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1. Introduction 

The article "Fusion, propagation and structuring in belief networks" [18] 
(hereafter Fusion) was the culmination of a series of papers (e.g., Pearl 
[ 16 ], Kim and Pearl [ 13 ], Pearl [ 17 ] ) in which I advocated the restora- 
tion of probabilistic methods in AI systems and explored the possibility of 
representing and manipulating probabilistic knowledge in graphical forms, 
later called belief networks (also known as Bayesian networks and causal 
diagrams). In recent years, belief networks have become a tool of great 
versatility and power and are now considered the most common repre- 
sentation scheme for probabilistic knowledge. They have been used to aid 
diagnosis of medical patients and malfunctioning systems, to understand 
stories, to interpret pictures, to perform filtering, smoothing and prediction, 
to facilitate planning in uncertain environments, and to study causation, 
nonmonotonicity,  action, change, and attention, l 

The following is a brief personal account of the development of belief 
networks, both before and after the publication of Fusion, although space 
permits but a sketchy account of the wealth of recent developments in this 
area. 2 
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*This work was supported in part by NSF grant IRI-9157936, AFOSR grant 900136, and by 
State of California MICRO grants 91-124 and 91-125. 

1 Some of these applications are described in a recent tutorial article by Charniak [ 1 ]. 
2A more complete account and an updated bibliography are provided in the revised second 

printing of my book Probabilistic Reasoning in Intelligence Systems [20]. 
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2. Origins 

The idea of studying distributed probabilistic computations on graphical 
models began brewing in my mind in the late 1970s, after I read Rumelhart's 
paper on reading comprehension [24]. In this paper, Rumelhart presented 
compelling evidence that text comprehension must be a distributed pro- 
cess that combines both top-down and bottom-up inferences. Strangely, 
this dual mode of inference, so characteristic of Bayesian analysis, did not 
match the capabilities of  either the "certainty factors" calculus or the infer- 
ence networks of PROSPECTOR--the two major contenders for uncertainty 
management in the 1970s. I thus began to explore the possibility of achiev- 
ing distributed computation in a "pure" Bayesian framework, so as not 
to compromise its basic capacity to combine bi-directional inferences (i.e., 
predictive and abductive). Not caring much about generality at that point, 
I picked the simplest structure I could think of (i.e., a tree) and tried to see 
if anything useful can be computed by assigning each variable a simple pro- 
cessor, forced to communicate only with its neighbors. This gave rise to the 
tree-propagation algorithm reported in [ 16 ] and, a year later, the Kim-Pearl 
algorithm [13], which supported not only bi-directional inferences but also 
intercausal interactions, such as "explaining away". These two algorithms 
were described in Section 2 of Fusion. 

In the course of developing these algorithms, it became clear that condi- 
tional independence is the most fundamental relation behind the organization 
of probabilistic knowledge and the most crucial factor facilitating distributed 
computations. I therefore decided to investigate systematically how directed 
and undirected graphs could be used as a language for encoding, decoding, 
and reasoning with such independencies. At about the same time, Howard 
and Matheson were studying the properties of influence diagrams [ 11 ] and 
were asking similar questions about graphs and dependencies, albeit from 
a somewhat different perspective: the links in the diagrams were treated as 
pointers to the information that a person finds convenient to consider while 
assessing probabilities. 

The myriad of questions left unanswered in Howard and Matheson's report 
jolted me into trying a different approach, in which the links are designated 
specifically to causal associations. However, having found no satisfactory 
definition of causality in the literature, I decided to search for one myself 
by asking what mathematical relationships exist between probabilities and 
directed acyclic graphs. I asked how a directed acyclic graph (dag) can be 
extracted from a given probability distribution, whether the extracted dag is 
unique, what kind of distributions can be specified by a given dag, how we 
can read off the independencies that are embedded in the dag, and whether 
they match those associated with causal organizations. This line of inquiry 
resulted in Section 1 of Fusion, in which the construction, consistency, and 
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completeness of belief networks were demonstrated and the d-separation cri- 
terion was presented. Eventually, this inquiry developed into the axiomatic 
theory ofgraphoids (Pearl and Paz [22], Pearl [20], Geiger [5] ), in which 
directed and undirected graphs are treated as representations of abstract 
mathematical objects, called dependency models, and are interpreted and 
manipulated by the logic of conditional independence. 3 

3. Motivations and speculations 

Fusion was motivated by a busy mixture of observations and speculations, 
some of which I recall quite vividly: 

( 1 ) The failure of rule-based systems to exhibit certain plausible patterns 
of reasoning is symptomatic of fundamental limitations, and these 
limitations can be overcome only by grounding automated reasoning 
in some safe and friendly calculus of uncertainty. 

