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Abstract

We show in this paper that the AGM postulates are too week to ensure the rational preservation
of conditional beliefs during belief revision, thus permitting improper responses to sequences of obser-
vations. We remedy this weakness by proposing four additional postulates, which are sound relative
to a qualitative version of probabilistic conditioning. Contrary to the AGM framework, the proposed
postulates characterize belief revision as a process which may depend on elements of an epistemic state
that are not necessarily captured by a belief set. We also show that a simple modification to the AGM
framework can allow belief revision to be a function of epistemic states. We establish a model-based
representation theorem which characterizes the proposed postulates and constrains, in turn, the way
in which entrenchment orderings may be transformed under iterated belief revision.

Keywords: Iterated revision, AGM postulates, conditional beliefs, probabilistic conditioning, epis-
temic states, qualitative probability

1 Introduction

The process of belief change has been formalized in several frameworks, most notably nonmonotonic logic,
probabilistic reasoning, and belief revision. In nonmonotonic logic (e.g., [21]), belief change is viewed
as a byproduct of extending a database containing new facts in accordance with a set of extension-
construction rules called “defaults.” In probabilistic reasoning (e.g., [23, 24, 10, 13]), belief change is
viewed as a byproduct of conditioning a probability function (or some qualitative abstraction thereof)
on new evidence, in accordance with Bayes’ rule. In the belief-revision framework, belief changes are
characterized by a set of constraints (called “postulates”) on an operator o which modifies the set ¢ of
currently—held beliefs to produce a new belief-set % o p, implying the new information pu.

While many studies have emphasized features that are common to the three frameworks above (e.g.,
[8,9, 22, 14]), serious incompatibilities have also been observed that point to some fundamental limitations
and inadequacies of the operator—based approach to belief revision [3, 4, 5, 13]. This paper addresses
one such limitation, the failure of the standard belief revision framework, as encapsulated in the AGM
postulates [1], to properly regulate iterated belief revision, that is, the sequential revision of beliefs in
response to a string of observations.

We will first demonstrate that the AGM postulates, as they currently stand, are too permissive to
enforce plausible iterated revisions, and need to be strengthened by additional constraints. We will then
argue that any rational system of belief change should comply with four postulates which are not part of



the AGM lexicon, and which are necessary to maintain plausible behavior under iterated belief change.
Finally, we will show that one of these postulates stands contrary to the basic tenet of the operator-
based framework and, hence, the framework should be broadened to permit operations on epistemic
states, rather than belief sets.

To understand the requirements imposed by iterated revision we should start by recalling the dis-
tinction between belief sets and epistemic states. A belief set ¥ characterizes the set of propositions to
which an agent is committed at any given time. An epistemic state contains, in addition to ¥, the entire
information needed for coherent reasoning, including, in particular, the very strategy of belief revision
which the agent wishes to employ at that given time. Any such strategy encodes, and is equivalent to, a
set of “conditional beliefs,” that is, beliefs that one is prepared to adopt conditioned on any hypothetical
evidence [3, 2, 19, 20, 15, 16]. To fully specify behavior under successive observations, one must encode,
not merely how beliefs are to be revised (this is enough for the first stage only) but also how the revision
strategy itself is to be modified by each new evidence. This amounts, in turns, to specifying which
conditional beliefs are to be retained and which ones deleted with each piece of evidence.

The hallmark of the AGM postulates is the principle of minimal belief change, that is, the need to
preserve as much of earlier beliefs as possible and to add only those beliefs that are absolutely compelled by
the revision specified. But despite this emphasis on preserving propositional beliefs, the AGM postulates
place almost no constraints on the preservation of conditional beliefs. The reason is that the AGM
theory is expressed mainly in terms of one—step postulates which tell us what properties the next belief
set ought to have, given the current belief set and the current evidence. However, the language of one—
step postulates is not rich enough to regulate conditional beliefs because such a language deals only with
transformation of belief sets and not with transformation of revision policies as encoded in epistemic
states.

In fact, a central result of the AGM theory states that the postulates are equivalent to the existence
of a total pre—order on all propositions according to their degree of epistemic entrenchment such that
belief revisions always retain more entrenched propositions in preference to less entrenched ones. But
this ordering, which carries the information necessary for belief revision, cannot be always constrained
using the language of one—step postulates, hence, the postulates cannot always regulate how the ordering
transforms during belief revision.

Since the relative entrenchment among hypothetical beliefs is crucial for distinguishing future beliefs
from future disbeliefs, the preservation of this relative entrenchment in accordance with some minimal-
change principle is as important as the preservation of beliefs themselves. Moreover, since the information
content of this relative entrenchment is equivalent to that of conditional beliefs, the preservation of the
former requires postulates about the latter, namely, two—step postulates about the revision of conditional
beliefs.

The over permissiveness of the AGM postulates relative to changes in conditional beliefs has been
noted by several workers [3, 19], including the AGM authors themselves [8, 2], but attempts at applying
preservation principles to conditional beliefs have not been very successful. Gardenfors, for example, has
tried the sweeping remedy of including in the belief set not merely propositional beliefs but conditional
beliefs as well, and quickly faltered into an inconsistency known as Géardenfors’ Triviality Result [8, p.
156-166]. Attempts at circumventing this result now make up voluminous literature which, by and large,
seems still reluctant to accept the fact that conditional and propositional beliefs are two different species
which require totally different preservation policies. More recently, Boutilier has suggested a promising
approach by devising a belief revision operator, called natural revision, which still restricts a belief set to
propositional beliefs, but provably preserves as many conditional beliefs as the AGM postulates would
permit [3]. We show in this paper, however, that this strategy, too, is an excessive remedy to the AGM
weakness and leads to counterintuitive results. As it turns out, if one insists on preserving all conditional



beliefs permitted by AGM, then one is forced to retract some propositional beliefs that ought to be
preserved.

The solution we suggest for preserving conditional beliefs is more cautious. Viewing belief revision
as an operation on epistemic states, we show that conditional beliefs can be classified succinctly into two
distinct categories; those that may compromise propositional beliefs if preserved, and those that may not.
We then insist on preserving only the second category of conditional beliefs, and we do this proposing
four postulates.!

The rest of the paper is structured as follows. In Section 2 we review the AGM proposal and present
a number of scenarios that are consistent with the AGM postulates and yet exhibit counterintuitive
changes in conditional beliefs. Next, we propose a modification of the AGM postulates in which revisions
are applied to epistemic states instead of belief sets and argue that such modification is necessary for
a satisfactory treatment of iterated belief revision. We then analyze in Section 4 the minimal-change
principle of conditional beliefs. Based on this analysis, we propose four postulates in Section 5 that prop-
erly preserves conditional beliefs — hence, regulating iterated revisions — and provide a representation
theorem for the newly proposed postulates which extends the one provided by Katsuno and Mendelzon
for the AGM postulates [17]. We then show in Section 6 that the new postulates are sound with respect
to a qualitative version of Jeffrey’s Rule of probabilistic conditioning. In Section 7, we provide further
insights behind the choice of our postulates and conclude in Section 8 by discussing current and future
related work. Proofs of theorems are delegated to Appendix B.

2 Belief Revision

Belief revision is the process of changing a belief set to accommodate evidence that is possibly inconsistent
with existing beliefs. Alchourrén, Gardenfors, and Makinson have proposed eight postulates to govern
the process of belief revision, which are phrased in a very general setting and are known as the AGM
postulates [1, 8]. Katsuno and Mendelzon (KM) rephrased these postulates assuming a propositional
logic setting, yielding Postulates (R1)—(R6) that are shown below [17].

According to the KM formulation, a belief set is represented by a sentence ¥ in a propositional
language £, where any sentence that is entailed by ¢ is part of the belief set. Evidence is also represented
using a sentence p in language £. The result of revising ¢ with u is a sentence belonging to £ that is
denoted by 1o pu, where o is called a belief revision operator. The KM formulation of the AGM postulates
follows:

R1) % o p implies p.

R2) If ¢ A p is satisfiable, then ¥ o u = ¥ A p.

R3) If u is satisfiable, then ¥ o p is also satisfiable.

R4) If ¢y = 109 and py = pg, then ¥y o uy = ¥ 0 us.

