To show thatML1 = 1 is a cause inM1 let
~Z = fML1;FBg, so ~W = fML2g. It is easy to see that the
contingencyML2 = 0 satisfies the two conditions in AC2.

AC2(a) is satisfied because, in the absence of the second
arsonist (ML2 = 0), the first arsonist is necessary and suf-
ficient for the fire to occur(FB = 1). AC2(b) is satisfied
because, if the first match is lit (ML1 = 1) the contingency
ML2 = 0 does not prevent the fire from burning the for-
est. Thus,ML1 = 1 is a cause ofFB = 1 in M1. (Note
that we needed to setML2 to 0, contrary to facts, in order
to reveal the latent dependence ofFB on ML1. Such a set-
ting constitutes a structural change in the original model,
since it involves the removal of some structural equations.)
A similar argument shows thatML1 = 1 is also a cause
of FB = 1 in M2. (Again, taking~Z = fML1;FBg and
~W = fML2g works.)

This example also illustrates the need for the minimality
conditionAC3. If lighting a match qualifies as the cause
of fire then lighting a match and sneezing would also pass
the tests of AC1 and AC2 and awkwardly qualify as the
cause of fire. Minimality serves here to strip “sneezing”
and other irrelevant, over-specific details from the cause.

This is a good place to illustrate the need for structural con-
tingencies in the analysis of actual causation. The reason
we considerML1 = 1 to be a cause ofFB = 1 in M1 is
thatif ML2 had been 0, rather than 1,FB would depend on
ML1. In words, we imagine a situation in which the second
match is not lit, and we then reason counterfactually that
the forest would not have burned down if it were not for
the first match.

4 Examples

In this section we show how our definition of actual causal-
ity handles some examples that have caused problems for
other definitions. The full paper has further examples.

Example 4.1:The first example is due to Bennett (and ap-
pears in [Sosa and Tooley 1993, pp. 222–223]). Suppose
that there was a heavy rain in April and electrical storms in
the following two months; and in June the lightning took
hold. If it hadn’t been for the heavy rain in April, the forest
would have caught fire in May. The question is whether
the April rains causedthe forest fire. According to a naive
counterfactual analysis, they do, since if it hadn’t rained,
there wouldn’t have been a forest fire in June. Bennett says
“That is unacceptable. A good enough story of events and
of causation might give us reason to accept some things that
seem intuitively to be false, but no theory should persuade
us that delaying a forest’s burning for a month (or indeed a
minute) is causing a forest fire.”

In our framework, as we now show, it is indeed false to say
that the April rains causedthe fire, but they were a cause of
there being a fire in June, as opposed to May. This seems
to us intuitively right. To capture the situation, it suffices
to use a simple model with three endogenous random vari-
ables:



� AS for “April showers”, with two values—0 standing
for did not rain heavily in April and 1 standing for
rained heavily in April;

� ES for “electric storms”, with four possible values:
(0; 0) (no electric storms in either May or June), (1,0)
(electric storms in May but not June), (0,1) (storms
in June but not May), and (1,1) (storms in April and
May);

� andF for “fire”, with three possible values: 0 (no fire
at all), 1 (fire in May), or 2 (fire in June).

We do not describe the context explicitly, either here or
in the other examples. Assume its value~u is such that it
ensures that there is a shower in April, there are electric
storms in both May and June, there is sufficient oxygen,
there are no other potential causes of fire (like dropped
matches), no other inhibitors of fire (alert campers setting
up a bucket brigade), and so on. That is, we choose~u so as
to allow us to focus on the issue at hand and to ensure that
the right things happened (there was both fire and rain).

We will not bother writing out the details of the struc-
tural equations—they should be obvious, given the story
(at least, for the context~u); this is also the case for all the
other examples in this section. The causal network is sim-
ple: there are edges fromAS to F and fromES to F . It is
easy to check that each of the following hold.

� AS = 1 is a cause of the June fire(F = 2) (taking
~W = fESg and ~Z = fAS; Fg) but not of fire(F =
2 _ F = 1).

� ES = (1; 1) is a cause of bothF = 2 and (F =
1 _ F = 2). Having electric storms in both May and
June caused there to be a fire.

� AS = 1^ES = (1; 1) is not a cause ofF = 2, because
it violates the minimality requirement of AC3; each
conjunct alone is a cause ofF = 2. Similarly, AS =
1 ^ ES = (1; 1) is not a cause of(F = 1 _ F = 2).

The distinction between April showers being a cause of
the fire (which they are not, according to our analysis) and
April showers being a cause of a fire in June (which they
are) is one that seems not to have been made in the dis-
cussion of this problem (cf. [Lewis 2000]); nevertheless, it
seems to us an important distinction.

