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Abstract

Recent progress towards unifying the probabilistic and model preference semantics for non-
monotonic reasoning has led to a remarkable observation: Any consistent system of default
rules imposes an unambiguous and natural ordering on these rules which, to emphasize its sim-
ple and basic character, we term "Z-ordering." This ordering can be used with various levels
of refinement, to prioritize conflicting arguments, to rank the degree of abnormality of states of
the world, and to define plausible consequence relationships. This paper defines the Z-ordering,
briefly mentions its semantical origins, and illustrates two simple entailment relationships in-
duced by the ordering. Two extensions are then described, maximum-entropy and conditional
entailment, which trade in computational simplicity for semantic refinements.

1. Description

We begin with a set of rules R = [r: o^ -» p,.} where Oy and p,. are propositional formulas over a finite
alphabet of literals, and -> denotes a new connective to be given default interpretations later on. A truth
valuation of the literals in the language will be called a model. A. model At is said to verify a rule a -» p
if M h a A p (i.e., a and p are both true in M), and to f a l s i f y a->pifM|=CtA-,|3.

Given a set /? of such rules, we first define the relation of toleration.

(*) This work was supported in part by National Science Foundation grant #IRI-86-10155 and Naval Research Laboratory grant
#N00014-89-J-2007.



Definition 1: A set of niles R' c /? is said to tolerate an individual rule r, denoted T(r I /? Q, if the set of

formulas (oiy A ?,.) u (o,.' 3 P,.') is satisfiable, i.e., if there exists a model that verifies r and does notr'e R'
falsify any of the rules in R'.

To facilitate the construction of the desired ordering, we now define the notion of consistency.

Definition 2: A set R of rules is said to be consistent if for every non-empty subset R' c; R there is at
least one rule that is tolerated by all the others, i.e.,

V/?'e/?, 3 r'e R', such that T^r^R'-r') (1)

This definition, named p -consistent in [Adams 1975] and e-consistent in [Pearl 1988], assures the
existence of an admissible probability assignment when rules are given a probabilistic interpretation. In
other words, if each rule a -> (3 is interpreted as a statement of high conditional probability,
P (p I a) S 1 -e, consistency assures that for every e > 0 there will be a probability assignment P (to
models of the language) that satisfies all these statements simultaneously. An identical criterion of con-
sistency also assures the existence of an admissible preference ranking on models, when each rule a -> p
is given a model-preference interpretation, namely, P is true in all the most preferred models of a [Leh-
mann and Magidor 1988].

A slightly more elaborate definition of consistency applies to databases containing mixtures of
defeasible and nondefeasible rules [Goldszmidt and Pearl 1989a]. Note that the condition of consistency
is stronger than that of mere satisfiability. For example, the two rules a —> b and a -> -i b are satisfiable
(if a is false) but not consistent. Intuitively, consistency requires that in addition to satisfying the con-
straint associated with the rule a —> b, the truth of a should not be ruled out as an impossibility. This
reflects the common understanding that a conditional sentence "if a then 6" is not fully satisfied by
merely making a false; it requires that both a and b be true in at least one possible world, however un-
likely.

The condition of consistency, Eq. (1), leads to a natural ordering of the rules in R. Given a con-
sistent R, we first identify every rule that is tolerated by all the other rules of/?, assign to each such rule
the label 0, and remove it from R. Next, we attach a label 1 to every rule that is tolerated by all the
remaining ones, and so on. Continuing in this way, we form an ordered partition of
R = (.RO, R i. RZ, • • • RK\ where



/?,={r:r(r l /?-/?o-/?i- • • • Ri-i)} (2)

The label attached to each rule in the partition defines the Z-ranking or Z-ordering. The process
of constructing this partition also amounts to testing the consistency of R, because it terminates with a
fiul partition iff/? is consistent [Goldszmidt and Pearl 1989a].