(0 1) A & implies o (4 A ).
R6) If (¢ o ) A ¢ is satisfiable, then ¢ o (p A ¢) implies (¢ o ) A ¢.

(
(
(
(
(R5
(

)
)
)
)
)
)

Katsuno and Mendelzon provided a representation theorem for Postulates (R1)-(R6) which shows an
equivalence between the postulates and a revision mechanism based on total pre-orders [17]:

!The postulates we propose are inspired by a method for belief change suggested by Wolfgang Spohn [23, 24] and extended
by Moisés Goldszmidt [11, 12].



Definition 1 Let W be the set of all worlds (interpretations) of a propositional language L. A function
that maps each sentence ¥ in L to a total pre-order <, on worlds W is called a faithful assignment if
and only if:

1. wy,wy = only if wy =y wa;
2. w1 E ¢ and wy £ ¥ only if wy <y we; and

3. 9 =¢ only if <y=<4.
Here, wy <y wy is defined as wy <y wy and wy Ly wi; wy =y wy is defined as wy <y wy and wy <y wy.

The following representation theorem shows that a revision operator is equivalent to a faithful as-
signments where the result of a revision % o p is determined by g and the total pre—order assigned to

P:
Theorem 1 (Katsuno and Mendelzon [17]) A revision operator o salisfies Postulates (R1)-(R6)
precisely when there exists a faithful assignment that maps each sentence 1 into a total pre-order <y

such that
Mods( o ) = min(Mods(p), <y).

Here, Mods(p) is the set of all worlds satisfying p; and min(Mods(p), <y) contains all worlds that are
minimal in Mods(p) according to the total pre—order <y.

In the remainder of this section, we shall consider a number of revision operators that conform to the
AGM postulates but lead to counterintuitive changes in conditional beliefs.

Definition 2 A belief set ¥ accepts proposition 3 given proposition « precisely when B is entailed by the
revision of ¥ with «; that is, ¥ o a = . We also say in this case that 3|« is a conditional belief of 1.

Our first scenario shows that an agent consistent with the AGM postulates may give up a conditional
belief unjustifiably.

Example 1 We see a strange new animal X at a distance, and it appears to be barking like a dog, so
we conclude that X is not a bird, and that X does not fly. Still, in the event that X turns out to be a
bird, we are prepared to change our mind and conclude that X flies. Observing the animal closely, we
realize that it actually can fly. The question now is whether we should retain our willingness to believe
that X flies in case X turns out to be a bird after all. We submit that it would be strange to give up
this conditional belief merely because we happened to observe that X can fly. Yet, we provide later an

AGM-compatible revision operator o that permits 3
G

1 o bird

(¢ o flies) o bird

such behavior:
—bird N = flies,
bird A flies,
bird.

O

2This definition should not be viewed as a position on how to interpret “conditionals.” The phrase “conditional belief
3| «” is simply a shortcut for the more elaborate statement “3 will be accepted after revising our current beliefs by «.” All
of our discussion below can be made free of the term “conditional belief” if we opt to, except that it will generate sentences
that are not easy to parse. We stress this point since traditional problems associated with the treatment of conditionals are
mostly irrelevant to our current topic.

?We are using the same revision operator to accommodate different pieces of evidence in this and further examples. Some
may argue, however, that the AGM theory does not sanction any form of iterated revisions, or, more specifically, that it
does not propose using the same revision operator for handling iterated revisions. Our examples, however, are applicable
even if one uses different revision operators to accommodate different pieces of evidence.



The example we just considered involves an agent that gives up a conditional belief unjustifiably,
while remaining consistent with the AGM postulates. Our next example shows that an agent consistent
with the AGM postulates may acquire a conditional belief unjustifiably.

Example 2 We are introduced to a lady X who sounds smart and looks rich, so we believe that X is
smart and X is rich. Moreover, since we profess to no prejudice, we also maintain that X is smart even if
found to be poor and, conversely, X is rich even if found to be not smart. Now, we obtain some evidence
that X is in fact not smart and we remain of course convinced that X is rich. Still, it would be strange for
us to say, “If the evidence turns out false, and X turns out smart after all, we would no longer believe that
X is rich.” If we currently believe X is smart and rich, then evidence first refuting then supporting that
X is smart should not in any way change our opinion about X being rich. Strangely, the AGM postulates
do permit such a change of opinion. We will provide later an AGM—-compatible revision operator o such
that

(o

1 o —rich

smart A rich,

smart A\ —rich,

¥ o ~smart —smart A rich, and

(¢ o ~smart) o smart = smart A —rich.

O

The common feature permitting us to construct these examples is that while the AGM postulates
constrain what revisions are permissible from a given belief set 1, under different propositions u, they,
in general, do not constrain how revisions must cohere when starting from different belief states. This
is seen more clearly from Theorem 1, where the order <, does not constrain the order <y,, except
trivially.?

3 Epistemic States versus Belief Sets

The examples we presented in the previous section show that the AGM postulates are too weak to
regulate changes in conditional beliefs. Our solution to this problem is given in Section 5 where we
augment these postulates with four additional ones that regulate such change. The choice of proposed
postulates is not arbitrary, however. It is motivated by a careful analysis of such regulation which we
conduct in Section 4. In this section, we present a modification of Postulates (R1)—(R6), which we argue
is necessary for turning the operator o into a genuine belief revision operator, worthy of the expectation
that such a title evokes. The modified set of postulates will be the basis of our treatment of iterated
revisions.

The modification we shall suggest to Postulates (R1)~(R6) is a weakening of Postulate (R4), which
makes belief revision a function of an epistemic state instead of a belief set.> Each epistemic state ¥ has
an associated belief set, denoted Bel(V), which is a propositional sentence. The belief set of ¥ does not
characterize ¥ uniquely; therefore, it is possible to have two different epistemic states with equivalent
belief sets.

The modification of Postulates (R1)-(R6) leads to Postulates (R*1)-(R*6) which are shown below.
To simplify notation, we are adopting the following convention in the rest of the paper: We use ¥ instead
of Bel(V) whenever it is embedded in a propositional formula. For example, we will write ¥ |= a to

*The orders <y and <yo, are constrained by the properties of faithful assignments.
°A similar modification has independently been proposed in [7].



mean Bel(V) = a; ¥ A ¢ to mean Bel(V) A ¢; ¥ = & to mean Bel(V) = Bel(®); and so on. However,
¥ o p will stand for the epistemic state, not belief set, that results from the revision by p. With this

notation at hand, the modified AGM postulates are:
R*1) W o p implies p.
R*2) If ¥ A u is satisfiable, then Vo pu =W A p.

R*3) If p is satisfiable, then W o p is also satisfiable.

R*4) If \1’1 = qu and H1 = U2, then \Ijl ol = \IJQ O Uz.
(op)A ¢implies Wo (uA o).
I

f(Vopu)A ¢ is satisfiable, then W o (u A ¢) implies (Vo u) A ¢.

(
(
(
(
(R*5
(

)
)
)
)
)
)

R*6

There are only two differences between these postulates and (R1)-(R6). First, a revision is applied to
an epistemic state ¥ instead of a belief set ¢». Second, Postulate (R*4) is a weakening of Postulate (R4),
which, in our notation, reads:

(R4) If ¥y = ¥, and gy = pg, then ¥y o g = ¥y 0 ps.

Postulate (R4) says that if epistemic states ¥; and ¥, have equivalent belief sets (¥ = W3), then they
must lead to equivalent belief sets when revised using equivalent evidence. Postulate (R*4), in contrast,
is more cautious; it requires the epistemic states to be identical (¥; = Wy) for this to be the case.

Having broadened the AGM framework to operate on epistemic states, we also broaden Definition 2
accordingly.

Definition 3 An epistemic state ¥ accepts proposition 3 given proposition a precisely when (8 is entailed
by the revision of ¥ with «; that is, Vo a |= 3. We also say in this case that §|a is a conditional belief
of ¥, written ¥ |= 0| a.

In Section 5 we will strengthen this new framework with additional postulates, so as to properly regulate
iterated belief revision. But, first, we offer further rationale for weakening (R4) into (R*4).