Although we did not describe the context explicitly in Ex-
ample 4.1, it still played a crucial role. If the presence
of oxygen is relevant then we must take this factor out of
the context and introduce it as an explicit endogenous vari-
ables. Doing so can affect the causality picture. The next
example already shows the importance of choosing an ap-
propriate granularity in modeling the causal process and its
structure.

Example 4.2: The following story from [Hall 1998] is an
example of anoverdetermined event.

Suzy and Billy both pick up rocks and throw
them at a bottle. Suzy’s rock gets there first, shat-
tering the bottle. Since both throws are perfectly
accurate, Billy’s would have shattered the bottle
if Suzy’s had not occurred, so the shattering is
overdetermined.

Common sense suggests that Suzy’s throw is the cause of
the shattering, but Billy’s is not. This holds in our frame-
work too, but only if we model the story appropriately.
Consider first a coarse causal model, with three endoge-
nous variables:

� ST for “Suzy throws”, with values 0 (Suzy does not
throw) and 1 (she does);

� BT for “Billy throws”, with values 0 (he doesn’t) and
1 (he does);

� BS for “bottle shatters’, with values 0 (it doesn’t shat-
ter) and 1 (it does).

Again, we have a simple causal network, with edges from
bothST andBT to BS. In this simple causal network,BT
andST play absolutely symmetric roles, withBS = ST _
BT, and there is nothing to distinguish one from the other.
Not surprisingly, both Billy’s throw and Suzy’s throw are
classified as causes of the bottle shattering.

The trouble with this model is that it cannot distinguish
the case where both rocks hit the bottle simultaneously (in
which case it would be reasonable to say that bothST = 1
andBT = 1 are causes ofBS = 1) from the case where
Suzy’s rock hits first. The model has to be refined to ex-
press this distinction. One way to gain expressiveness is
to allow BS to be three valued, with values 0 (the bottle
doesn’t shatter), 1 (it shatters as a result of being hit by
Suzy’s rock), and 2 (it shatters as a result of being hit by
Billy’s rock). We leave it to the reader to check thatST = 1
is a cause ofBS = 1, but BT = 1 is not (if Suzy hadn’t
thrown but Billy had, then we would haveBS = 2). Thus,
to some extent, this solves our problem. But it borders on
cheating; the answer is almost programmed into the model
by invoking the relation “as a result of”, which requires the
identification of the actual cause.

A more useful choice is to add two new random variables
to the model:

� BH for “Billy’s rock hits the (intact) bottle”, with val-
ues 0 (it doesn’t) and 1 (it does); and

� SH for “Suzy’s rock hits the bottle”, again with values
0 and 1.



With this addition, we can go back toBS being two-valued.
In this model, we have the causal network shown in Figure
2, with the arrowSH ! BH being inhibitory;BH = BT ^
:SH (that is,BH = 1 iff BT = 1 andSH = 0). Note that, to
simplify the presentation, we have omitted the exogenous
variables from the causal network in Figure 2. In addition,
we have only given the arrows for the particular context of
interest, where Suzy throws first. In a context where Billy
throws first, the arrow would go fromBH to SH rather than
going fromSH to BH, as it does in the figure.

ST

BT

BS

SH

BH

Figure 2: The rock-throwing example.

Now it is the case thatST = 1 is a cause ofBS = 1. To
satisfy AC2, we choose~W = fBTg andw0 = 0 and note
that, becauseBT is set to 0,BS will track the setting ofST.
Also note thatBT = 1 is not a cause ofBS = 1; there
is no partition~Z [ ~W that satisfies AC2. Attempting the
symmetric choice~W = fBTg andw0 = 0 would violate
AC2(b) (with ~Z 0 = fBHg), because' becomes false when
we setST = 0 and restoreBH to its current value of 0.

This example illustrates the need for invoking subsets of
~Z in AC2(b). Note that, because of the quantification in
Heckerman and Shachter’s definition [1995], both the vari-
ablesST andBT causeBS. The subtleties in this example
disappear at the level of variables.

Example 4.3: Is causality transitive? Consider the follow-
ing story, again taken from [Hall 1998]:

Billy having stayed out in the cold too long
throwing rocks, contracts a serious but nonfatal
disease. He is hospitalized on Monday, but un-
fortunately the doctor forgets to administer the
needed medication, so Billy is still sick on Tues-
day. Suppose that Monday’s doctor is reliable,
and administers the medicine first thing in the
morning, so that Billy is fully recovered by Tues-
day afternoon. Tuesday’s doctor is also reliable,
and would have treated Billy if Monday’s doc-
tor had failed to. . . And let us add a twist: one
dose of medication is harmless, but two doses are
lethal.