Theorem 1: The complexity of testing the consistency of a set of rules is 0 [PS (n )N2], where N is the
number of rules, n the number of literals in R and PS (n) the complexity of prepositional satisfiability in
the sublanguage characterizing the rules (e.g., PS (n) = 0 (n) for Horn expressions).

Proof: Identifying Ry takes N • PS(n) steps, identifying /?i takes (N - \Ro\)PS(n) steps, and so on.
Thus, the total time it takes to complete the labeling is

PS(n)[N +(N - \Ro\)+(.N - \RQ\ - l/?il)+ • • • ] ^ PS(n)[N +(N -1)+ • • • ]

=PS(.n)N^- (3)

m order to define the notions of entailment and consequence it is useful to translate the ranking
among rules into preferences among models. The reason is that we wish to proclaim a formula g to be a
plausible consequence of/, written / |- g , only if the constraints imposed by R would force the models
of / A g to stand in some preference relation over those of / A —ig. For example, the traditional pre-
ferential criterion for g to be a rational consequence of/ requires that all the most preferred models of/
satisfy g , i.e., that all the most preferred models of/ reside in / A g and none resides in / A -ig [Sho-
ham 1987]. We shall initially limit ourselves to such preference criteria that do not require substantial
enumeration of models, i.e.. that the preference between / A g and / A -ig be readily tested using the
partition defined in Eq. (2). To that purpose, we propose the following ranking on models. Using Z (r)
to denote the label assigned to rule r ,

Z(r)=i iff re/?.. , (4)

we define the rank associated with a particular model At as the lowest integer n such that all rules having
Z (r) ̂  n are satisfied byM,

Z(M)=min{n:Mh(os. =>p,) Z(r)>/i) (5)

In other words, the rank of a model is equal to 1 plus the rank of the highest-ranked rule falsified by the
model. The rank associated with a given formula/ is now defined as the lowest Z of all models satisfy-



ing/.
Z(f)=mm[Z(M):M\=f] (6)

Note that, once we establish the ranking of the rules, the complexity of determining the Z value of any
given M is 0 (N); we simply identify the highest Z rule that is falsified by M and add 1 to its Z. More
significantly, determining the Z value of an arbitrary formula/ requires at most N satisfiability tests; we
search for the lowest i such that all rules having Z (r) S i tolerate / -»true, i.e.,

Z (/•) = min{t: T(f -> true I R,, /?,+i,...)} (7)

Eq. (5) defines a total order on models, with those receiving a lower Z interpreted as being more
normal or more preferred. This ordering satisfies the constraints that for each rule o^. —> (3,., p,. holds
true in all the most-preferred models of o,., namely, the usual preferential model interpretation of default
rules. It can be shown (see Appendix I) that the rankings defined by Eqs. (4) and (5) correspond to a spe-
cial kind of a preferential structure; out of all rankings satisfying the rule constraints, the assignment
defined in Eq. (5) is the only one that is minimal, in the sense of assigning to each model the lowest possi-
ble ranking (or highest normality) permitted by the rules in R.

2. Consequence Relations

We are now ready to define two notions of nonmonotonic entailment. Given a knowledge base in the
form of a consistent set R of rules, and some factual information /, we wish to define the conditions
under which / can be said to entail a conclusion g , in the context of R.

Definition 3 (0-entailment): g is said to be 0-entailed by / in the context R, written / |- o g , if the aug-
mented set of rules/? u/ -»-«5 is inconsistent.

Theorem 2:0-entailment is semi-monotonic, i.e., i f R ' ^ R then

/ |- o g under R whenever / \-y g under R ' .

The proof is immediate, from the fact that if R' u / —> -. g is inconsistent, then R u / —>—<g must be
inconsistent as well. Semi-monotonicity reflects a strategy of extreme caution; no consequence will ever
be issued if it is possible to add rules to R (consistently) in such a way as to render the conclusion no
longer valid. Thus, 0-entailment generates the maximal set of "safe" conclusions that can be drawn from
R, and hence, was proposed in [Pearl 1989] as a conservative core that ought to be common to all non-
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monotonic formalisms.