While several researchers have recognized the need to formulate revision at the epistemic state level
[4, 19, 22, 15, 16, 7], the specific modification of the AGM postulates in the manner proposed above
was inspired by recent studies of Freund and Lehmann who have effectively shown that (R1)-(R6) clash
with one of the postulates, called (C2), that we propose later [6]. It turns out (Section 6), however, that
Postulate (R4) alone is the culprit for the clash. Thus the problem arises whether one should retain
Postulate (R4) and weaken (C2) or the other way around, weaken (R4) to uphold (C2). We argue for the
latter approach by demonstrating that Postulate (R4) stands contrary to common standards of plausibil-
ity, because it encapsulates the overly restrictive requirement that revision should be a function of belief
sets instead of epistemic states. We will next illustrate by example the counterintuitive consequences of
this restriction.

Example 3 [Goldszmidt and Pearl [13]] Two jurors in a murder trial possess different biases; Juror—1
believes “A is the murderer, B is a remote but unbelievable possibility while C is definitely innocent.”
Juror-2 believes “A is the murderer, C is a remote but unbelievable possibility while B is definitely
innocent.” The two jurors share the same belief set 11 = 13 = “A is the only murderer.” A surprising
evidence now obtains: g = “A is not the murderer” (A has produced a reliable alibi). Clearly, any
rational account of belief revision should allow juror—1 to uphold a different belief set than juror—2. Yet



any approach based on a revision operator that satisfies Postulate (R4) dictates that ¥y o u = 99 0o p,
which is an indefensible position.
O

We conclude this section by providing a representation theorem for Postulates (R*1)-(R*6), which
parallels Theorem 1:

Definition 4 Let W be the set of all worlds (interpretations) of a propositional language £ and suppose
that the belief sel of any epistemic state belongs to L. A funclion thal maps each epistemic state ¥ to a
total pre-order <y on worlds W is said to be a faithful assignment if and only if:

1. wy,we =V only if wy =g woy;
2. w1 EV and wy £ ¥ only if wy <y we; and
3.V =90 only if <g=<s.
Here, wy <y wy is defined as wy <g wy and wy Ly wy; w1 =g wy is defined as wy; <y wy and wy <y w;.

Theorem 2 A revision operator o satisfies Postulates (R*1)-(R*6) precisely when there exists a faithful
assignment that maps each epistemic state ¥ to a total pre—order <y such that

Mods( ¥ o p) = min(Mods(p), <w).

That is, the representation theorem for Postulates (R1)-(R6) continues to hold for the modified set of
postulates, with only one difference. The equivalence Bel(¥) = Bel(®) is not sufficient to imply <y=<¢;
the stronger condition ¥ = @ is needed instead.

4 Minimizing Changes in Conditional Beliefs

The examples we presented in Section 2 show that the AGM postulates are too weak to regulate changes
in conditional beliefs, thus permitting improper responses to sequences of observations. To address this
weakness, we shall propose four postulates in Section 5 that properly preserve conditional beliefs and,
hence, provide new criteria for testing the coherence of iterated belief revision.

A subtle issue relating to our postulates is identifying those changes in conditional beliefs that must
be minimized. For example, if we were to opt for a radical strategy of change minimization, then adding
Postulate (CB) below to the AGM postulates will suffice because it guarantees that conditional beliefs
are preserved as much as the AGM postulates permit:

(CB) If o i = —a, then (Yopu)oa=Voa.

However, such a radical strategy would be excessive. We will first discuss the reason why Postu-
late (CB) minimizes changes in conditional beliefs and then show why it leads to counterintuitive results.

4.1 Absolute Minimization

Consider the following lemma:

Lemma 1 V¥ |= §|a precisely when there exists a world w such that w = a A and w <y W' for any
WwEanNaf g



Therefore, the pre—order <y associated with an epistemic state ¥ encodes the conditional beliefs accepted
by V¥ and, similarly, the pre-order <y,, encodes the conditional beliefs accepted by ¥ o . Hence, one
can minimize changes in conditional beliefs due to a revision by making the pre-orders <y and <y, as
similar as possible, which is exactly what Postulate (CB) does:

Theorem 3 Suppose that a revision operator satisfies Postulates (R*1)-(R*6). The operator satisfies
Postulate (CB) iff the operator and its corresponding faithful assignment satisfy:

(CBR) If wy,wy |= ~(¥ o p), then wy <y wa iff wi Syop wa.

That is, according to Postulate (CB), the order imposed by <g,, on two worlds in Mods(—( ¥ o)) should
be the same as that imposed on them by <g. Note also that the order imposed by <y,, on other types
of worlds is determined by the AGM postulates. Specifically, the faithfulness of <y,, ensures that:

1. If wy,wy = ¥op, then wy =gyo, ws.
2. fw = VYopand wy = ~(V¥opu), then wy <gop wo.

Therefore, once the total pre-order <y is known, Postulate (CB) together with the AGM postulates
determine the total pre-order <y,, completely.

4.2 1Is Absolute Minimization Desirable?

Absolute minimization of changes in conditional beliefs is due to Boutilier who suggested minimizing these
changes as much as the AGM postulates permit [3]. In fact, Condition (CBR) is effectively Boutilier’s
definition of natural revision, and Postulate (CB) is a property that Boutilier has proven about his
method of revision [3].

Although Postulate (CB) rules out the counterintuitive revision scenarios discussed Section 2, the
Postulate is somewhat of an overkill because it does compromise propositional beliefs. In particular,
the postulate says that accommodating an evidence a should totally wash out a previous evidence u
whenever p contradicts a in the light of ¥. But this does not always constitute enough grounds for
evidence a to undermine an earlier evidence p because the source of contradiction may lie with ¥ not
with p.

Example 4 We encounter a strange new animal and it appears to be a bird, so we believe the animal
is a bird. As it comes closer to our hiding place, we see clearly that the animal is red, so we believe that
it is a red bird. To remove further doubts about the animal birdness, we call in a bird expert who takes
it for examination and concludes that it is not really a bird but some sort of mammal. The question
now is whether we should still believe that the animal is red. Postulate (CB) tells us that we should
no longer believe that the animal is red. This can be seen by substituting ¥ = —~a = bird and p = red
in Postulate (CB), instructing us to totally ignore the color observation u as if it never took place (see
Example 10 in Appendix A for more details).

O

The reason for this behavior is that retaining the belief in the animal’s color means that we are
implicitly acquiring a new conditional belief — that the animal is red given that it is not a bird — which
we did not have before. That is, if before observing the animal’s color someone were to ask us, “Would
you say that the animal is red, given that it is not a bird?” our answer would have been, “No, because
we are not in possession of any color information.” Strangely, according to the minimal change principle,
we should maintain this same color ignorance now that the red animal proved to be a non-bird. The



fact that we actually observed the animal’s redness prior to calling the expert does not matter, as it only
pertains to our belief set during that observation; namely, it renders the animal red, provided the animal
is a bird, but says nothing about the animal’s color if it turns out to be a non—bird.

This is counterintuitive; once the animal is seen red, it should be presumed red no matter what
ornithological classification it obtains. And if this belief preservation introduces new conditional beliefs,
so be it.

5 Postulates for Iterated Revision

We have presented a number of belief revision scenarios that involve counterintuitive changes in condi-
tional beliefs, and yet they are admitted by the AGM postulates for belief revision. This means that
the AGM postulates fail to rule out some counterintuitive belief revision operators. We have also shown
that although Postulate (CB) does preserve conditional beliefs, it also leads to counterintuitive results
because it often compromises propositional beliefs while protecting conditional ones.

Our solution to the problem is to divide conditional beliefs into two categories; those that may
compromise propositional beliefs if preserved, and those that do not. We then insist that only the second
category of conditional beliefs be preserved, and we do this by proposing additional postulates. In fact,
for clarity of exposition, we break down the conditional beliefs we want to preserve into four classes and
propose one postulate for preserving each class.

We first present these postulates, and then discuss the reason why they do not compromise propo-
sitional beliefs as does Postulate (CB). That these postulates correspond to four disjoint classes of
conditional beliefs will be obvious from the representation theorem of these postulates, which we present
later. Conditional beliefs whose protection compromises propositional beliefs are the subject of Section 7.

