
A simple algorithm to construct a consistent

extension of a partially oriented graph

Dorit Dor

Computer Science Department

School of Mathematical Sciences

Tel-Aviv University

69978

Israel

Michael Tarsi
�

Cognitive Systems Laboratory

Computer Science Department

University of California, Los Angeles, CA 90024

October 23, 1992

Abstract

A Partially directed acyclic graph, (pdag), is a graph which contains both directed

and undirected edges, with no directed cycle in its directed subgraph. An oriented

extension of a pdag G is a fully directed acyclic graph (dag) on the same underlying

set of edges, with the same orientation on the directed subgraph ofG and the same set of

vee-structures. A vee-structure is formed by two edges, directed toward a common head,

while their tails are nonadjacent. A simple polynomial-time algorithm is presented,

to solve the following problem: Given a pdag, does it admit an oriented extension?

The problem was stated by Verma and Pearl, while studying the existence of causal

explanation to a given set of observed independencies.

�Visiting professor. Permanent address: Computer Science Department, School of Mathematical Sciences,

Tel-Aviv University, 69978, Israel. Supported in part by the Air Force O�ce, AFOSR 90 0136 and by

Northrop MICRO, PO 11510.

1



1 Introduction

A Partially directed acyclic graph, (pdag), is a graph which contains both directed and
undirected edges, with no directed cycle in its directed subgraph. An oriented extension
of a pdag G is a fully directed acyclic graph (dag) on the same underlying set of edges,
with the same orientation on the directed subgraph of G and the same set of vee-structures.
A vee-structure is formed by two edges, directed toward a common head, while their tails
are nonadjacent. These de�nitions as well as some background and motivation are stated
and explained in [1]. While studying the existence of causal explanation to a given set
of observed independencies, Verma and Pearl [1] have faced the following combinatorial
problem, to which we refer here as "PDX" (PDag eXtensibility): Given a pdag, does it
admit an oriented extension?

In Section 2 of [1] the authors present an algorithm for PDX, which is conjectured,
however not proven, to be polynomial. Another algorithm, given by Verma in [3], although
it runs in linear time, is rather complicated and less intuitive. We present here a simple
polynomial-time algorithm to solve the above problem.

2 The algorithm

Our algorithm selects �rst a vertex x to be the sink of the extension and recursively proceed
to the subgraph obtained by the removal of the sink and all edges incident to it:
Algorithm extend(G: pdag);

begin (extend)
G0 := G; A := G;

while A is not empty do
begin (iteration)

Select a vertex x which satis�es the following properties
in the subgraph A:
a. x is a sink (no edge (x; y) in A is directed outward from x)
b. For every vertex y, adjacent to x, with (x; y) undirected, y is
adjacent to all the other vertices which are adjacent to x;

If such x is not found, then the algorithm stops and returns
a negative answer (G does not admit any extension);
If x is found, let all the edges which are incident to x in A

be directed toward x in G0 (G' is meant to form the output);
A := A� x (remove x and all the edges incident to x)

end (iteration);
return G0 (an extension of the input pdag G)

end (extend).

2



3 Validity and complexity

An extension of G, if it exists, is a dag and as such it contains a sink. To become a sink
of the extension G0 a vertex x must satisfy property a: (of the iteration phase above) in G.
To avoid the creation of new vee-structures, while directing all edges toward x, it should
also satisfy property b:. Hence a vertex which satis�es both properties a: and b: is indeed
necessary for the existence of an extension. To justify our recursive method we should show
�rst that the removal of a sink x from the extension G0 provides an extension G0 � x of the
pdag G� x, obtained when the same vertex is removed from the input pdag G: No directed
cycle can be formed by the removal of x and hence G0 �x is still a dag. In the general case a
new v-structure might be generated by the removal of edges if a single edge is deleted from
a triangle, whose other two edges now form a v-structure. In the case on hand, however, all
the edges incident to x are deleted, thus, the number of edges removed from any triangle is
either 0 or 2. G0 �x is hence indeed an extension of G�x. To complete the proof we should
notice that no existing extension is missed by selecting the speci�c vertex x to be a sink. If
there exists an extension where x is not a sink then it will still remain an extension if the
edges going out of x are reoriented toward x. All redirected edges are incident to x and since
x is now a sink no directed cycle was formed. Also no new v-structures are created due to
property b: of the selected vertex x.

For the complexity analysis note that there are jV j iterations where every edge is searched
at most twice (once for each endvertex). The time complexity is thus O(jV jjEj).

4 Some concluding remarks

A dag with no vee-structure is chordal (any orientation of a chordless cycle contains a vee-
structure). Consequently, if G contains no vee-structure then its underlying graph should
be chordal. A known characterization of chordal graphs states that all such graphs can be
constructed, starting with an isolated vertex, by successive insertion of new vertices, each
adjacent to a clique in the existing graph. When our algorithm is applied to a graph G with
no oriented edges then property b: states that the neighbors of x form a clique. In this case G
admits an extension if and only if it is chordal. Our algorithm is a natural generalization of
a naive chordality test, based on the above characterization, to the case where v-structures
are allowed, but no new ones should be formed. Chordality can be tested in linear time [2]
and hence it takes linear time to test the existence of an extension where the input has no
vee-structures. We believe that linear-time chordality algorithm can be modi�ed to a general
linear-time algorithm for PDX.

3



References

[1] J. Pearl & T. Verma, \An Algorithm for Deciding if a set of Observed Independencies
a Causal Explanation," Proceedings of the 8th Conference on Uncertainty in Arti�cial
Intelligence, Stanford (1992, to appear).

[2] R.E. Tarjan & N. Yannakakis, \Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs ,"
Siam J. Comput., 13 (1984), 566-579.

[3] T. Verma, \A linear-time algorithm for �nding a consistent expansion of a partially
oriented graph," Technical Report R-180, UCLA Cognitive Systems Laboratory, 1992.

4