The causal model for this story is straightforward. We have
three random variables:MT for Monday’s treatment (1 if
Billy was treated Monday; 0 otherwise),TT for Tuesday’s
treatment (1 if Billy was treated Tuesday; 0 otherwise), and
BMC for Billy’s medical condition (0 if Billy is alive Tues-
day morning, still alive and well Tuesday afternoon; 1 if

Billy is sick Tuesday morning, recovers Tuesday afternoon;
2 if Billy is sick both Tuesday morning and afternoon; 3 if
Bill has recovered Tuesday morning and is dead Tuesday
afternoon).

In the causal network corresponding to this causal model,
shown in Figure 3, there is an edge fromMT to TT, since
whether the Tuesday treatment occurs depends on whether
the Monday treatment occurs, and there is an edge from
both MT andTT to BMC, since Billy’s medical condition
depends on both treatments.

BMC

TTMT

Figure 3: Billy’s medical condition.

In this causal model, it is true thatMT = 1 is a cause of
BMC = 0, as we would expect—because Billy is treated
Monday, he is not treated on Tuesday morning, and thus
recovers Tuesday afternoon.MT = 1 is also a cause of
TT = 0, as we would expect, andTT = 0 is a cause of
Billy’s being alive (BMC = 0 _ BMC = 1 _ BMC = 2).
However,MT = 1 is not a cause of Billy’s being alive. It
fails condition AC2(a): settingMT = 0 still leads to Billy’s
being alive (withW = ;). Note that it would not help to
take ~W = fTTg. For if TT = 0, then Billy is alive no
matter whatMT is, while if TT = 1, then Billy is dead
whenMT has its original value, so AC2(b) is violated (with
~Z 0 = ;).

This shows that causality is not transitive, according to our
definitions. AlthoughMT = 1 is a cause ofTT = 0 and
TT = 0 is a cause ofBMC = 0 _ BMC = 1 _ BMC = 2,
MT = 1 is not a cause ofBMC = 0_BMC = 1_BMC = 2.
Nor is causality closed underright weakening: MT = 1
is a cause ofBMC = 0, which logically impliesBMC =
0_BMC = 1_BMC = 2, which is not caused byMT = 1.

Lewis [1986, 2000] insists that causality is transitive, partly
to be able to deal with what is called in the literaturepre-
emption [Lewis 1986]. An example of preemption is a
scenario where an assassin-in-training, who is an excellent
shot, fires and kills the victim. However, his supervisor (an
equally skilled shot) is present on the mission in case the
trainee loses his nerve. We would like to call the trainee
the cause of the victim’s death, even though if the trainee
hadn’t shot, the victim would have died anyway. Our ap-
proach handles such examples without needing to invoke
transitivity, which, as Lewis’s own examples show, leads to
counterintuitive conclusions. We remark that this example
also fails Lewis’s revised counterfactual-dependence-chain
[1986]; BMC does not depend on eitherMT or TT in the
context given.



Clause AC2(b) in the definition is complicated by the need
to check that no change in the value of the variables in~Z

can affect the value of'. In all the previous examples,
Z = z� for each variableZ 2 ~Z. Could we not just require
this? The following example shows that we cannot.

Example 4.4: Imagine that a vote takes place. For simplic-
ity, two people vote. The measure is passed if at least one
of them votes in favor. In fact, both of them vote in favor,
and the measure passes. This version of the story is almost
identical to Example 3.2. If we useV1 andV2 to denote
how the voters vote (Vi = 0 if voter i votes against and
Vi = 1 if she votes in favor) andP to denote whether the
measure passes (P = 1 if it passes,P = 0 if it doesn’t),
then in the context whereV1 = V2 = 1, it is easy to see that
each ofV1 = 1 andV2 = 1 is a cause ofP = 1. However,
suppose we now assume that there is a voting machine that
tabulates the votes. LetM represent the total number of
votes recorded by the machine. ClearlyM = V1 + V2 and
P = 1 iff M � 1. The following causal network repre-
sents this more refined version of the story. In this more

VV1 2

M

P

Figure 4: An example showing the need for AC2(b).