The proposed postulates are:

(Cl) f a =, then (Vopu)oa=Voa.
Ezxplanation: When two pieces of evidence arrive, the second being more specific than the first, the
first is redundant; that is, the second evidence alone would yield the same belief set. One can also
phrase this postulate as (Vo a)o (a A p) = Vo (a A p) with the interpretation that learning full
information should wash out any previously learned partial information [18].

(C2) If a |= —p, then (Yop)oa=V¥oa.
Ezxplanation: When two contradictory pieces of evidence arrive, the last one prevails; that is, the
second evidence alone would yield the same belief set.

(C3) f Yool pu,then (Vou)oa | p.
Ezxplanation: An evidence p should be retained after accommodating a more recent evidence a that
implies p given current beliefs.

(C4) If Woa £ —p, then (Vo pu)oafE —p.
Ezxplanation: No evidence can contribute to its own demise. If p is not contradicted after seeing a,
then it should remain uncontradicted when a is preceded by p itself.

By examining the postulates carefully, we see that none of them does lead to the unnecessary discredit
of evidence. In particular, according to Postulate (C1), the later evidence a could never discredit the
previous evidence pu because « entails . Postulate (C2), on the other hand, permits the later evidence
a to discredit the previous evidence u but justifiably so; a logically contradicts . Postulate (C3) clearly
insists that the previous evidence p be retained after accommodating the more recent evidence a. And



Postulate (C4) concerns a case under which the previous evidence g should not be contradicted as a
result of accommodating the more recent evidence «

Postulates (C1)-(C4) were phrased in terms of iterated revisions, but following is an equivalent
formulation, in terms of conditional beliefs using Definition 3, that highlights the change-minimization
role of these postulates:

(Cl) falEp,then VEflaiff Vou = Fla.
Ezxplanation: Accommodating evidence g should not perturb any conditional beliefs that are con-
ditioned on a premise more specific than pu.

(C2) If a |= ~p, then ¥ = Glaiff Vou = f|a.
FEzxplanation: Accommodating evidence p should not perturb any conditional beliefs that are con-
ditioned on a premise that contradicts u.

(C3) If ¥ |= pu|a, then o pu = pla.
FEzplanation: The conditional u|a should not be given up after accommodating evidence .

(C4) If ¥ }£ —p|a, then Vo pu £ —pla.

FEzplanation: The conditional —u |« should not be acquired after accommodating evidence p.

Appendix A presents four AGM-compatible revision operators that contradict each of our proposed
postulates, thus demonstrating that none of (C1)-(C4) is derivable from the AGM postulates. In the
following section, we provide concrete real-life scenarios demonstrating the plausibility of the proposed
postulates.

5.1 Examples

Postulate (C1) I have a circuit containing an adder and a multiplier. I believe both the adder and
multiplier are working, hence the circuit as a whole is working. If someone were to tell me that the circuit
failed, I would blame the multiplier, not the adder (trick of the trade: multipliers are known to be more
troublesome). However, if someone tells me that the adder is bad, I would believe that the multiplier is
fine (because failures are presumed independent, so, two simultaneous failures are much less likely that
one). Now, they tell me the circuit is faulty, and immediately after, that the adder is bad. Should I be
tempted to claim that the multiplier is bad too? A naive argument: “After hearing of the fault in the
circuit I blamed the multiplier. Learning that the adder is bad is perfectly consistent with my current
belief that the multiplier is bad, therefore, I have no reason to change my mind about the multiplier
being bad.” Plausible reasoning (and Postulate C1) on the other hand claim that I should change my
mind because the only reason I blamed the multiplier was to explain the failing circuit. Otherwise,
by my own admission, I would presume the multiplier is fine. Moreover, I also admitted that the two
components do not affect each other. Hence, learning that the adder is bad perfectly explains away
whatever reasons I had in blaming the multiplier; I should revert to my initial belief that the multiplier
is fine. Postulate (C1) enforces this line of reasoning. In particular, by letting

¥ = adder_ok N multiplier ok,

p = —(adder_ok A mulliplier_ok),
a = ~adder_ok,

6 = multiplier_ok,

one can conclude that (¥ o ) o @ |= 3 using Postulate (C1) and given o |= p and ¥ o o |= 3. The
AGM postulates, however, are too weak to draw such a conclusion, as demonstrated by Example 6 in
Appendix A.

10



Postulate (C2) Consider Example 2 in Section 2: I believe that lady X is smart and rich. Moreover,
I am disposed to maintain that X is smart even if found to be poor and, conversely, that X is rich even
if found to be not smart. Now, I obtain evidence that X is in fact not smart, followed by evidence that
X is indeed smart. What should happen to my belief in X being rich after accommodating these pieces
of evidence? Postulate (C2) forces one to maintain this belief. Specifically, by letting

¥ = smart A rich.
L = ~smart,

a = smart,

08 = rich,

one can conclude that (¥ o u) o o = 3 using Postulate (C2) and given that o = -y and ¥ o a |= §.
Example 7 in Appendix A, however, demonstrates that the AGM postulates are too weak to reach this
conclusion.

Postulate (C3) Consider Example 1 in Section 2: I believe that X is not a bird and that X does not
fly. Still, in the event that X turns out a bird, [ am prepared to change my mind and conclude that
X flies. What should happen to this conditional belief upon observing that X can fly? Postulate (C3)
forces one to maintain this conditional beliel after accommodating the observation. That is, by letting

¥ = -bird A —flies.
po= fles,
a = bird,

one can conclude that (¥ o ) o @ = p using Postulate (C3) and given ¥ o a |= p. Example 8 in
Appendix A, however, demonstrates that the AGM postulates are too weak to draw this conclusion.

Postulate (C4) A philosopher wakes up in the morning and says: “The sun is shining, great!, I have
no reason to believe that it will be a nasty day.” His wife tells him: “In fact, just before you woke up
they said on the radio that it is going to be a nice day.” The philosopher says: “Did they really say that?
They are usually right on the radio, I will have to take it back then, it is going to be nasty after all.”
Readers who feel there is something strange in this dialogue will be pleased to know that Postulate (C4)
will weed out this sort of logic from conversation. In particular, letting

¥ = -shining_sun,
it = nice_day,
a = shining_sun,

one can conclude that (¥ o p) o o [£ —p using Postulate (C4) and given that ¥ o a [£ —pu. In other
words, the philosopher’s final statement is inconsistent with Postulate (C4). Example 9 in Appendix A,
however, demonstrates that the AGM postulates are too weak to rule out such a statement.

5.2 A Representation Theorem

Theorem 2 shows that a revision operator satisfying the modified AGM postulates is equivalent to a set of
total pre—orders <y, each of which is associated with an epistemic state ¥ and is used to revise this state
in the face of further evidence. One observation about this result, however, is that the total pre—orders
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associated with different epistemic states are not related to one another except by requiring that the
pre—orders be faithful. This explains the permissiveness of the AGM postulates regarding some changes
in conditional beliefs when evidence is accommodated. Postulates (C1)—(C4), on the other hand, which
strongly constrain such changes, should also strongly constrain the relationship between the pre—orders
<y and <y,,. This is exactly what the following theorem shows:

Theorem 4 Suppose that a revision operator satisfies Postulates (R*1)-(R*6). The operator satisfies
Postulates (C1)-(C4) iff the operator and its corresponding faithful assignment satisfy:

(CR1) If wy = p and wy |= p, then wy <y wy iff wi <woy wo.
(CR2) If wy |= —p and wy |= —p, then wy <y wy iff w1 <goy, wa.
(CR3) If wy |= p and wy |= —p, then wy <y wy only if wy <go, wo.

(CR4) If wi = p and wy |= —p, then wy <g wy only if wy <go, wo.

By examining the above representation theorem, we see how each of Postulates (C1)—~(C4) concerns itself
with preserving some part of the pre-order <y into the pre-order <y,,. It is also clear from the above
theorem that there are two parts of the pre—order <g that Postulates (C1)—(C4) do not preserve into
<wyoy. Specifically, if wy <y wy (or wy <y wy), where wy |= - and wy = p, then the postulates do
not insist on wy <wo, wy (nOr Oon Wy <woy wy). The rationale behind this will be discussed at length in
Section 7.