0-entailment was named p-entailment by Adams [1975], e-entailment by Pearl [1988] and r-
entailment by Lehmann and Magidor [1988]. Probabilistically, 0-entailment guarantees that conclusions
will receive arbitrarily high probabilities (i.e., P ( g \ f ) -> 1) whenever the premises receive arbitrarily
high probabilities (i.e.. ?(?,. I o,.) -^ 1 V r e R ). In the preferential model interpretation, 0-entailment
guarantees that K(/ A g ) < K(/ A -i g ) holds in all admissible ranking functions K, namely, in all ranking
functions K(Af ) that satisfy the rule constraints

K(O^ A (3,.) < K(0y A -, (3,.) V r e R (8)

where, for every formula a,

K(a) = min(K(M): M \= a} . (9)

Due to its extremely conservative nature, 0-entailment does not properly handle irrelevant
features, e.g., from a -» c we cannot conclude a A b -» c even in cases where R makes no mention of
b. To sanction such inferences we now define a more adventurous type ofentailment.

Definition 4: (1-entailment). A formula g is said to be l-entailed by /, in the context R, (written
f\-l8),if

z ( / - A ^ ) < z a " A - , g ) . (io)
Namely, there exists an integer k such that the set of rules ranked higher or equal to k tolerates / —> g
but does not tolerate / —> -i g . Note that, once we have the Z-rank of all rules, deciding 1-entailment for
a given query requires at most 2(1 + log \R I ) satisfiability tests (using a binary-search strategy). 1-
entailment can be given a clear motivation in preferential model semantics. Instead of insisting that
v(f A g ) < K(f A —i g ) hold in all admissible ranking functions K, as was done in 0-entailment, we only
require that it holds in the unique admissible ranking that is minimal, namely, the Z-ranking (see Appen-
dix I).

Lehmann [1989] has extended 0-entailment in a slightly different way, introducing a consequence
relation called rational closure. Rational closure is defined in terms of a relation called more exceptional,
where a formula a is said to be more exceptional than p if

avp^-o-'a.

Based on this relation, Lehmann then used an inductive definition to assign a degree to each formula a in



the language: degree (a) = i if degree (a) is not less than i and every p that is less exceptional than a has
degree (p) < i. Finally, a sentence a -» p was defined to be in the rational closure o f R iff
degree (a) < degree (a A —i p).

Goldszmidt and Pearl [1989b] have recently shown that degree (a) is identical to Z(a) and,
hence, rational closure is equivalent to 1-entailment. This endows the Z-ranking with an additional
motivation in terms of exceptionality; Z (a) > Z (p) if a is more exceptional than P. Additionally, the
computational procedure developed for 1-entailment renders membership in the rational closure decidable
in at most 2(1 + log I R I ) satisfiability tests.

Lehmann [1989] has also shown that the rational closure can be obtained by syntactically closing
the relation of 0-entailment under a rule suggested by Makinson called rational monotony. Rational
monotony permits us to conclude a A b |- c from a \- c as long as the consequence relation does not con-
tain a \- —i b. Rational monotony is induced by any admissible ranking function, not necessarily the
minimal one denned by system-Z (see Appendix II). Thus, 1-entailment can be thought of as an exten-
sion of 0-entailment to acquire properties that are sound in any individual (admissible) ranking function.

1-entailment, though more adventurous than 0-entailment, still does not go far enough, as is illus-
trated in the next section.