refined scenario,V1 = 1 andV2 = 1 are still both causes
of P = 1. ConsiderV1 = 1. Take ~Z = fV1;M; Pg and
~W = V2. Much like the simpler version of the story, if
we choose the contingencyV2 = 0, thenP is counterfac-
tually dependent onV1, so AC2(a) holds. To check if this
contingency satisfies AC2(b), we setV1 to 1 (their original
value) and check that settingV2 to 0 does not change the
value ofP . This is indeed the case. AlthoughM becomes
1, not 2 as it is whenV1 = V2 = 1, nevertheless,P = 1
continues to hold, so AC2(b) is satisfied andV1 = 1 is a
cause ofP = 1. However, if we had insisted in AC2(b)
that(M;u) j= [ ~X  ~x; ~W  w0]Z = z� for all variables
Z 2 ~Z (which in this case means thatM would have to re-
tain its original value of 2 whenV1 = 1 andV2 = 0), then
neitherV1 = 1 norV2 = 1 would be a cause ofP = 1.

We remark that this example is not handled correctly by
Pearl’s causal beam definition. According to the causal
beam definition, there is no cause forP = 1! More gener-
ally, the causal beam definition handles only causality be-
tween primitive events. It can be shown ifX = x is an
actual (or contributory) cause ofY = y according to the
causal beam definition given in [Pearl 2000], then it is an
actual cause according to the definition here. As Exam-
ple 4.4 shows, the converse is not necessarily true.

Example 4.5: This example concerns what Hall calls the
distinction between causation and determination. Again,
we quote Hall [1998]:

You are standing at a switch in the railroad tracks.
Here comes the train: If you flip the switch,
you’ll send the train down the left-hand track; if
you leave it where it is, the train will follow the
right-hand track. Either way, the train will arrive
at the same point, since the tracks reconverge up
ahead. Your action is not among the causes of
this arrival; it merely helps to determine how the
arrival is brought about (namely,via the left-hand
track, orvia the right-hand track).

Again, our causal model gets this right. Suppose we have
three random variables:

� F for “flip”, with values 0 (you don’t flip the switch)
and 1 (you do);

� T for “track”, with values 0 (the train goes on the left-
hand track) and 1 (it goes on the right-hand track);

� A for “arrival”, with values 0 (the train does not arrive
at the point of reconvergence) and 1 (it does).

Now it is easy to see that flipping the switch (F = 1) does
cause the train to go down the left-hand track (T = 0), but
does not cause it to arrive (A = 1), thanks to AC2(a)—
whether or not the switch is flipped, the train arrives.

However, our proposal goes one step beyond this simple
picture. Suppose that we model the tracks usingtwo vari-
ables:

� LT for “left-track”, with values 1 (the train goes on the
left-hand track) and 0 (it does not); and

� RT for “right-track”, with values 1 (the train goes on
the right-hand track) and 0 (it does not).

The resulting causal diagram is shown in Figure 5; it is iso-
morphic to a class of problems Pearl [2000] calls “switch-
ing causation”. Lo and behold, this representation classi-
fiesF = 1 as a cause ofA, which, at first sight, may seem
counterintuitive: Can a change in representation turn a non-
cause into a cause?

It can and it should! The change to a two-variable model
is not merely syntactic, but represents a profound change
in the story. The two-variable model depicts the tracks as
two independent mechanisms, thus allowing one track to
be set (by action or mishap) to false (or true) without af-
fecting the other. Specifically, this permits the disastrous
mishap of flipping the switch while the left track is mal-
functioning. Such abnormal eventualities are imaginable
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Figure 5: Flipping the switch.

and expressible in the two-variable model, but not in the
one-variable model. The potential for such eventualities is
precisely what rendersF = 1 a cause of theA in the model
of Figure 5.2

Is flipping the switch a legitimate cause of the train’s ar-
rival? Not in ideal situations, where all mechanisms work
as specified. But this is not what causality (and causal mod-
eling) are all about. Causal models earn their value in ab-
normal circumstances, created by structural contingencies,
such as the possibility of a malfunctioning track. It is this
possibility that should enter our mind whenever we decide
to designate each track as a separate mechanism (i.e., equa-
tion) in the model and, keeping this contingency in mind, it
should not be too odd to name the switch position a cause
of the train arrival (or non-arrival).

We conclude this section with an example that shows a po-
tential problem for our definition, and suggest a solution.

Example 4.6: Fred has his finger severed by a machine at
the factory (FS = 1). Fortunately, Fred is covered by a
health plan. He is rushed to the hospital, where his finger is
sewn back on. A month later, the finger is fully functional
(FF = 1). In this story, we would not want to say that
FS = 1 is a cause ofFF = 1 and, indeed, according to our
definition, it is not, sinceFF = 1 whether or notFS = 1
(in all contingencies satisfying AC2(b)).