6 Properties of Iterated Revision Postulates

We provide in this section a concrete revision operator that satisfies Postulates (R*1)-(R*6) and Postu-
lates (C1)—(C4), thus proving their consistency. The operator is based on a proposal by Wolfgang Spohn
for revising ordinal condilional functions, which can be viewed as representations of epistemic states
[23, 8, 24, 22]. Spohn’s method for belief change, called (p, m)-conditionalization, can be interpreted as
a qualitative version of Jeffrey’s Rule of probabilistic conditioning [11, 12, 8]. Using a dynamic version
of Spohn conditionalization, we will construct a revision operator e that satisfies all our postulates, thus
showing that the postulates we propose for characterizing iterated belief revision, in addition to being
consistent, are also compatible with a qualitative version of probabilistic conditioning.

An ordinal conditional function (ranking) is a function x from a given set of worlds into the class of
ordinals such that some worlds are assigned the smallest ordinal 0. Intuitively, the ordinals represent
degrees of plausibility. The smallest the ordinal, the more plausible a world is. A ranking is extended to
propositions by requiring that the rank of a proposition by the smallest rank assigned to a world that
satisfies the propositions:

k() = min k(w).
wEn
This also implies that
w(p V) = min(s(p), £(v)).

A ranking accepts a proposition p if the negation of the proposition is implausible: k(—p) > 0. One
can characterize the set of propositions accepted by a ranking, denoted Bel(k), as follows:

Mods(Bel(k)) =qef {w : k(w) = 0}.
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Any sentence that has the set of 0-rank worlds as its models is a characterization of these accepted
propositions, that is, k accepts u precisely when Bel(k) |= p.

One property of ranking functions is that Bel(x) is guaranteed to be satisfiable since at least one world
must be assigned the 0 rank by x. This does not admit epistemic states with unsatisfiable belief sets,
which is a restriction when viewed in light of Postulate (R*1). Specifically, if we accept this postulate,
we cannot allow revisions with an unsatisfiable p because this should lead to an unsatisfiable belief set
according to (R*1). Therefore, we will relax the assumption that at least one world have the 0-rank,
and will permit rankings s with unsatisfiable belief sets Bel(k).

In addition to proposing rankings as a representation of epistemic states, Spohn proposed a method
for changing a ranking in face of new evidence. Specifically, evidence is represented as a pair (u,m),
where p is a proposition and m is the post-revision degree of plausibility of u. A rank x is updated in
face of such evidence as follows:

Ky (W) = { k(W) — K(p), if w
(rm) Kw) — k(—p)+m, ifwE -pu.

Spohn called £, ) the (p, m)—conditionalization of x.

One feature of (p, m)-conditionalization is that g ends up with a rank of m regardless of its pre-
update rank x(u). By letting m be a function of x(p) a wide variety of belief revision schemes can be
synthesized. To construct our belief revision operator e we will choose one such scheme, ensuring that a
revision by u will always strengthen the belief in u.® Specifically, we let m, the post-revision degree of
plausibility of yx, be one degree higher than its current value, x(—p):

K(w) — K if wpE= p;
(K8 )W) =aef Kius(-w)+1)() = { ngg " 1,( S I: "
Note that if p is unsatisfiable, the belief set of x e u will also be unsatisfiable.

The following theorem shows that the proposed postulates are satisfied by Spohn’s proposal for belief

change (restricted to revision scenarios).

Theorem 5 The revision operator e satisfies Postulate (R*1)-(R*6) and (C1)-(C4).

This theorem also shows that the iterated revision postulates we have proposed are consistent with the
modified AGM postulates in which belief revision is a function of an epistemic state instead of a belief
set.”

Lehmann has shown that the AGM postulates together with Postulate (C1) are sufficient to imply
Postulates (C3) and (C4) [18].® The following theorem shows that this result is only valid in light of
Postulate (R4), which requires belief revisions to depend only on the current belief set. If revisions
are a function of the current epistemic state (as in (R*1)-(R*6)), then Postulates (C3) and (C4) are
independent of (C1):

Theorem 6 There is a revision operalor thal salisfies Postulate (R*1)-(R*6) and (C1), but does not
satisfy Postulate (C3) or (C4).

5Clearly, other updating schemes will also suit our purpose; for example, leaving k(p) unaltered whenever p is already be-
lieved, or incrementing () by a number which measures the strength of evidence for g, in the spirit of L—conditionalization
[13].

"It is commonly believed that Spohn’s conditionalization provides a successful realization of AGM-style revision.
Gardenfors, for example, claims in [8, page 73]: “...let us define the belief set K associated with the ordinal conditional
function & as the set of all propositions that are accepted in s. If we let K} denote the belief set associated with s*(A4, a),
where @ > 0, then it can be shown that the revision function defined in this way satisfies postulates (K*1)-(K*8).” This is
not in fact the case; Gardenfors construction requires that operator * not be a function since different ordinal functions &
can have the same associated belief sets, thus violating the basic tenet of the original AGM framework.

8That is, when (C1), (C3) and (C4) are phrased using belief sets instead of epistemic states.
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7 Legitimate Changes in Conditional Beliefs

Given Theorem 4, it is not hard to see that Postulate (CB) implies, but is not equivalent to, Postu-
lates (C1)—~(C4). Therefore, Postulates (C1)—(C4) do admit some changes in conditional beliefs. What
are these changes and why are they legitimate?

To answer these questions, we show that adding the following two postulates to Postulates (C1)—(C4)
will lead to absolute minimization of changes in conditional beliefs:

(C5) If Woul—aand ¥oal u, then (¥ou)oalf pu.
Ezplanation: If evidence p rules out the premise a, then the conditional belief i |a should not be
acquired after observing pu.

(C6) If Woul —aand Yoal= ~p, then (Yopu)oa = —pu.
Ezplanation: If evidence p rules out the premise «, then the conditional belief -y |a should not be
given up after observing u.

That Postulates (C5) and (C6) attain absolute minimal change in conditional beliefs can be seen from
the following representation theorem, which, together with Theorem 4, shows that the total pre—order
<oy is as similar to the total pre-order <y as the AGM postulates permit.

Theorem 7 Suppose that a revision operator satisfies Postulates (R*1)-(R*6). The operator satisfies
Postulates (C5) and (C6) iff the operator and its corresponding faithful assignment satisfy:

(CR5) If wi,ws |= p and wy |= —p, then ws <y wy and wy <g wy only if wy <wo, wi-
(CR6) If wy,ws |= p and wy |= —p, then ws <y wy and wy <g wy only if wy <woy wi-

The remaining changes in conditional beliefs that are not eliminated by Postulates (C1)—(C4) are those
identified by Postulates (C5)—(C6). The first of these changes is acquiring a conditional belief x|a only
because evidence p was acquired. And the second of these changes is giving up a conditional belief -y |«
only because evidence p was acquired. Postulates (C5)—(C6), and also Postulate (CB), eliminate these
changes, but the following analysis shows that such elimination is premature.

To show that Postulate (C5) can prohibit some legitimate changes, consider Example 4, which was
presented as counterexample to Postulate (CB). This example is a clear cut contradiction with Postu-
late (C5) because it shows that the revision suggested by Postulate (C5) is wrong: All we believe initially
is that X is a bird. We then observe that X is red, followed by an observation that X is not a bird.
Postulate (C5) tells us that we should dismiss the observation of X’s color in this case. That is, since the
conditional red | —bird was not believed by the belief set bird, it should neither be believed by the new
belief set bird o red. But this falsely means that when —bird is observed, red must be retracted, which is
a counterintuitive behavior.

To show that Postulate (C6) prohibits some legitimate changes in conditional beliefs, consider the
following example.

Example 5 We face a murder trial with two main suspects, John and Mary. Initially, it appears that
the murder was committed by one person, hence, we believe that

¥ = (John A =Mary)V (nJohn A Mary).

Given the AGM postulates, we also believe in the two conditionals =M ary|John and =John|Mary. As
the trial unfolds, however, we receive a very reliable testimony incriminating John, followed by another
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reliable testimony incriminating Mary. At this point, it is only reasonable to believe that both suspects
took part in the murder, thus dismissing the one—person theory together with the two conditional beliefs
= Mary|John and —~John|Mary. Postulate (C6), on the other hand, will force us to maintain the two
conditionals and dismiss the testimony against John, no matter how compelling. That is, by substituting
a = Mary and p = John, Postulate (C6) forces the conclusion (¥ o John)o Mary |= —~John given that
Vo John = ~Mary and ¥ o Mary |= —John.