(2) The consistent agreement between plausible reasoning and probability 
calculus could not be coincidental, but strongly suggests that human 
intuition invokes some crude form of probabilistic computation. 

(3) In light of the speed and effectiveness of human reasoning, the com- 
putational difficulties that plagued earlier probabilistic systems could 
not be very fundamental and should be overcome by making the right 
choice of simplifying assumptions. 

(4) No reasoning can take place unless our knowledge embodies many 
(conditional) independence assumptions, and graphical forms are the 
only plausible way in which these assumptions could be represented. 

(5) If a graphical knowledge representation could be found, then it should 
be possible to use the links as message-passing channels, and we could 
then update beliefs by parallel distributed computations, reminiscent 
of neural architectures. 

(6) If belief updating could be achieved by such distributed mechanisms, 
then the update would be easier to explain, since the flow of infor- 
mation would transverse conceptually meaningful paths. 

(7) If distributed updating were feasible, then probabilistic inference 
would be as easy to program and execute (even on a serial machine) 
as rule-based systems, since no timing information, hence only simple 
control mechanisms, would be required. 

3Fusion has been criticized for "substituting mathematics for clarity" (e.g., R.E. Barlow, in 
[15, p. 117] ). In my judgment, it was precisely this conversion of networks and diagrams 
to mathematically defined objects that led to their current acceptance in practical reasoning 
systems. 
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In hindsight, some of these speculations were rather naive. For example, 
fully distributed updating turned out to be feasible only in singly connected 
networks, and some conditional independence relationships were shown 
to defy graphical representation altogether. Nevertheless, many of these 
speculations have survived the test of time, as the following section reflects. 

4. The main contributions 

The key contribution of Fusion was the formulation and demonstration 
of some of the basic properties and capabilities of belief networks: 

(1) Graphical methods make it easy to maintain consistency and com- 
pleteness in probabilistic knowledge bases. They also define modular 
procedures of knowledge acquisition that reduce significantly the 
number of probability assessments required, 4 and they guard the 
model builder from assigning numerical values that lead to unin- 
tended dependencies. 

(2) Independencies can be dealt with explicitly. They can be articulated 
by an expert, encoded graphically, read off the network, and reasoned 
about, yet they forever remain robust to numerical imprecision. Every 
conditional independency embedded in the network can be recognized 
in linear time (using the d-separation rule). 

(3) Graphical representations uncover opportunities for efficient compu- 
tation. Distributed updating is feasible in knowledge structures rich 
enough to exhibit intercausal interactions (e.g., "explaining away"), 
and, when extended by clustering or conditioning, tree-propagation 
algorithms are capable of updating networks of arbitrary topology. 

(4) The combination of predictive and abductive inferences has resolved 
many problems encountered by first generation expert systems and 
has rendered belief networks a viable model for cognitive functions 
requiring both top-down and bottom-up inferences. 

(5) Causal utterances such as "X is a direct cause of Y" were given a 
probabilistic interpretation as distinctive patterns of conditional in- 
dependence relationships that can be verified empirically. "Hidden 
causes" were given operational definition and, under certain condi- 
tions, were shown to be identifiable by efficient algorithms. 

4A further reduction has been achieved by Heckerman's similarity networks [9]. 
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5. Recent progress 

5.1. d-separation and graphoids 

In retrospect, perhaps Fusion made its greatest immediate impact through 
the introduction of the d-separation criterion, d-separation (the "d" denot- 
ing "directional") is a simple graphical test for deciding which conditional 
independence relations are implied by a given network's topology. It pro- 
vides, therefore, the semantics needed for defining and characterizing belief 
networks. Technically, the d-separation criterion has facilitated immediate 
solutions to three practical problems (see [21, Section 4.4.]): 5 

( 1 ) how to characterize precisely the set of graphical transformations (e.g., 
arc reversals, node removals, node collapsing) that can legitimately 
be performed on a network, 

(2) how to test whether one network is entailed by or is equivalent to 
another, and 

(3) how to delineate the minimum information needed for answering a 
given query. 

On the conceptual side, by identifying the independencies embedded in 
directed acyclic graphs, the d-separation criterion has also identified special 
patterns of independencies that are characteristics of causal organizations. 
These patterns have since been used to define causation in default reasoning 
(Goldszmidt and Pearl [8]) and relational databases (Dechter and Pearl 
[4] ), and to uncover causal relationships in data (Pearl and Verma [23]) 
(see also last paragraph in this section). 