3. Illustrations

Consider the following collection of rules R'.

r\

r-l
r-s

^•4

rs
r6

"Penguins are birds" p -> b
"Birds fly" b -»/
"Penguins do not fly" p —>—>f
"Penguins live in the antarctic "p —> a
"Birds have wings" b —>w
*' Animals that fly are mobile" / —> m

It can be readily verified that rg, ry, and r^ are each tolerated by all the other five rules in R. For
example, the truth assignment (p = 0, a = 0. / = 1,6 = 1, w = 1, m = 1) satisfies both
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b A W A(p =>6)A(6 ra/)A(p =>-i/)A(p -Da)/\(f •=>m)

and
b A/ A(p :=>&) A (6 3 w) A (& =>—i/)A(p => a) A (/" ram).

Thus, rg, r5 and r; are each assigned a label 0 indicating that these rules pertain to the most normal state
of affairs. No other rule can be labeled 0 because, once we assign? the truth value 1, we must assign 1 to
b and 0 to /, which is inconsistent with b ~3 f . The remaining three rules can now be labeled 1, because
each of the three is tolerated by the other two. A network describing the six rules and their Z-labels is
shown in Figure 1.

P 1 b
->

a

m

Figure 1.

The following are examples of plausible consequences one would expect to draw from R:

Q-entailed
b A? |--i/

f\-^P
b\-^p

p A O \-b

1-entailed
-Al--,p
-.f\-^b

b\-m
->m\-—ib

P A — i W |- b

not-entailed
P \-w

p A -, a \- -if
p A-io |-w

For example, to test the validity of b A p \-y —, f we add the rule r^-.b A p —> f to R, and realize that the
augmented set becomes inconsistent; no rule in the set [b /\p — > f , p -> b, p —> —if ] can be tolerated
by the other two.



1-entailment sanctions plausible inference patterns that are not 0-entailed, among them rule
chaining, contraposition and the discounting of irrelevant features. For example, we cannot conclude by
0-entailment that birds are mobile, b \- m, because neither b —> m nor b —> —m would render R incon-
sistent. However, m is 1-entailed by b, because the rule b —»m is tolerated by all rules in R while
b —»—i m is tolerated by only those labeled 1. Thus,

Z(6 Am)<Z(6 A-,m),

confirming Eq. (10). Similarly, if c is an irrelevant feature (i.e., not appearing in R), we obtain
b A c |-i / but not b A c\-of .

On the other hand, 1-entailment does not permit us to conclude that flying objects are birds
(f \- b) or that penguins who do not live in the antarctic are still birds (p A -i a \- b). This is because
negating these consequences will not change their Z-ratings — in testing f \-\b we have
Z ( y A 6 ) = Z ( / ' A - i 6 ) = 0 , while in testing p /\-ia\-ib we have
Z(p A-ifl A 6 ) = Z (p A —i a A —A ) = 2.

There are cases, however, where 1-entailment produces conclusions whose plausibility may be
subject to dispute. For example/^ if we add to Figure 1 the rule c -> / we obtain Z (c -» /) = 0, which
yields c |-i —p and c /\p \-\ -i /. In other words, 1-entailment ranks the new class c to be as normal as
birds, and penguins, by virtue of being exceptional kind of birds (relative to flying) are also treated as ex-
ceptional c's. Were the database to contain no information relative to birds, penguins and c's would be
treated as equal status classes and the conclusion p A c |- —i / would not be inferred. Thus, merely men-
tioning a property (f ) by which a class (p) differs from its superclass (b) automatically brands that class
(p) exceptional relative to any neutral class (c).

The main weakness of the system described so far is its inability to sanction property inheritance
from classes to exceptional sub-classes. For example, neither of the two types of entailments can sanction
the conclusion that penguins have wings (p -> w) by virtue of being birds (albeit exceptional birds). The
reason is that the label 1 assigned to all rules emanating from p amounts to proclaiming penguins an ex-
ceptional type of birds in all respects, barred from inheriting any bird-like properties (e.g., laying eggs,
having beaks, etc.). This is a drawback that cannot be remedied by methods based solely on the Z-
ordering of defaults. The fact that p —» w is tolerated by two extra rules (p —» b, and b —»w) on top of
those tolerating p —> —i w, remains undetected.