O

This is counterintuitive; whether we should dismiss the testimony against John should depend on how
strongly we believe in it compared with how strongly we believe in the one-person theory. Postulate (C6),
however, does not take these factors into consideration and always prefers the conditional belief over the
propositional one.

8 Future Work

The counterexamples to Postulates (C5) and (C6) that we discussed in Section 7 show that the outcome
of belief change depends on the strength of evidence triggering the change. The language of AGM,
however, is too weak to represent evidence strength and is therefore inappropriate for phrasing some
plausible properties of belief change, such as qualified versions of Postulates (C5) and (C6).

To remedy this inexpressiveness, we have been investigating the refinement of revision operators so
that one can express the strength of evidence with which one is revising beliefs. In particular, instead of
one revision operator o, we are investigating a sequence of revision operators og, 01,03, ..., where Vo, u
denotes the revision of ¥ with evidence p having strength m.

The notion of evidence strength leads us to another important notion: degree of acceptance. Specifi-
cally, we will say that proposition p is accepted by ¥ to degree m if it takes an evidence -y with strength
m to retract g from V. Formally, we have the following definition.

Definition 5 Proposition p is accepted by an epistemic state ¥ to degree m (written ¥ |=,, p) precisely
when

1.V

2. Vo, ~u & —p; and
3. Vo, ~u & p.

This refinement to the AGM language is intended to allow expressing qualified versions of Postu-
late (C5) and (C6) by taking into account the degrees to which conditional beliefs are accepted and the
strength of competing evidence. Moreover, the refined language allows one to express stronger versions
of Postulates (C1)—(C4) that insist on the selective preservation of not only conditional beliefs, but also
their degrees of acceptance.

Conclusions

We have demonstrated that adequate preservation of conditional beliefs is a necessary component in any
account of rational belief revision, and that such preservation must be applied at the epistemic state,
rather than belief set level. The AGM postulates are inadequate for regulating iterated belief revision
because they apply to belief sets and, even when broadened to accommodate epistemic state revision,
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they remain too weak — two—step postulates are necessary. We have also shown that full, indiscriminate
preservation of conditional beliefs leads to counterintuitive results because it comes at the expense of
compromising propositional beliefs.

Accordingly, we have proposed an epistemic—state version of the AGM framework, together with four
additional postulates that preserve the proper mix of conditional and propositional beliefs. The resulting
system provides a new criterion for testing the coherence of iterated belief revision. Finally, we extended
the Katsuno and Mendelzon representation theorem of the AGM postulates to cover the newly proposed
postulates.
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A Concrete Examples

We will represent a total pre—order <y by a mapping s from worlds to positive integers, where wy <y wy
precisely when k(w;) < k(wg) .

Example 6 [Postulate (C1)]

world | adder_ok  multiplier_ok | <y | <wou
w1 T T 0 1
wo T F 1 0
w3 F T 2 2
Wy F F 3 1

Table 1: An AGM-compatible operator contradicting Postulate (C1).

Consider the AGM revision operator given partially in Table 1. Let

¥ = adder_ok A multiplier _ok,
p = —(adder_ok A multiplier_ok),

a = -—adder_ok.
Although a |= u, we have

Voa = -adder_ok A multiplier_ok,
(Vop)oa = -adder_ok A ~multiplier ok,

thus violating Postulate (C1), which requires that ¥ oa = (¥ o p) 0 a.
Moreover, w3, wy = i, w3 <y wa, yet w3 Lyo, wa, thus violating Condition (CR1).

Example 7 [Postulate (C2)]
world | smart  rich | <y | <vou
Wi T T 0 2
wo T F 1 1
w3 F T 1 0
wa F F 2 1
Table 2: An AGM-compatible operator contradicting Postulate (C2).
Consider the AGM revision operator given partially in Table 2. Let
¥ = smart A rich,
L = ~smart,
a = smart.
Although a | —pu, we have
Yoa = smartArich,
(Vou)oa = smart A —rich,
thus violating Postulate (C2), which requires that ¥ oa = (Vo p) 0 a.
Moreover, wy,wy = 1, w1 <w wy, yet wy Lyo, we, thus violating Condition (CR2).
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world | bird flies <v | <wop

34
Wi T T 2 1
wo T F 3 1
w3 F T 1 0
wa F F 0 1

Table 3: An AGM-compatible operator contradicting Postulate (C3).

Example 8 [Postulate (C3)]
Consider the AGM revision operator given partially in Table 3. Let

¥ = -bird A —flies,

po= fles,
a = bird.

We have,

VYoa = birdA flies,
(Vopu)oa = bird.

That is, although ¥ o a = p, we have (¥ o ui) o a [~ p, thus violating Postulate (C3).
Moreover, wy = g, wy = o, w1 <w wa, yet wy Loy we, this violating Condition (CR3).

Example 9 [Postulate (C4)]

world | shining_sun  nice_day | <y | <wou
w1 T T 1 2
wo T F 1 1
w3 F T 0 0
Wy F F 0 1

Table 4: An AGM-compatible operator contradicting Postulate (C4).

Consider the AGM revision operator given partially in Table 4. Let

¥ = -shining_sun,
¢t = nice_day,
a = shining_sun.
We have,
Yoa = shining_sun,
(Vou)oa = shining_sun A —nice_day.

That is, although ¥ o a [£ =, we have (V o ) o a |E —p, thus violating Postulate (C4).
Moreover, wy = g, wy = 2, w1 <y wy, yet wy Loy we, thus violating Condition (CR4).

Example 10 [Postulate (CB)]
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Let

= bird,
L = red,
a = -—bird,

and assume that ¥ o =bird = —bird. Substituting in Postulate (CB), we get
If Wored |= bird, then (¥ o red) o ~bird = ¥ o —bird.
Given the AGM postulates, this implies
(Vo red)o—bird = ¥ o —bird.
Given our assumption, this reduces to
(Vo red) o —bird = —bird,

which is a counterintuitive conclusion.
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B Proofs

Proof of Theorem 2
This proof is symmetric to the one provided by Katsuno and Mendelzon for Theorem 3.3 in [17].
We also use the notation form(wi,ws,...) to a denote a sentence a that has wy,ws,... as its models:

Mods(a) = {w;,ws,...}.

=—> Suppose that a revision operator o satisfies Postulates (R*1)-(R*6). For each epistemic state ¥,
define its corresponding total pre—order <y as follows:

w<ygw =45 wEYorwkE Vo form(w,w).

The binary relation <y is a total pre-order.
1. Total:
By (R*3) Mods( ¥ o form(w,w’)) is a non-empty set. By (R*1), Mods(¥ o form(w,w')) is a subset
of of {w,w’}. Therefore, for any w and &', either w | ¥ o form(w,w’) or ' | ¥ o form(w,w’).
Therefore, <y is total.
2. Reflexive:
By (R*1) and (R*3), Mods( ¥ o form(w)) = {w}. Therefore, w <g w and <y is reflexive.

3. Transitive:

Suppose that w; <g wy and wy <g w3. We need to show that wy <g ws. We consider three cases:

Case 3.1: wy = V.
w1 <y w3 follows from the definition of <y.

Case 3.2: wy £ V¥ and wq = V.
Since Mods(¥ A form(w;,wz)) = {we}, then Mods(¥ o form(w;,wz)) = {wg} by (R*2).
Hence, wy £y wy follows given that wy = W. This is a contradiction, which means the case is
impossible.

Case 3.3: wy [£ ¥ and w, £ V.
We have two subcases:

Case 3.3.1: Mods( ¥ o form(w;,ws,ws)) = {ws}.
By setting p to form(wy,wq,ws) and ¢ to form(wy,ws) in (R*5) and (R*6), we obtain
Mods( W o form(w;,wz,ws)) N{wz,ws} = Mods(¥ o form(we,ws))).

Hence, Mods(¥ o form(wz,wsz)) = {ws} and wy €y w3 since wy £ ¥. A contradiction,
which means the case is impossible.