However, suppose we introduce a new element to the story,
representing a nonactual structural contingency: Larry the
Loanshark may be waiting outside the factory with the in-
tention of cutting off Fred’s finger, as a warning to him to
repay his loan quickly. LetLL represent whether or not
Larry is waiting and letLC represent whether Larry cuts
of the Fred’s finger. If Larry cuts off Fred’s finger, he will
throw it away, so Fred will not be able to get it sewn back
on. In the actual situation,LL = LC = 0; Larry is not
waiting and Larry does not cut off Fred’s finger. So, intu-
itively, there seems to be no harm in adding this fanciful
element to the story. Or is there? Suppose that, if Fred’s
finger is cut off in the factory, then Larry will not be able
to cut off the finger himself (since Fred will be rushed off

2This can be seen by noting that condition AC2 is satisfied by
the partition~Z = fF; LT; Ag; ~W = fRTg, and choosingw0 as
the settingRT = 0. The eventRT = 0 conflicts withF = 0 under
normal situations.

to the hospital). NowFS = 1 becomes a cause ofFF = 1.
For in the structural contingency whereLL = 1, if FS = 0
thenFF = 0 (Larry will cut off Fred’s finger and throw it
away, so it will not become functional again). Moreover,
if FS = 1, thenLC = 0 andFF = 1, just as in the actual
situation.3

This example seems somewhat disconcerting. Why should
adding a fanciful scenario like Larry the Loanshark to the
story affect (indeed, result in) the accident being a cause
of the finger being functional one month later? While it
is true that the accident would be judged a cause of Fred’s
good fortune by anyone who knew of Larry’s vicious plan
(many underworld figures owe their lives to “accidents” of
this sort), the question remains how to distinguish genuine
plans that just happened not to materialize from sheer fan-
ciful scenarios that have no basis in reality. To some extent,
the answer here is the same as the answer to essentially all
the other concerns we have raised: it is a modeling issue.
If we know of Larry’s plan, or it seems like a reasonable
possibility, we should add it to the model (in which case
the accident is a cause of the finger being functional); oth-
erwise we shouldn’t.

But this answer makes the question of how reasonable a
possibility Larry’s plan are into an all-or-nothing decision.
One solution to this problem is to extend our notion of
causal model somewhat, so as to be able to capture more
directly the intuition that the Larry the Loanshark scenario
is indeed rather fanciful. There a number of ways of doing
this; we choose one based on Spohn’s notion of aranking
function (or ordinal conditional function) [Spohn 1988]. A
ranking� on a spaceW is a function mapping subsets ofW
to IN� = IN [ f1g such that�(W ) = 0, �(;) = 1, and
�(A) = minw2A(�(fwg)). Intuitively, an ordinal rank-
ing assigns a degree of surprise to each subset of worlds in
W , where0 means unsurprising and higher numbers denote
greater surprise. Let aworld be a complete setting of the
exogenous variables. Suppose that, for each context~u, we
have a ranking�~u on the set of worlds. The unique setting
of the exogenous variables that holds in context~u is given
rank 0 by�~u; other worlds are assigned ranks according to
how “fanciful” they are, given context~u. Presumably, in
Example 4.6, an appropriate ranking� would give a world
where Larry is waiting to cut off Fred’s finger (i.e., where
LL = 1) a rather high� ranking, to indicate that it is rather
fanciful. We can then modify the definition of causality so
that we can talk about~X = ~x being an actual cause of' in
(M;u) at rank k. The definition is a slight modification of
condition AC2 in Definition 3.1 so the contingency(~x0; ~w0)
must hold in a world of rank at mostk; we omit the formal
details here. We then can restrict actual causality so that
the structural contingencies involved have at most a certain
rank. This is one way of ignoring fanciful scenarios.

3We thank Eric Hiddleston for bringing this issue and this ex-
ample to our attention.



5 Discussion

We have presented a principled way of determining actual
causes from causal knowledge. The essential principles
of our account include using structural equations to model
causal mechanisms; using uniform counterfactual notation
to encode and distinguish facts, actions, outcomes, and
contingencies; using structural contingencies to uncover
causal dependencies; and careful screening of these con-
tingencies to avoid tampering with the causal processes to
be uncovered. While our definitions has some unsatisfy-
ing features (see Example 4.6), we hope that the examples
presented here illustrate how well it deals with many of the
problematic cases found in the literature. As the examples
have shown, much depends on choosing the “right” set of
variables with which to model a situation, which ones to
make exogenous, and which to make endogenous. While
the examples have suggested some heuristics for making
appropriate choices, we do not have a general theory for
how to make these choices. We view this as an important
direction for future research.
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