Verma [29] has proved the soundness of the d-separation criterion using 
the semi-graphoid axioms (Pearl and Paz [22] ), thus rendering the criterion 
valid for a wide class of informational dependencies, including probabilistic, 
graphical, correlational, and database dependencies. Geiger [5] has shown 
that the criterion cannot be improved; namely, d-separation reveals all the 
independencies that can be inferred from the information provided by the 
network builder. A more comprehensive separation criterion, applicable to 
networks containing deterministic nodes, was developed by Geiger, Verma, 
and Pearl [6] and has been shown to be testable in time proportional to 
the number of edges in the network. 

The relation of conditional independence has received an axiomatic char- 
acterization using the theory of graphoids [22] (see also [20, Chapter 3] ), 
which provides symbolic machinery for deciding whether one independency 

5Specific aspects of these problems (e.g., Shachter's arc reversals [25]) had been worked 
out in the literature on influence diagrams, but the general problems remained unsettled until 
quite recently (Smith [26]). 
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follows from others and whether we can capture such independencies by 
graphs. Representations using undirected graphs (also known as Markov 
fields) are discussed in [20, Chapter 3], and [5]; representations using 
multi-graphs and annotated graphs have been developed by Geva and Paz 
[7]. 

5.2. Network updating techniques 

Since the publication of Fusion, many techniques for updating belief 
networks have been developed and refined. Among the most popular are 
Shachter's method of node elimination [25], Lauritzen and Spiegelhalter's 
method of graph-triangulation and clique-tree propagation [14], and the 
method of loop-cut conditioning [18, Section 2.4]. While the task of com- 
puting probabilities in general networks is NP-hard (Cooper [2] ), the com- 
plexity of the first two methods is exponential in the size of the largest clique 
found in some triangulation of the network. The third method might yield a 
higher complexity in some networks, but it is convenient in networks with a 
few long loops. It is fortunate that these complexities may be estimated prior 
to actual processing, because, when the estimates exceed reasonable bounds, 
we can switch to an approximation method such as stochastic simulation 
(Henrion [10], Pearl [19] ). Statistical techniques have also been developed 
for systematic updating of the conditional probabilities annotating the net- 
work so as to achieve a better match with past empirical data (Spiegelhalter 
and Lauritzen [27] ). The preprocessing method of tree decomposition with 
hidden variables [18, Section 3] is still not well developed. 

5.3. Causal discovery 

One of the most exciting prospects in recent years has been the possibility 
of using belief networks to discover causal relationships in raw statistical 
data. Technically, the probabilistic semantics that belief networks attribute 
to the links and their orientations has rendered this prospect feasible, and 
several systems have been developed for this purpose. 

Pearl and Verma [23] have developed a probabilistic account of causa- 
tion based on minimal-model semantics. 6 This theory provides criteria for 
identifying genuine and spurious causes, with and without temporal infor- 
mation, and yields algorithms for recovering causal networks with hidden 
variables from statistical data. A fast algorithm for recovering sparse net- 
works is described by Spirtes and Glymour [28], and Bayesian methods 
of computing the "probability that X is a cause for Y" were developed 
by Cooper and Herskovits [3]. In addition to their likely impact on the 

6In this  semant ics ,  a variable X is said to have a causal  inf luence on a variable Y if there is 
a directed pa th  f rom X to Y in all m i n i m a l  causal  networks (dags) consis tent  with the  data. 



Belief networks revisited 55 

practice of building knowledge systems, these developments also promise 
finally to give causation a purely empirical semantics--the illusive goal of 
many philosophers and statisticians since the time of Hume. 

6. Regrets and near misses 

One regrettable step in Fusion was my betting on what turned out to be 
the less attractive way of extending tree propagation to multiply connected 
networks. I speculated that the loop-cut conditioning method would be 
more efficient than the one I labeled "compounding", that is, forming 
clusters of  compound variables that are tree-structured and applying the tree- 
propagation algorithm to the resulting tree. Lauritzen and Spiegelhalter [ 14 ], 
and later Jensen et al. [ 12 ], have perfected this tree-clustering method to the 
point that it is now the most widely used algorithm in practical applications. 
The popularity of the tree-clustering method stems from its inheriting the 
distributed character, and hence robustness and versatility of the basic tree- 
propagation algorithm, as described in Fusion (Section 2.1 ). 7 Thus, my 
regrets are somewhat mitigated by the realization that concentrating my 
initial efforts on trees and polytrees did yield some useful insights. 

Finally, to the many readers intrigued by the lengthy review process for 
Fusion (Received January 1982; revised version received February 1986): 
Yes, it indeed took four years to get the article accepted, but the reviewers 
were not at fault. The article simply got lost (literally!) twice, which was 
not entirely without virtue; each time the editor asked me to replace a lost 
copy, I would seize the opportunity and send an improved version. I hope 
the final outcome was worth the wait. 
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