(1) This observation is due to Hector Geffher.



To sanction property inheritance, a more refined ordering is required which also takes into ac-
count the number of rules tolerating a formula, not merely their rank orders. One such refinement is pro-
vided by the maximum-entropy approach [Goldszmidt and Pearl 1989c] where each model is ranked by
the sum of weights on the rules falsified by that model. Another refinement is provided by Gefmer's con-
ditional entailment [Geffher 1989], where the priority of rules induces a partial order on models. These
two refinements will be summarized next.

4. The Maximum Entropy Approach

The maximum-entropy (ME) approach [Pearl 1988] is motivated by the convention that, unless men-
tioned explicitly, properties are presumed to be independent of one another; such presumptions are nor-
mally embedded in probability distributions that attain the maximum entropy subject to a set of con-
straints. Given a set R of rules and a family of probability distributions that are admissible relative the •
constraints conveyed by R (i.e.. P(p,.—>o,.)Sl-e V r e jR), we can single out a distinguished distribu-

tion P^n having the greatest entropy -^P(M)logP(M), and define entailment relative to this distribu-
M

tionby

f ^ g iff P ^ ( g \ f ) ^ l . (11)

An infinitessimal analysis of the ME approach also yields a ranking function K on models, where
K(M) now corresponds to the lowest exponent of e in the expansion of P^R^M) into a power series in e.
Moreover, this ranking function can be encoded parsimoniously by assigning an integer weight w,. to
each rule r e / ? and letting K(M ) be the sum of the weights associated with the rules falsified by M . The
weight HV, in turn, reflects the "cost" we must add to each model M that falsifies rule r, so that the
resulting ranking function would satisfy the constraint conveyed by R, namely,

min (K(M): M \= o^ A p^} < min (K(M): M h o^ A -, p,.} , reR

These considerations lead to a set of I R I non-linear equations for the weights w,. which, under certain
conditions, can be solved by iterative methods. Once the rule weights are established, ME-entailment is
determined by the criterion ofEq.(ll), translated to

f \ - e iff min{K(M):Mh/A^)<min{K(M):M|=/A-,^}.
Ju&

where
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K(M)= Sw.
r:Mha,A-,P,

We see that ME-entailment requires minimization over models, a task that may take exponential
time. In practice, however, this minimization is accomplished quite effectively in databases of Horn ex-
pressions, yielding a reasonable set of inference patterns. For example, in the database of Figure 1, ME-
entailment will sanction the desired consequences p\-w,p/\-ia\--if and p A -i a \- w and, more-
over, it will avoid the undersirable pattern of concluding c /\p \-—if from R u (c —>/}.

The weaknesses of the ME approach are two-fold. First, it does not properly handle causal rela-
tionships and, second, it is sensitive to the format in which the rules are expressed. This latter sensitivity
is illustrated in the following example. From R = {Swedes are blond, Swedes are well-mannered}, ME
will conclude that dark-haired Swedes are still well-mannered, while no such conclusion will be drawn
from R = {Swedes are blond and well-mannered). This sensitivity might sometimes be useful for distin- •
guishing fine nuances in natural discourse, concluding, for example, that mannerisms and hair color are
two independent qualities. However, it stands at variance with one of the basic conventions of formal
logic, which treats a —»b A c as a shorthand notation of a -> b and a —> c and, moreover, unlike 1-
entailment it will conclude c A p \- —if from A u {c —> / }, where c is an irrelevant property.

ME

The failure to respond to causal information (see Pearl [1988, pp. 463, 519] and Hunter [1989])
prevents the ME approach from properly handling tasks such as the Yale shooting problem [Hanks and
McDennott 1986], where rules of causal character are given priority over other rules. This weakness may
perhaps be overcome by introducing causal operators into the ME formulation, similar to the way causal
operators are incorporated within other formalisms of nonmonotonic reasoning (e.g., Shoham [1986],
Geffher [1989]).

