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Bayesian networks were developed in the late 1970’s to model distributed processing in
reading comprehension, where both semantical expectations and perceptual evidence must
be combined to form a coherent interpretation. The ability to coordinate bi-directional
inferences filled a void in expert systems technology of the early 1980’s, and Bayesian net-
works have emerged as a general representation scheme for uncertain knowledge [Pearl, 1988,
Heckerman et al., 1995, Jensen, 1996, Castillo et al., 1997].

Bayesian networks are directed acyclic graphs (DAGs) in which the nodes represent vari-
ables of interest (e.g., the temperature of a device, the gender of a patient, a feature of an
object, the occurrence of an event) and the links represent informational or causal depen-
dencies among the variables. The strength of a dependency is represented by conditional
probabilities that are attached to each cluster of parents-child nodes in the network.

Figure 1 illustrates a simple yet typical Bayesian network. It describes the causal re-
lationships among the season of the year (X;), whether rain falls (X3) during the season,
whether the sprinkler is on (X3) during that season, whether the pavement would get wet
(X4), and whether the pavement would be slippery (X5). Here, the absence of a direct link
between X; and X3, for example, captures our understanding that the influence of seasonal
variations on the slipperiness of the pavement is mediated by other conditions (e.g., wetness).
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Figure 1: A Bayesian network representing causal influences among five variables.
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As this example illustrates, a Bayesian network constitutes a model of the environment
rather than, as in many other knowledge representation schemes (e.g., rule-based systems
and neural networks), a model of the reasoning process. It simulates, in fact, the mechanisms
that operate in the environment, and thus facilitates diverse modes of reasoning, including
prediction, abduction and control.

Evidential reasoning. Prediction and abduction require an economical representation
of a joint distribution over the variables involved. Bayesian networks achieve such economy
by specifying, for each variable, X;, the conditional probabilities P(x;|pa;) where pa; are
a set of predecessors (of X;) which render X; independent of of all its other predecessors.
Variables judged to be the direct causes of X; satisfy this property, and these are depicted
as the parents of X; in the graph. Given this specification, the joint distribution is given by
the product

P(zy,...,x,) = I_IP(:L“Z | pa;) (1)

from which all probabilistic queries (e.g., find the most likely explanation for the evidence)
can be answered coherently using probability calculus.

The first algorithms proposed for probabilistic calculations in Bayesian networks used
message-passing architecture and were limited to trees [Pearl, 1982, Kim and Pearl, 1983].
Each variable was assigned a simple processor, permitted to pass messages asynchronously
with its neighbors, until equilibrium is achieved. Techniques have since been developed to
extend this tree-propagation method to general networks. Among the most popular are
Lauritzen and Spiegelhalter’s method of join-tree propagation, and the method of loop-cut
conditioning (see [Pearl, 1988, Jensen, 1996]).

While inference in general networks is NP-hard, the complexity for each of the meth-
ods cited above can be estimated prior to actual processing. When the estimates exceed
reasonable bounds, an approximation method such as stochastic simulation [Pearl, 1988]
can be used instead. Learning techniques have also been developed for systematic up-
dating of the conditional probabilities P(z;|pa;), as well as the structure of the network,
so as to match empirical data (see Spiegelhalter and Lauritzen in [Shachter, 1990] and
[Cooper and Herskovits, 1990]).

Reasoning about actions. The most distinctive feature of Bayesian networks, stem-
ming largely from their causal organization, is their ability to represent and respond to
changing configurations. Any local reconfiguration of the mechanisms in the environment
can be translated, with only minor modification, into an isomorphic reconfiguration of the
network topology. For example, to represent a disabled sprinkler, we simply delete from the
network all links incident to the node “Sprinkler”. To represent the policy of turning the
sprinkler off if it rains, we simply add a link between “Rain” and “Sprinkler” and revise
P(z3|z1,x9). This flexibility is often cited as the ingredient that marks the division between
deliberative and reactive agents, and that enables the former to manage novel situations
instantaneously, without requiring retraining or adaptation.

Organizing one’s knowledge around stable mechanism provides a basis for planning un-
der uncertainty [Pearl, 1996]. Once we know the identity of the mechanism altered by the
intervention and the nature of the alteration, the overall effect of an intervention can be
predicted by modifying the corresponding factors in Eq. (1) and using the modified product
to compute a new probability function. For example, to represent the action “turning the
sprinkler ON” in the network of Figure 1, we delete the link X; — X3 and fix the value of



X3 to ON. The resulting joint distribution on the remaining variables will be
P($1,$2,$4,l‘5) == P(il?l) P(.’L‘Q‘xl) P(.’L‘4‘£E2,X3 = ON) P(LL'5|.Z'4) (2)

Note the difference between the action do(X3; = ON) and the observation X3 = ON. The
latter is encoded by ordinary Bayesian conditioning, while the former by conditioning a
mutilated graph, with the link X; — X3 removed. This mirrors indeed the difference between
seeing and doing: after observing that the sprinkler is ON, we wish to infer that the season
is dry, that it probably did not rain, and so on; no such inferences should be drawn in
evaluating the effects the contemplated action “turning the sprinkler ON”.

Causal Discovery. One of the most exciting prospects in recent years has been the
possibility of using Bayesian networks to discover causal structures in raw statistical data.
[Pearl and Verma, 1991, Spirtes et al., 1993]. Although any inference from association to
causation is bound to be less reliable than inference based on controlled experiment, one can
still guarantee an aspect of reliability called “stability”: any alternative structure compatible
with the data must be less stable than the one(s) inferred; namely, slight fluctuations in
conditions will render that structure no longer compatible with the data. With this form of
guarantee, the theory provides criteria for identifying genuine and spurious causes, with or
without temporal information, and yields algorithms for recovering causal structures with
hidden variables from empirical data.

Plain Beliefs. In mundane decision making, beliefs are revised not by adjusting nu-
merical probabilities but by tentatively accepting some sentences as “true for all practical
purposes”. Such sentences, called plain beliefs, exhibit both logical and probabilistic char-
acter. As in classical logic, they are propositional and deductively closed; as in probability,
they are subject to retraction and to varying degrees of entrenchment. Bayesian networks
can be adopted to model the dynamics of plain beliefs by replacing ordinary probabilities
with non-standard probabilities, that is, probabilities that are infinitesimally close to either
zero or one [Goldszmidt and Pearl, 1996].

Models of cognition. Although Bayesian networks can model a wide spectrum of
cognitive activity, their greatest strength is in causal reasoning, which, in turn, facilitates
reasoning about actions, explanations, counterfactuals, and preferences. Such capabilities
are not easily implemented in neural networks, whose strengths lie in quick adaptation of
simple motor-visual functions.

Some questions arise: Does an architecture resembling that of Bayesian networks exist
anywhere in the human brain? If not, how does the brain perform those cognitive functions in
which Bayesian networks excel? One plausible answer is that fragmented structures of causal
organizations are constantly being assembled on the fly, as needed, from a stock of functional
building blocks. For example, the network of Figure 1 may be assembled from several neural
networks, one specializing in the experience surrounding seasons and rains, another in the
properties of wet pavements, and so forth. Such specialized networks are probably stored
permanently in some mental library, from which they are drawn and assembled into the
structure shown in Figure 1 only when a specific problem presents itself, for example, to
determine whether an operating sprinkler could explain why a certain person slipped and
broke a leg in the middle of a dry season.

Thus, Bayesian networks are particularly useful in studying higher cognitive functions,
where the problem of organizing and supervising large assemblies of specialized neural net-
works becomes important.
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