Case 3.3.2: Mods( V¥ o form(w;,ws,ws)) # {ws}.
Since wy <y wq and wy £ ¥, we have wy = Woform(wy,ws). By setting p to form(wy,ws,ws)
and ¢ to form(wy,wy) in (R*5) and (R*6), we obtain

Mods( ¥ o form(w;,wz,wsg)) N{w;,we} = Mods( ¥ o form(w;,ws))).

Hence, wy |= V¥ o form(wy,wz,ws). By setting p to form(wy,wsz,ws) and ¢ to form(wy,ws)

in (R*5) and (R*6), we also obtain
Mods( W o form(w;,wz,ws)) N{w;,ws} = Mods(¥ o form(w;,ws))).

Hence, wy = Vo form(wy,ws). Therefore, wy <y ws.
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The assignment mapping ¥ to <y is faithful.
1. wi,we E ¥ only if wy =g wy.
Follows immediately from the definition of <y.
2. w1 EV and wy [ Y only if w <g wa:

Suppose that w; = ¥ and wy £ Y. Then Mods( V¥ o form(w;,ws)) = {w;} follows from (R*2).
Therefore, wy <y wy and wy Ly wy.

3.V =9 only if <g=<p.

Follows immediately from the definitions of <y and < and from (R*4).

The equality Mods(¥ o p) = min(Mods(u), <y) holds.
Follow immediately when p is not satisfiable. Suppose that p is satisfiable.

o Mods(Wop) C min(Mods(p), <w).
Suppose that w |= ¥ o p and w ¢ min(Mods(p), <w). We will prove a contradiction.
Given the supposition, we must have o’ = u where ' <y w.
Case 1: W' |E V.

U A p is satisfiable and, by (R*2), W o u = ¥ A . Therefore, w = ¥ since w = ¥ o u. This
leads to w <g w' which is a contradiction.

Case 2: W' |E Vo form(w,w') and w £ ¥ o form(w,w’).
By (R*5) and g A form(w,w’) = form(w,w’), we have

Mods(¥ o ) N {w,w'} € Mods( ¥ o form(w,w')).
Since w [£ ¥ o form(w,w’), we conclude w £ ¥ o p, which is a contradiction.

o min(Mods(p), <g) C Mods(¥ o p): Suppose that w € min(Mods(u), <g) and w £ Vo p. We will
prove a contradiction.

Since p is satisfiable, there must exist w’ such that w’ = ¥ o u by (R*3). By (R*5) and (R*6) and
since p A form(w,w’) = form(w, w’), we have

Mods( W o ) N form(w,w’) = Mods( ¥ o form(w,w')).

Since w’ = Vo and w [ You, we have Mods( ¥oform(w,w’)) = {w'}. Since w = min(Mods(u), <y
), we also have w <g w'. Given that w [£ ¥ o form(w,w’), w |= V. Therefore, w = ¥ o p follows
from (R*2), which is a contradiction.

<= Suppose that a faithful assignment exists which maps each epistemic state ¥ to a total pre—order
<y such that

Mods( ¥ o p) = min(Mods(p), <w).
(R*1) Wo u implies p.

Follows immediately from the definition of o.
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(R*2)

(R*3)

(R*4)

(R*5)

(R*6)

If ¥ A pis satisfiable, then W o u = W A p.
It suffices to show that if Mods(¥ A p) is not empty, then Mods(¥ o 1) = Mods(¥ A p). Suppose
that Mods(¥ A p) is not empty.

o Mods(Wopu)C Mods(¥ A ).

Suppose that w = Vo p and w £ VA p. Then w |= g and w £ ¥. Moreover, there must
exist w' = U A p and w’ <y w by properties of faithful assignments. Therefore, w cannot be
minimal in Mods(u) under <y, which is a contradiction with w |= V¥ o p.

o Mods(¥ A p) C Mods(W o p).
Suppose that w = ¥ A g. Then w must be minimal in Mods(u) under <y by properties of
faithful assignments. Hence, w € min(Mods(p), <y) = Mods( ¥ o p).
If p is satisfiable, then W o y is also satisfiable.

Follows immediately from the definition of o.

If ¥4 = ¥, and gy = pg, then ¥y o gy = ¥y 0 ps.

Follows immediately from the definition of o and properties of faithful assignments.

(Wop)A ¢implies Wo (uA o).
Suppose that w = (Vou)A¢ and w £ Yo (uA¢). Then w |= pA ¢ and there must exist ' = pA ¢
where w’ <y w. Therefore, w cannot be minimal in Mods(u) under <y, which is a contradiction.

If (Wopu)A ¢is satisfiable, then Vo (u A ¢) implies (¥ o ) A ¢.

Suppose that (¥ o p) A ¢ is satisfiable, w = W o (u A ¢), and w [£ (¥ o u) A ¢. Since w |= ¢, we
have w £ W o pu. Given that (¥ o u) A ¢ is satisfiable, there must exist some ' = (W o u) A ¢
and ' | p A ¢. This implies w <y w’ since w E Vo (u A ¢). Given that w’' |= ¥ o u, we have
w’' € min(Mods(p), <g). Therefore, w € min(Mods(p), <y) and w |= ¥ o . A contradiction.

Proof of Theorem 3

=—> Suppose that (CB) holds.
Assume wy,w;y = =(V o p). We want to show wy <g wy iff wy <go, wo.

Let a be such that Mods(a) = {w;,wz}. Then a = =(VYopu), YVoulE -aand (You)oa="Vou
by Postulate (CB). Hence, min({wy, w2}, <wop) = min({wy,ws}, <w) and w; <y wy iff wy <y, wo.

<= Suppose that (CBR) holds.
Assume VU oy |= ~a. We want to show ¥ oa = (Vo p) o a.

We have o |= =(Wopu). Moreover, <y and <y,, areidentical on their subdomains Mods(—( ¥opu)) X
Mods(—~(¥op)). Therefore, min( Mods(a), <g) = min(Mods(a), <woy,) and Voa = (Vopu)oa. g
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Proof of Theorem 4

1. Postulate (C1) is equivalent to (CR1).
—> Suppose that (CR1) holds.
Assume a |= p. We want to show that ¥ o= (Vo p) 0 a.

Condition (CR1) implies that <y and <y, are equivalent on their subdomain Mods(a) x Mods(a)
since a |= p. Hence,

Mods(¥oa) = min(a, <y)
min(a, <go,)

Mods((¥ o p) o ),

and Voa = (Vopu)oa.

<= Suppose that (C1) holds.
Assume wy,wy = p. We want to show wy <y wy iff w1 <o, w.
Let a be such that Mods(a) = {w;,we}. Then a |= p and Vo a = (Vo pu)oa by Postulate (C1).
Hence, min({wq,ws}, <g) = min({w, wa}, <woy) and wy <y wy iff wy <go, wo.
2. Postulate (C2) is equivalent to (CR2).

Proof is symmetric with the one above.

3. Postulate (C3) is equivalent to (CR3).
—> Suppose that (CR3) holds.
Assume ¥ o a = u. We want to show that (Vo pu)oa = p.

By Lemma 1, there exists w | a A g such that w <g¢ «' for any &' = a A ~u. Therefore, by
Condition (CR3), there exists w |= a A p such that w <y, w' for any ' |= a A ~p. Hence, by
Lemma 1, (Vo) oa = u.

<= Suppose that (C3) holds.
Assume wy = p, wy = ~p and wy <y wp. We want to show wy <o, w.
Let a be such that Mods(a) = {w;,wz}. Then Y oa = p by Lemma 1 since wy F o A p, w1 <y ws
and Mods(a A —p) = {wz}. Then (VY opu)oa) = p by Postulate (C3). Moreover, wy <go, wy by
Lemma 1 since Mods(a A p) = {w; } and Mods(a A —~p) = {wz }.
4. Postulate (C4) is equivalent to (CR4).
=—> Suppose that (CR4) holds.
Assume (Vo p)oa = ~p. We want to show ¥oa | —p.?

By Lemma 1, there exists w |= @ A = such that w <y,, w’ for all W’ = a A p. Moreover, by the
contrapositive of Condition (CR4), there exists w |= a A =p such that w <y &’ for all W' = a A p.
Hence, by Lemma 1, we have ¥ o a |= —pu.

?We are proving the contrapositive of Postulate (C4).
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<= Suppose that (C4) holds.
Assume wy |= i, wy = —p and wy <go, wi. We want to show wy <g wy.!?