5. Conditional Entailment

Geffher [1989] has overcome the weaknesses of 1-entailment by introducing two new refinements. First,
rather than letting rule priorities dictate a ranking function on models, a partial order on models is in-
duced instead. To determine the preference between two models, M and h f , we examine the highest
priority rules that distinguish between the two. i.e., that are falsified by one and not by the other. If all
such rules remain unfalsified in one of the two models, then this model is the preferred one. Formally, if
A[M ] and A[M' ] stand for the set of rules falsified by M and M', respectively, then M is preferred to Af
(written M <M') iff A[M] ?iA[M'] and for every rule r in A[M] -A[M'] there exists a rule r' in
A[M' ] - A[M] such that / has a higher priority than r (written r •{ / ) . Using this criterion, a model W
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will always be preferred to M if it falsifies a proper subset of the rules falsified by M'. Lacking this
feature in the Z-ordering has prevented 1-entailment from concluding p |- w in the example of Section 3.

The second refinement introduced by Geffher is allowing the rule-priority relation, ^ , to become
a partial order as well. This partial order is determined by the following interpretation of the rule a -> p;
if a is all that we know, then, regardless of other rules that R may contain, we are authorized to assert p.
This means that r: a —> P should get a higher priority than any argument (a chain of rules) leading from a
to -i p and, more generally, if a set of rules /?'<=/? does not tolerate r , then at least one rule in R' ought
to have a lower priority than r . In Figure 1. for example, the rule r^-.p —> -i / is not tolerated by the set
[r\:p -»&, r;: b—>f ] , hence, we must have ri •{ r^ or r^\ r^. Similarly, the rule r\:p —> b is not
tolerated by [r^, r-^], hence, we also have r^\ r-i or ry\ r^. From the asymmetry and transitivity o f \ ,
these two conditions yield r^\ r^ and r^-{ r^. It is clear, then, that this priority on rules will induce the
preference M < M', whenever M validates p A b A -i / and M' validates p A b A /; the former falsifies
r2> while the latter falsifies the higher priority rule r^. In general, we say that a proposition g is condi-
tionally entailed by / (in the context of R) if g holds in all the preferred models of/ induced by every
priority ordering admissible with R.

Conditional entailment rectifies many of the shortcomings of 1-entailment as well as some
weaknesses of ME-entailment. However, having been based on model minimization as well as on
enumeration of subsets of rules, its computational complexity might be overbearing. A proof theory for
conditional entailment can be found in Geffher [1989].

Conclusions

The central theme in this paper has been the realization that underlying any consistent system of default
rules there is a natural ranking of these defaults and that this ranking can be used to induce preferences on
models and plausible consequence relationships. We have seen that the Z-ranking emerges from both
the probabilistic interpretation of defaults and their preferential model interpretation, and that two of its
immediate entailment relations are decidable in 0 (N2) satisfiability tests. The major weakness of these
entailment relationships has been the blockage of property inheritance across exceptional subclasses. Two
refinements were described, maximum-entropy and conditional entailment, which properly overcome this
weakness at the cost of a higher complexity. An open problem remains whether there exists a tractable
approximation to the maximum entropy or the conditional entailment schemes which permits inheritance
across exceptional subclasses and, at the same time, retains a proper handling of specificity-based priori-
ty.
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APPENDIX I: Uniqueness of The Minimal Ranking Function

Definition: A ranking function is an assignment of non-negative integers to the models of the language.
A ranking function K is said to be admissible relative to database R, if it satisfies

min (K(M): M (= o^ A p,.} < min (K(M): M h a, A -i p,.} (1-1)

for every rule r: Oy —> p,. in /?.

Let W stand for the set of models considered.

Definition: A ranking function K is said to be minimal if every other admissible ranking K' satisfies
K'(M ) > K(M' ) for at least one model M' e W.