Let a be such that Mods(a) = {w;,wz}. Then (¥ op)oa = -u by Lemma 1 since wy = a A -y,
wy <woy w1 and Mods(a A p) = {w;}. Then ¥ o o = = by Postulate (C4). Moreover, wy <y wq
by Lemma 1 since Mods(a A —p) = {wz} and Mods(a A p) = {w;}.

Lemma 2 Let the total pre—order of a ranking x be defined as follows:

wi <pwa =def Kw1) < K(wa).

We then have
Mods(Bel(x o i) = min(Mods(u), <),

and
1. wy,wy = Bel(k) only if vy =, wa.
2. w1 = Bel(k) and wy = —~Bel(k) only if w1 <.y wo.
3.kt =k? only if <,1=<,2.

Here, wy <, wy is defined as wy <, wy and wy £, wy; andwy =, wq is defined as wy <, wy and wy <, wy.

Proof of Lemma 2
To show that Mods(Bel(x o i) = min(Mods(u), <), we show the following:

o If w|= Bel(x e p) then w € min(Mods(u), <).

Suppose that w = Bel(kx o p). Then (k e p)(w) = 0 by definition of Bel(k o p), and w = p by
definition of « e . Moreover, (ko u)(w) = k(w) —k(p) = 0 and K(w) = K(p) = min e, #(w'). This
implies that w <, w' for all W’ = p and w € min(Mods(p), <g).

o If w € min(Mods(u), <) then w |= Bel(k o p).

Suppose that w € min(Mods(p),<x). Then w | p and w <, ' for all W' |= p. Moreover,
K(w) < k(w') for all W' = p and, hence, kK(w) = k(p). This implies that (ke pu)(w) = K(w)—rK(x) =0
and, hence, w |= Bel(k o p).

The rest of the theorem is shown as follows:

1. wi,wy = Bel(k) only if wy =4 wo.

Suppose that wy,wy = Bel(k). Then k(w;) = k(wy) = 0 by definition of Bel(x). Therefore,
w1 =4 wo by definition of =,.

2. w1 = Bel(k) and wy = - Bel(k) only if wy <,y wo.

Suppose that wy |= Bel(k) and wy = - Bel(k). Then x(wy) = 0 and x(wz) > 0 by definition of
Bel(k). Therefore, wy <o, w2 by definition of <,,,.

3. k= k? only if <a=<,2.

Follows immediately from the definitions of <,: and <,».

1%We are proving the contrapositive of Condition (CRA4).
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Lemma 3 Let <, and <,,, be total pre-orders induced by rankings k and x e . We then have
1. Ifw = poand wy |= p, then wy <, wy iff wi <gep wo-
2. If wy |E —p and wy |= i, then wy <, wy iff wi <gep wa-
3. Ifwy = poand wy = e, then wy <, wa only if wy <xep wa-

4. If w1 = poand wy =, then wy <, wq only if wy <,y wo.

Proof of Lemma 3

(5 & 1)) = Aoy 1)) { Y

Therefore, conditioning is shifting process in which the ranks of worlds inside Mods(p) are all reduced
by k(u) and the ranks of worlds inside Mods(—yu) are all increased by 1. This implies the following:

1. The relative order of worlds inside Mods(u) does not change.
2. The relative order of worlds inside Mods(—p) does not change.

3. If a world in Mods(p) had a lower rank than a world in Mods(—p) before the shifting, this will
continue to be the case after the shifting.

4. It is impossible for a world in Mods(p) to have a higher rank than a world in Mods(—p) after the
shifting if it did not before the shifting.

The four properties (1)-(4) then hold.

Proof of Theorem 5
That operator e satisfies Postulates (R*1)—(R*6) follows immediately from Lemma 2 and Theorem 2.
That it satisfies Postulates (C1)—(C4) follows immediately from Lemma 3 and Theorem 4.

Proof of Theorem 6
The revision operator ¢ is defined as follows:

K(w) — w(p), ol g
(kop)(w)=1 Klw)+1, ifwk p, klw) < 2;
Kw) — 1, if wE -, klw) > 2;

This operator is exactly like @ except for one thing: It decrements the rank of every world inside Mods(—pu)
if the world’s rank is no less than 2. Therefore, the relative order of worlds inside Mods(u) is preserved,
but other ordering relations (especially between worlds in Mods(p) and Mods(—p) are purturbed). This
causes the operator to violate Properties (2), (3) and (4) of Lemma 3, while continuing to satisfy (1).
Since operator ¢ is equivalent to e for worlds inside Mods(y), Lemma 2 holds for ¢ as well. Therefore,
Theorem 5 also holds for ©.
Since operator ¢ satisfies (1) of Lemma 3, it also satisfies Postulate (C1) according to Theorem 5.
To show that operator ¢ does not satisfy Postulate (C3), consider Table 5 where Mods(a) = {wz,ws}
and Mods(p) = {w;,ws}. We have Bel(koa) |= u, but Bel((kop)oa) = p, which violates Postulate (C3).
To show that operator ¢ does not satisfy Postulate (C4), consider Table 6 where Mods(a) = {wz,ws}
and Mods(pu) = {w;,we}. We have Bel(k ¢ a) £ —pu, but Bel((k o p) o @) |= -, which violates
Postulate (C4).
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world || K | Koa | kKopu | (Kop)oa
w1 0 1 0 1
wy 3 0 3 0
w3 4 1 3 0
Wy 0 1 1 2

Table 5: A scenario that violates (C3).

world | k | kKoa | kop | (kop)oa
w1 0 1 0 1
wy 3 0 3 1
w3 3 0 2 0
Wy 0 1 1 2

Table 6: A scenario that violates (C4).

Proof of Theorem 7

1. Postulate (C5) is equivalent to (CR5).
=—> Suppose that (CR5) holds.

Assume ¥ oy = —a and (¥ op)oa | u. We want to show ¥ oa | p.1?

By Lemma 1, there exists w3 |= g A —a such that w3 <g w for all w |= p A a. Also by Lemma 1,
there exists wy = a A @ such that wy <y, wy for all wy = a A =p. Therefore, by Condition (CR5)
and since w3 <y wi, there exists wy = a A p such that wy <y wy for all wy = a A —u. Hence, by
Lemma 1, we have ¥V o a |= p.

<= Suppose that (C5) holds.

Assume wy,ws = @, w2 | o, ws <y wy and wy <goy wo. We want to show wy <y wq.'?

Let a be such that Mods(a) = {w;,ws}. Then ¥ oy = -a by Lemma 1 since ws = pu A —a,
ws <y wp and Mods(p A o) = {w;}. Also, (Vop)oa |E u by Lemma 1 since wy | a A u,
w1 <woy wp and Mods(a A ) = {wz}. Then ¥ oa |= p by the contrapositive of Postulate (C5).
Moreover, wy <y wp by Lemma 1 since Mods(u A o) = {w; } and Mods(a A —u) = {ws}.

2. Postulate (C6) is equivalent to (CR6).
=—> Suppose that (CR6) holds.
Assume Vo p = —a and ¥ o a |= —pu. We want to show (Vo u)oa | —pu.

By Lemma 1, there exists w3 |= u A —a such that wy <g w for all w |= p A a. Also by Lemma 1,
there exists wy = @ A = such that wy <y w; for all wy = a A p. Therefore, by Condition (CR6)
and since ws <y wq, there exists wy |= a A ~p such that wy <o, wy for all wy = a A p. Hence, by
Lemma 1, we have (Vo p)oa = —p.

<= Suppose that (C6) holds.

Assume wy,ws |= p, wy = p, w3 <y wy and wy <y wi. We want to show wy <go, wi.

"'We are proving the contrapositive of Postulate (Cs).
12We are proving the contrapositive of Condition (CRS5).
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Let a be such that Mods(a) = {w;,ws}. Then Yopu |= =a by Lemma 1 since ws = pA-a, ws <g w
and Mods(p A a) = {w;}. Moreover, ¥ o a |= = by Lemma 1 since wy | o A ~p, wp <y wp and
Mods(a A p) = {w;}. Then (Vo pu)oa = —u by Postulate (C6). Moreover, wy <o, w; since
Mods(a A ) = {we} and Mods(a A p) = {w;}. 1
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