Clearly, every minimal ranking has the property of "local compactness," namely, it is not possi-
ble to lower the rank of one model while keeping the ranks of all other models constant Every such at-
tempt will result in violating the constraint imposed by at least one rule in R. We will now show that lo-
cal compactness is also a sufficient property for minimality, because there is in fact only one unique rank-
ing that is locally compact.

Definition: An admissible ranking function K is said to be compact if, for every M' e W, any ranking K'
satisfying

K'(M)=K(AQ M ^M'

K\M)<K(AO M=M'

is inadmissible.

Theorem (uniqueness): Every consistent R has a unique compact ranking Z (M) given by Eq. (5).

Corollary: Every consistent R has a unique minimal ranking given by the compact ranking Z(Af)
ofEq. (5).

Proof: We will prove that the ranking function Z given in Eq. (5) is the unique compact ranking. First
we show, by contradiction, that Z is indeed compact. Suppose it is possible to lower the rank Z (M') of
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some model A f . Let Z (Af) = /. From Eq. (5) we know that M' falsifies some rule r: a —» P of rank
Z(r)=7 -1, namely, M' |=aA-i p, and there exists M t=«A (3 having Z(M)=/ - 1. Lowering the
rank ofM' below /, while keeping Z (Af) = / - 1 would clearly violate the constraint imposed by the rule
a -> p (see Eq. (1-1)). Thus, Z is compact.

We now prove that Z is unique. Suppose there exists some other compact ranking function K,
that differs from Z on at least one model. We shall show that if there exists an M' such that
K(M t) < Z (M') then K could not be admissible, while if there exists an M' such that v(M') > Z (M"), then
K could not be compact Assume ic(M') < Z (M'), let / be the lowest K value for which such inequality
holds, and let Z(M')=J >/. >From Eq. (5), M' falsifies some rule a-> (3 of rank 7-1, namely,
M' \= a A —i P and every model M validating a A p must obtain Z(M)>7-1. By our assumption, K(M)
must also assign to each such M a value not lower than J — 1 S /. But this is incompatible with the con-
straint a —> P (see Eq. (1-1)). Thus, K is inadmissible.

Now assume there is a non-empty set of models for which K(M) >Z(Af), and let / be the lowest
Z value in which K(M' ) > Z (M') holds for some model M'. We will show that K could not be compact,
because it should be possible to reduce K(M' ) to Z (M') while keeping constant the K of all other models.
From Z (M') = / we know that M' does not falsify any rule of -> p" whose Z rank is higher than 7-1.
Hence, we only need to watch whether the reduction of K can violate rules r for which Z (r) < I . Howev-
er, every such rule r :<x -» P has a model Af|= a A p having Z(Af )< / , and every such model was assumed
to obtain a K rank equal to that assigned by Z. Hence, none of these rules will be violated by lowering
K(M')toZ(M).QED.
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APPENDIX n: Rational Monotony of Admissible Rankings

Theorem: The consequence relation |- defined by the criterion

f \ - g i f f K(/-A^)<K(/"A^)

is closed under rational monotony, for every admissible ranking function K.

Proof: We need to show that for every three formulas a, b and c, if a \- c, then either a \- —to or
a A b \- c. Assume a \- c and a \f- —ib, namely,

(i) K(a A c) < K(a A -ic )

(ii) K(a A -A ) > K(a A b),

we must prove

(iii) K(a A b A c) < K(a A b A —ic ).

Rewriting (i) as

K(a A c) = min (K(a A c A b, K(a A C A —b)} < min {K(a A b A —ic ), K(a A —h A —ic )} = K(a A -i c)

we need to show only that the min on the left hand side is obtained at the second term, i.e., that

min (K(a A c A&), K(a A c /\—>b)] =K(a A c A — A ) .

But this is guaranteed by (ii), because the alternative possibility:

K(a A C A b) < K(a A c A -16)

together with (ii), would violate (i). QED
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